MA219 - Linear Algebra 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 6 (due by Thursday, October 26 in TA's office hours, or previously in class)

Throughout this homework (and this course), \mathbb{F} denotes an arbitrary field.

Question 1. Suppose V_{1}, \ldots, V_{n}, W are \mathbb{F}-vector spaces, and

$$
T_{1}, \ldots, T_{k}: V_{1} \times \cdots \times V_{n} \rightarrow W
$$

are multilinear maps. Show that so is $\sum_{i=1}^{k} c_{i} T_{i}$, for any choice of scalars $c_{i} \in \mathbb{F}$.
(For your homework, it will suffice to check the linearity in the nth argument.)
Question 2. Using results from class about how the determinant changes under elementary row operations (or other results about the determinant), compute the determinants of the matrices $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Question 3. Given a square matrix $A \in \mathbb{F}^{n \times n}$, define its adjugate matrix $\operatorname{adj}(A) \in$ $\mathbb{F}^{n \times n}$ to have (i, j) entry $(-1)^{i+j} \operatorname{det} A_{j \mid i}$, where $A_{j \mid i} \in \mathbb{F}^{(n-1) \times(n-1)}$ is the matrix obtained by removing the j th row and i th column of A. Prove the following properties for any matrix $A \in \mathbb{F}^{n \times n}$, say with $n \geq 2$:
(1) $\operatorname{adj}(A) \cdot A=A \cdot \operatorname{adj}(A)=(\operatorname{det} A) \operatorname{Id}_{n}$.
(2) If A is $\operatorname{singular}$ then $\operatorname{adj}(A)$ is also singular.
(3) $\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}$.
(4) $\operatorname{adj}\left(A^{T}\right)=\operatorname{adj}(A)^{T}$.

Question 4. A Vandermonde matrix is a matrix of the form

$$
M_{n \times n}=\left(\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n-1} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n-1} \\
1 & a_{3} & a_{3}^{2} & \cdots & a_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{n} & a_{n}^{2} & \cdots & a_{n}^{n-1}
\end{array}\right)
$$

where $n \geq 1$ is an integer, and $a_{1}, \ldots, a_{n} \in \mathbb{F}$ are scalars.
Prove (e.g. by induction on n) that if $n \geq 2$, then $\operatorname{det} M=\prod_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right)$.

Question 5. Suppose $p(x) \in \mathbb{F}[x]$ is a polynomial, and $T: V \rightarrow V$ is a linear transformation on a (not necessarily finite-dimensional) \mathbb{F}-vector space V.
(1) If T has an eigenvalue λ, then prove that the linear transformation $p(T)$: $V \rightarrow V$ has an eigenvalue $p(\lambda)$.
(2) More generally, let $c_{i}, \lambda_{i} \in \mathbb{F}, v_{i} \in V$, and $T v_{i}=\lambda_{i} v_{i}$ for $1 \leq i \leq k$. Prove (as asserted in class) that

$$
p(T) \sum_{i=1}^{k} c_{i} v_{i}=\sum_{i=1}^{k} c_{i} p\left(\lambda_{i}\right) v_{i}
$$

Question 6. Suppose $\mathbb{F}=\mathbb{Z} / 5 \mathbb{Z}=\mathbb{F}_{5}$, and $A=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$. Compute the eigenvalues of A and the λ-eigenspace for every scalar λ.

Question 7. The Fibonacci numbers are defined recursively/inductively as:

$$
f_{0}=0, \quad f_{1}=1, \quad f_{n+1}=f_{n}+f_{n-1} \forall n \geq 1
$$

Every number is the sum of the previous two terms: $0,1,1,2,3,5,8, \ldots$
The goal of this exercise is to derive the following closed-form expression for f_{n}, termed Binet's formula:

$$
f_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

(Certainly once the formula is known, it is easy to prove it by induction. But how does one obtain this formula in the first place?)
(1) Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$. Show that $A^{n}\binom{0}{1}=\binom{f_{n}}{f_{n+1}}$ for all $n \geq 0$.
(2) Find the eigenvalues and a choice of eigenvectors of A, each of which has unit length (as a vector in \mathbb{R}^{2}).
(3) Using this, write $A=P D P^{-1}$ for some diagonal matrix D and invertible matrix P (if you have done things right, you should get that $P P^{T}=\mathrm{Id}$, so that $\left.P^{-1}=P^{T}\right)$. The entries of D should be $(1 \pm \sqrt{5}) / 2$.
(4) Finally, compute f_{n}.

Question 8. If $p(x) \in \mathbb{F}[x]$, and $A \in \mathbb{F}^{n \times n}$ is a block-triangular matrix of the form

$$
\left(\begin{array}{cc}
B_{k \times k} & C_{k \times(n-k)} \\
\mathbf{0}_{(n-k) \times k} & D
\end{array}\right)
$$

then show that $p(A)=\left(\begin{array}{cc}p(B) & C^{\prime} \\ \mathbf{0} & p(D)\end{array}\right)$ for some matrix C^{\prime}.

