MA219 - Linear Algebra
 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 9 (due by Monday, November 27 by 5:30pm in TA's office, or previously in class)

Question 1. Suppose $A \in \mathbb{F}^{m \times n}$ for $m, n \geq 1$, and P, Q are square, invertible matrices over \mathbb{F} (for an arbitrary field \mathbb{F}) such that $P A Q$ is defined. Show that $P A Q$ and A have the same rank.

Question 2. (Henceforth we work over \mathbb{R} or \mathbb{C}.) Suppose a vector v_{0} in an inner product space V is such that v_{0} is orthogonal to every vector in V. Show that $v_{0}=\mathbf{0}_{V}$.

Question 3. Verify the following polarization identity in a real inner product space V :

$$
(x, y)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right), \quad \forall x, y \in V
$$

Question 4. Show the triangle inequality in a complex (or real) inner product space $V:\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in V$, with equality if and only if $y=0$ or x is a non-negative scalar multiple of y.

Question 5. Let $V=\mathbb{R}^{3}$ and

$$
\mathbf{w}_{1}=(\pi, 0,0)^{T}, \quad \mathbf{w}_{2}=(e, \pi, 0)^{T}, \quad \mathbf{w}_{3}=(1,1,1)^{T}
$$

(or forget the transposes and work without them). Apply the Gram-Schmidt algorithm to compute an orthogonal triple $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ with the desired properties.

Question 6. Suppose $\mathbb{F}=\mathbb{R}$ and $V=\mathbb{R}^{3}$. Let $W \subset V$ be the subspace

$$
W:=\left\{(x, y, z)^{T} \in V: x+2 y+3 z=0\right\}
$$

(1) Write down an orthogonal basis for W and one for W^{\perp}.
(2) Using this basis, compute $P_{W}(v)$, the projection onto W of $v=(1,1,1)^{T}$.
(3) Compute $P_{W}(v)$ differently, as $v-P_{W^{\perp}}(v)$.
(4) Suppose $\left(w_{1}, w_{2}\right)$ form an orthonormal basis of W, and w_{3} of W^{\perp}. Let $\mathcal{B}=\left(w_{1}, w_{2}, w_{3}\right)$. Compute $\left[P_{W}\right]_{\mathcal{B}}$. (In particular, this should tell you the eigenvalues of P_{W} and their algebraic (= geometric) multiplicities.)

Question 7. Show that if $A, B \in \mathbb{C}^{n \times n}$ are unitary matrices, then so are $A B, A^{-1}, A^{T}, \bar{A}$.

Question 8. We will show later that real symmetric matrices are diagonalizable, with all eigenvalues real - and this holds more generally for all complex Hermitian matrices $\left(A^{*}=A\right)$. Similarly, you may have seen that if A is skew-Hermitian $\left(A^{*}=-A\right)$, then A is diagonalizable with purely imaginary eigenvalues.

More generally now, suppose $z \in \mathbb{C}$ is a complex number, and suppose $A^{*}=z A$ for some matrix $A \in \mathbb{C}^{n \times n}$ and scalar $z \in \mathbb{C}$.
(1) If $|z| \neq 1$, show that $A=\mathbf{0}_{n \times n}$.
(2) Now suppose $|z|=1$. Describe all diagonal matrices D with this property.
(3) Again suppose $|z|=1$. Prove that every matrix A such that $A^{*}=z A$ is of the form $U D U^{*}$, where $U \in \mathbb{C}^{n \times n}$ is unitary and D is as in the previous part.

