MA219 - Linear Algebra
 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 5 (due by Thursday, October 5 in TA's office hours, or previously in class)

Throughout this homework (and this course), \mathbb{F} denotes an arbitrary field.

Question 1. Suppose \mathbb{F}-vector spaces V, W, X have ordered bases $\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{m}\right)$, and $\left(x_{1}, \ldots, x_{p}\right)$ for positive integers n, m, p respectively. Write down a basis of the vector space of bilinear maps : $V \times W \rightarrow X$, and prove that it is a basis.

Question 2. Suppose an \mathbb{F}-vector space V has an ordered basis $\left(v_{1}, \ldots, v_{n}\right)$. For $1 \leq i_{0} \leq n$, define the dual functionals $\varphi_{i_{0}}: V \rightarrow \mathbb{F}$ via:

$$
\varphi_{i_{0}}\left(\sum_{i=1}^{n} c_{i} v_{i}\right):=c_{i_{0}}
$$

Assuming that $\varphi_{i_{0}} \in V^{*}$, show that these vectors form a basis of V^{*}. (This is called the dual basis.)

Question 3. Recall the direct product and direct sum (or coproduct) of a set $\left\{V_{i}: i \in\right.$ $I\}$ of \mathbb{F}-vector spaces, constructed in class (and studied in the preceding homework set). The goal of this exercise is to show that

$$
\left(\bigoplus_{i \in I} V_{i}\right)^{*} \cong \prod_{i \in I} V_{i}^{*}
$$

by going the 'reverse' way:
(1) Given $\boldsymbol{\Phi}=\left(\varphi_{i}\right)_{i \in I}$, with each $\varphi_{i} \in V_{i}^{*}$, first show that $\left(\varphi_{i}\right)_{i \in I}$ yields a linear map from $\bigoplus_{i \in I} V_{i}$ to \mathbb{F}. Let us call this map $T(\boldsymbol{\Phi})$.
(2) Show that the assignment $T: \boldsymbol{\Phi} \mapsto T(\boldsymbol{\Phi})$ is a linear map, from $\prod_{i \in I} V_{i}^{*}$ to $\left(\bigoplus_{i \in I} V_{i}\right)^{*}$.
(3) Show that T is one-to-one and onto.

Question 4. (Quotient spaces - you don't need to submit this solution.) Suppose V is an \mathbb{F}-vector space, and $W \subset V$ a subspace. Define a relation $v \sim v^{\prime}$ on V if $v-v^{\prime} \in W$. Now define the quotient space V / W to be the set of distinct equivalence classes $[v]$, under the relation:

$$
a[v]+b\left[v^{\prime}\right]:=\left[a v+b v^{\prime}\right], \quad a, b \in \mathbb{F}, v, v^{\prime} \in V .
$$

(1) Verify that \sim above is an equivalence relation on V.
(2) Check that the addition defined above (setting $a=b=1$) is associative.
(3) Check that $\mathbf{0}_{V / W}:=[w]$ for $w \in W$ is an (or 'the') additive identity in V / W.
(4) Assuming that V / W is a vector space under the above operations (which it is!), check that the map $\pi: V \rightarrow V / W$ sending $v \in V$ to $[v]$ is a surjective \mathbb{F}-linear map.
(5) Prove that the quotient space satisfies the following 'universal property':

Given any \mathbb{F}-vector space Z, and a \mathbb{F}-linear map $\varphi: V \rightarrow Z$ which maps W to $\mathbf{0}_{Z}$, there exists a unique \mathbb{F}-linear map $\bar{\varphi}: V / W \rightarrow Z$ such that $\varphi=\bar{\varphi} \circ \pi$ (with π as in the previous part).

