MA219 - Linear Algebra
 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 7 (due by Thursday, November 2 in TA's office, or previously in class)

Throughout this homework (and this course), \mathbb{F} denotes an arbitrary field.

Question 1. Suppose $A, B \in \mathbb{F}^{n \times n}$ are square matrices such that $A=P B P^{-1}$ for invertible $P \in \mathbb{F}^{n \times n}$. For every polynomial $p(x) \in \mathbb{F}[x]$, show that $p(A)=P p(B) P^{-1}$.

Question 2. This exercise shows how to solve systems of first-order linear (ordinary) differential equations such as

$$
x^{\prime}(t)=2 x(t)+3 y(t), \quad y^{\prime}(t)=3 x(t)+2 y(t) .
$$

More generally, we work over $\mathbb{F}=\mathbb{R}$ and with a fixed integer $n \geq 1$ number of differentiable functions $x_{1}(t), \ldots, x_{n}(t)$. Also fix a matrix $A=P D P^{-1}$ that is diagonalizable, i.e., P is invertible and D is diagonal, say with (i, i)-entry $\lambda_{i} \in \mathbb{R}$.
(1) First solve the system $\mathbf{x}^{\prime}(t)=D \mathbf{x}(t)$, where $\mathbf{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)^{T}$.
(2) Now solve the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

Question 3. Suppose $A, B \in \mathbb{F}^{n \times n}$. We have seen that if A, B are similar/conjugate, then $p_{A}(x)=p_{B}(x)$. Is the converse true? Prove or give a counterexample. (E.g., do this for 2×2 matrices.)

Question 4. Suppose $A \in \mathbb{F}^{n \times n}$ has characteristic polynomial $p_{A}(x)=\operatorname{det}\left(x \operatorname{Id}_{n}-A\right)$. Write

$$
p_{A}(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0} .
$$

(1) Explain why $c_{n}=1,-c_{n-1}$ equals the trace of A, and $c_{0}=(-1)^{n} \operatorname{det} A$.
(2) Suppose \mathbb{F} contains n roots of the characteristic polynomial $p_{A}(x)$ (e.g., if it is an algebraically closed field). Prove that the sum and the product of the eigenvalues of A equal the trace and determinant of A, respectively.

Question 5. Suppose $T: V \rightarrow V$ is linear, with $\operatorname{dim} V=n \geq 1$. If T^{k} is the zero transformation for some integer $k \geq 1$, then show that $T^{n}=0$. (Hint: If $k \geq n$, consider the minimal polynomial of T.)

