MA219 - Linear Algebra
 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 3 (due by Thursday, September 7 in TA's office hours, or previously in class)

Throughout this homework (and this course), \mathbb{F} denotes an arbitrary field.

Question 1. (a) Show that three vectors in \mathbb{R}^{2} are linearly dependent.
(b) Find three vectors in \mathbb{R}^{2} such that any two are linearly independent.

Question 2. Suppose B is a domain set, and $F u n_{0}(B, \mathbb{F})$ is the set of functions $f: B \rightarrow \mathbb{F}$ such that $f(x)=0$ for all but finitely many $x \in B$. (As we said in an earlier homework set, every vector space is akin to this, by assuming B to consist of the basis, and the value of f on B to be the coefficients such that f corresponds to that specific linear combination.)

The question here is to write down a basis of this vector space $F u n_{0}(B, \mathbb{F})$ over the ground field \mathbb{F} (and to show that it is a basis).

Question 3. Suppose V, W are \mathbb{F}-vector spaces, and $T: V \rightarrow W$ is an \mathbb{F}-linear transformation.
(1) Show that $T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$ and that $T(-v)=-T(v)$ for all $v \in V$.
(2) Suppose T is a bijection of sets. Prove that the inverse map T^{-1} is also a linear transformation.

Question 4. Suppose V is an \mathbb{F}-vector space, with ordered basis $\mathcal{B}=\left(v_{1}, \ldots, v_{n}\right)$. Prove that the map $\eta: V \rightarrow \mathbb{F}^{n}$, sending a vector $v=c_{1} v_{1}+\cdots+c_{n} v_{n}$ to the column vector $[v]_{\mathcal{B}}=\left(c_{1}, \ldots, c_{n}\right)^{T}$, is a vector space isomorphism.

Question 5. Suppose V, W are \mathbb{F}-vector spaces. Show that $\operatorname{Lin}_{\mathbb{F}}(V, W)$, the space of \mathbb{F}-linear maps : $V \rightarrow W$, is a vector subspace of $\operatorname{Fun}(V, W)$. (You are allowed to assume that the latter is an \mathbb{F}-vector space.)

Question 6. Suppose $A, B \in \mathbb{F}^{m \times n}$ for some integers $m, n \geq 1$. Prove that the following are equivalent:
(1) $A=B$.
(2) $A v=B v$ for all vectors $v \in \mathbb{F}^{n}$.
(3) $A \mathbf{e}_{j}=B \mathbf{e}_{j}$ for all $1 \leq j \leq n$.

Question 7. Suppose $\mathbb{F}=\mathbb{R}, V=\mathbb{R}^{2}$, and $\theta \in \mathbb{R}$. Suppose $T: V \rightarrow V$ is the linear transformation that rotates a vector counterclockwise by θ (radians). Compute the matrix of T with respect to the standard basis of V.

Question 8. Suppose \mathbb{F} is a finite field of size $q \geq 2$, and V is an \mathbb{F}-vector space.
(1) If V is an \mathbb{F}-vector space, show that V is not the union of q-many proper subspaces.
(In particular, \mathbb{R}^{n} is not the union of finitely many proper subspaces.)
(Hint, for one possible approach: Suppose V is the union of q proper subspaces - let $2 \leq m \leq q$ be the smallest number of subspaces needed to cover V, say $W_{1}, \ldots, W_{m} \subset V$. Then there exist $w_{i} \in W_{i}$ such that $w_{i} \notin W_{j}$ for all $j \neq i$. Now consider certain $(q+1)$-many linear combinations of w_{1}, w_{2}.)
(2) Now show that if we instead had $n \geq q+1$ (in fact $n=q+1$), then V can be a union of n proper subspaces (as long as V has dimension at least 2). To do so, first show that \mathbb{F}^{2} is a union of $q+1$ proper subspaces.
(3) Now suppose $V \neq 0$ is an arbitrary \mathbb{F}-vector space of dimension at least 2 (and possibly infinite), and B is a basis of V. (Assume B exists.) Show that V is a union of $q+1$ proper subspaces.

