MA221 – Analysis I : Real Analysis 2017 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 3 (due by Thursday, September 28, in class or earlier in the week)

Question 1. Given a space X, two metrics d, d' on X are said to be *similar* if there are *uniform* constants $0 < m \le M$ such that

$$m \cdot d(x, y) \le d'(x, y) \le M \cdot d(x, y), \quad \forall x, y \in X.$$
 (1)

(1) Now **prove that** if d, d' are similar metrics on a space X, then they induce the same 'topology', i.e., the collection of open subsets of X

$$\mathcal{O}_d := \{ U \subset \mathbb{R}^k : U \text{ is open with respect to the metric } d \}$$
 (2)

equals the correspondingly defined collection $\mathcal{O}_{d'}$.

(2) Prove that a subset $K \subset X$ is compact in the d-metric, if and only if it is compact in the d'-metric.

Question 2. Recall that a norm on \mathbb{R}^k is a function $N: \mathbb{R}^k \to \mathbb{R}$ satisfying:

- $N(\mathbf{x}) \geqslant 0 \ \forall \mathbf{x} \in \mathbb{R}^k$, with equality if and only if $\mathbf{x} = \mathbf{0}$;
- For all scalars $a \in \mathbb{R}$ and vectors $\mathbf{x} \in \mathbb{R}^k$, we have: $N(a \cdot \mathbf{x}) = |a| \cdot N(\mathbf{x})$; and
- $N(\mathbf{x} + \mathbf{y}) \leq N(\mathbf{x}) + N(\mathbf{y})$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^k$.

We now claim that norms are the same as 'special' metrics:

- (1) Prove that every norm N gives rise to a metric d_N which is
 - 'translation-invariant', i.e.: $d_N(\mathbf{x}+\mathbf{z},\mathbf{y}+\mathbf{z}) = d_N(\mathbf{x},\mathbf{y})$ for all $\mathbf{x},\mathbf{y},\mathbf{z} \in \mathbb{R}^k$;
 - and 'scaling-equivariant', i.e.: $d_N(a \cdot \mathbf{x}, a \cdot \mathbf{y}) = |a|d_N(\mathbf{x}, \mathbf{y})$ for all $a \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^k$.
- (2) Conversely, prove that every translation-invariant and scaling-equivariant metric d gives rise to a norm N_d .

Next, we study a very specific norm on \mathbb{R}^k :

Question 3. Suppose $N_{\infty}(\mathbf{x}) := \max_{1 \le j \le k} |x_j|$, for $\mathbf{x} \in \mathbb{R}^k$.

- (1) Check that N_{∞} is a norm on \mathbb{R}^k ; it is called the *sup-norm*.
- (2) What is the unit ball in N_{∞} ? Namely, what is the set $B_{\infty}(\mathbf{0}, 1) := \{\mathbf{x} \in \mathbb{R}^k : N_{\infty}(\mathbf{x}) = 1\}$?

(3) Let $N_2(\mathbf{x}) := (x_1^2 + \dots + x_k^2)^{1/2}$ denote the usual Euclidean norm. Prove that $N_{\infty}(\mathbf{x})$ is similar to $N_2(\mathbf{x})$, i.e., there exist universal constants $0 < m \leq M$ such that

$$m \cdot N_{\infty}(\mathbf{x}) \leqslant N_2(\mathbf{x}) \leqslant M \cdot N_{\infty}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^k.$$

(This is similar to something we worked out in class, about the convergence of a tuple of sequences.)

(4) Prove that the above unit N_{∞} -ball is compact in the metric space $(\mathbb{R}^k, N_{\infty})$.

Question 4. A famous problem is to show that all norms N on \mathbb{R}^k are similar (and in particular have the same topology). In terms of the previous problems, it means that for any two norms $N, N' : \mathbb{R}^k \to \mathbb{R}$, then one can find uniform constants $0 < m \leq M$ such that

$$m \cdot N(\mathbf{x}) \leqslant N'(\mathbf{x}) \leqslant M \cdot N(\mathbf{x}) \ \forall \mathbf{x} \in \mathbb{R}^k.$$

In a future homework, we will in fact prove a *stronger* statement than this fact, but for now our goal is to show this assertion (using the three questions above).

- (1) Start by proving that 'similarity' is an equivalence relation on the space of all norms.
- (2) Let \mathbf{e}_j denote the unit vector with 1 in the *j*th coordinate, and 0 everywhere else. Then every vector $\mathbf{x} = (x_1, \dots, x_k) = x_1 \mathbf{e}_1 + \dots + x_k \mathbf{e}_k$.

Now given any norm N, find a constant M such that $N(\mathbf{x}) \leq M \cdot N_{\infty}(\mathbf{x})$ for all \mathbf{x} .

(3) Prove that the inequality

$$N(\mathbf{x}) \leqslant M \cdot N_{\infty}(\mathbf{x}) \ \forall \mathbf{x} \in \mathbb{R}^k$$

implies that the map $N:(\mathbb{R}^k,N_\infty)\to\mathbb{R}$ is continuous.

(4) Evaluating the map N on the unit N_{∞} -ball

$$N: B_{\infty}(\mathbf{0},1) \to \mathbb{R},$$

and using the above results (and results from class), prove that there exists m > 0 such that $m \cdot N_{\infty}(\mathbf{x}) \leq N(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^k$. Together with Question 4.3 above, this proves N is similar to N_{∞} for all N, and hence all norms are similar by Question 4.1.

Question 5. Prove the *Sandwich Theorem*: If $a_n \leq b_n \leq c_n$ are three real sequences, and $a_n \to L, c_n \to L$ for some $L \in \mathbb{R}$, then $b_n \to L$ as well.

Question 6. Rudin Chapter 3 Problem 23.

Question 7. Rudin Chapter 3 Problem 24.