MA219 - Linear Algebra
 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 4 (due by Thursday, September 14 in TA's office hours, or previously in class)

Throughout this homework (and this course), \mathbb{F} denotes an arbitrary field.

Question 1. We have seen that (by convention,) the zero vector space over any field has exactly one basis: the empty set. Now:
(1) Classify all nonzero vector spaces over all fields, which also have exactly one unordered basis - i.e., exactly one basis up to permuting its basis elements.
(2) Classify all nonzero vector spaces over all fields, which have exactly two unordered bases.

Question 2. Let V be finite-dimensional over \mathbb{F}, with an ordered basis \mathcal{B}. Find the coordinate-matrices of the linear transformations $\mathbf{0}, \mathrm{id}_{V}$ with respect to \mathcal{B}, \mathcal{B}.

Question 3. Suppose \mathbb{F} is a field, and $T: \mathbb{F}^{2} \rightarrow \mathbb{F}^{2}$ is the linear operator $T\left(x_{1}, x_{2}\right):=$ $\left(x_{2},-x_{1}\right)$, where $\left(x_{1}, x_{2}\right)^{T}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}$ is with respect to the standard ordered basis $\mathcal{B}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$.
(1) What is the matrix of T given by $[T]_{\mathcal{B}, \mathcal{B}}$?
(2) What is the matrix of T given by $[T]_{\mathcal{B}, \mathcal{B}^{\prime}}$, where $\mathcal{B}^{\prime}=\left(\mathbf{e}_{1}+\mathbf{e}_{2},-\mathbf{e}_{1}\right)$?
(3) What is the transition matrix of \mathcal{B}^{\prime} into \mathcal{B} ? Meaning, find the matrix P such that $[v]_{\mathcal{B}}=P[v]_{\mathcal{B}^{\prime}}$ for all $v \in \mathbb{F}^{2}$.
(4) Suppose \mathbb{F} has characteristic not 2 (so $2=1+1$ in \mathbb{F}). What is the coordinate vector of $(2,-1)^{T}$ in the standard basis, when written out in the basis \mathcal{B}^{\prime} ?

Question 4 (If you want, try this one after Tuesday's class - or see the videos online.). The direct product of a family $\left\{V_{i}: i \in I\right\}$ of \mathbb{F}-vector spaces is their Cartesian product, denoted

$$
\prod_{i \in I} V_{i}=\times_{i \in I} V_{i}
$$

with a typical element $\left(v_{i}\right)_{i \in I}$. Also fix the projection maps

$$
\pi_{i_{0}}: \prod_{i \in I} V_{i} \rightarrow V_{i_{0}}, \quad\left(v_{i}\right)_{i \in I} \mapsto v_{i_{0}}
$$

(1) Verify that each $\pi_{i_{0}}$ is a surjective \mathbb{F}-linear map.
(2) Write out the (complete) proof that this product satisfies the following "universal property":

Given any \mathbb{F}-vector space Z, and \mathbb{F}-linear maps $\varphi_{i}: Z \rightarrow V_{i}$ for all $i \in I$, there exists a unique \mathbb{F}-linear $\operatorname{map} \varphi: Z \rightarrow \prod_{i \in I} V_{i}$ such that $\varphi_{i}=\pi_{i} \circ \varphi$ for all $i \in I$.

In other words, the Cartesian product proves the existence of an object that satisfies this universal property. (By class, every other "candidate" is isomorphic to this one.)

