MA219 – Linear Algebra 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 6 (*due by Thursday, October 26* in TA's office hours, or previously in class)

Throughout this homework (and this course), F denotes an arbitrary field.

Question 1. Suppose V_1, \ldots, V_n, W are \mathbb{F} -vector spaces, and

$$T_1, \ldots, T_k : V_1 \times \cdots \times V_n \to W$$

are multilinear maps. Show that so is $\sum_{i=1}^{k} c_i T_i$, for any choice of scalars $c_i \in \mathbb{F}$. (For your homework, it will suffice to check the linearity in the *n*th argument.)

Question 2. Using results from class about how the determinant changes under elementary row operations (or other results about the determinant), compute the

determinants of the matrices
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$.

Question 3. Given a square matrix $A \in \mathbb{F}^{n \times n}$, define its adjugate matrix $adj(A) \in \mathbb{F}^{n \times n}$ to have (i,j) entry $(-1)^{i+j} \det A_{j|i}$, where $A_{j|i} \in \mathbb{F}^{(n-1) \times (n-1)}$ is the matrix obtained by removing the jth row and ith column of A. Prove the following properties for any matrix $A \in \mathbb{F}^{n \times n}$, say with $n \geq 2$:

- (1) $adj(A) \cdot A = A \cdot adj(A) = (\det A) \mathrm{Id}_n$.
- (2) If A is singular then adj(A) is also singular.
- (3) $\det(adjA) = (\det A)^{n-1}.$
- (4) $adj(A^T) = adj(A)^T$.

Question 4. A Vandermonde matrix is a matrix of the form

$$M_{n \times n} = \begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ 1 & a_3 & a_3^2 & \cdots & a_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{pmatrix}$$

where $n \geq 1$ is an integer, and $a_1, \ldots, a_n \in \mathbb{F}$ are scalars.

Prove (e.g. by induction on n) that if $n \ge 2$, then det $M = \prod_{1 \le i \le j \le n} (a_j - a_i)$.

Question 5. Suppose $p(x) \in \mathbb{F}[x]$ is a polynomial, and $T: V \to V$ is a linear transformation on a (not necessarily finite-dimensional) \mathbb{F} -vector space V.

- (1) If T has an eigenvalue λ , then prove that the linear transformation p(T): $V \to V$ has an eigenvalue $p(\lambda)$.
- (2) More generally, let $c_i, \lambda_i \in \mathbb{F}$, $v_i \in V$, and $Tv_i = \lambda_i v_i$ for $1 \leq i \leq k$. Prove (as asserted in class) that

$$p(T)\sum_{i=1}^{k} c_i v_i = \sum_{i=1}^{k} c_i p(\lambda_i) v_i.$$

Question 6. Suppose $\mathbb{F} = \mathbb{Z}/5\mathbb{Z} = \mathbb{F}_5$, and $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Compute the eigenvalues of A and the λ -eigenspace for every scalar λ .

Question 7. The Fibonacci numbers are defined recursively/inductively as:

$$f_0 = 0,$$
 $f_1 = 1,$ $f_{n+1} = f_n + f_{n-1} \ \forall n \ge 1.$

Every number is the sum of the previous two terms: $0, 1, 1, 2, 3, 5, 8, \dots$

The goal of this exercise is to *derive* the following closed-form expression for f_n , termed *Binet's formula*:

$$f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

(Certainly once the formula is known, it is easy to prove it by induction. But how does one obtain this formula in the first place?)

- (1) Let $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Show that $A^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix}$ for all $n \ge 0$.
- (2) Find the eigenvalues and a choice of eigenvectors of A, each of which has unit length (as a vector in \mathbb{R}^2).
- (3) Using this, write $A = PDP^{-1}$ for some diagonal matrix D and invertible matrix P (if you have done things right, you should get that $PP^{T} = \text{Id}$, so that $P^{-1} = P^{T}$). The entries of D should be $(1 \pm \sqrt{5})/2$.
- (4) Finally, compute f_n .

Question 8. If $p(x) \in \mathbb{F}[x]$, and $A \in \mathbb{F}^{n \times n}$ is a block-triangular matrix of the form

$$\begin{pmatrix} B_{k\times k} & C_{k\times (n-k)} \\ \mathbf{0}_{(n-k)\times k} & D \end{pmatrix},$$

then show that $p(A) = \begin{pmatrix} p(B) & C' \\ \mathbf{0} & p(D) \end{pmatrix}$ for some matrix C'.