MA341 - Matrix Analysis and Positivity 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 1 (due by Thursday, September 7 in class, or previously in office hours)

Question 1 (The (de)compression trick).
(1) Fix real scalars a, b, c and integers $m, n>0$. Show that the matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ is positive semidefinite (psd), if and only if the matrix $\left(\begin{array}{lll}a & a & b \\ a & a & b \\ b & b & c\end{array}\right)$ is psd, or more generally, if and only if the block matrix $\left(\begin{array}{ll}a \mathbf{1}_{n \times n} & b \mathbf{1}_{n \times m} \\ b \mathbf{1}_{m \times n} & c \mathbf{1}_{m \times m}\end{array}\right)$ is psd. Here, $\mathbf{1}_{m \times n}$ denotes the $m \times n$ matrix of all ones.
(2) (Merely) State the generalization of this result to arbitrary real symmetric matrices being positive semidefinite or not.

Question 2 (The correlation trick). Recall that a positive semidefinite matrix is a correlation matrix if all its diagonal entries are 1.
(1) Prove that for every positive definite matrix A, there exists a unique positive definite diagonal matrix D and correlation matrix C such that $A=D C D$.
(2) Fix a dimension $n \geq 1$. Does the procedure in the previous part recover all $n \times n$ correlation matrices? Prove or find a counterexample.
(3) Prove that A and C have the same pattern of zeros and the same rank. By the former, we mean that if $a_{j k}=0$ for some j, k then $c_{j k}=0$ as well.

Question 3. If the columns of an $m \times n$ real matrix A are linearly independent, verify that its Moore-Penrose inverse is $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$.

Question 4. Suppose $n \geq 1$ is an integer and $C_{n \times n}$ is a correlation matrix, i.e. C is positive semidefinite with all diagonal entries 1 .
(1) Show that $n \mathrm{Id}-C$ is positive semidefinite.
(2) Show with an example that the coefficient n in the preceding question is sharp (i.e., cannot be reduced).
(3) More generally, show that if $A \in \mathbb{P}_{n}$ and D is the diagonal matrix with (j, k) entry $\delta_{j, k} a_{j j}$, then $n D-A$ is positive semidefinite.

Question 5. Another construction of new positive definite matrices from older ones: W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys. 8 (1975), 159-170.
(1) Verify that the geometric mean of two positive definite (real) $n \times n$ matrices, given by

$$
A \# B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2}
$$

is positive definite.
(2) Verify that $A \# B$ is the unique positive definite solution X to the Riccati equation $X A^{-1} X=B$. (Hint: First do this for $A=\mathrm{Id}$.)
(3) Consequently, show that $A \# B=B \# A$, and

$$
\left(C^{-1} A C\right) \#\left(C^{-1} B C\right)=C^{-1}(A \# B) C
$$

for positive definite A, B and unitary C.
(4) When A, B commute, show that $A \# B=(A B)^{1 / 2}$.

