MA219 - Linear Algebra
 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 2 (due by Thursday, August 31 in TA's office hours, or previously in class)

Throughout this homework (and this course), \mathbb{F} denotes an arbitrary field.

Question 1. Solve the following systems of linear equations. Use row operations to obtain the RREF in all cases.
(1) $x+2 y+3 z=0, \quad x+y+z=1, \quad-x+z=1$, over a field of characteristic 0 .
(2) $x+4 y+5 z=1, \quad y-z=3, \quad x+z=5$, over a field of characteristic 7 .

Question 2. Suppose \mathbb{F} is a field, and $n \geq 1$ an integer. For integers $1 \leq i, j \leq n$, define the $n \times n$ matrix $E_{i j}$ as having all entries zero, except 1 in the (i, j)-entry.

Now find the span of the following sets - give (with some justification - maybe via the explicit description) the "conceptual description" (see e.g. towards the end of Lecture L06 in the videos).
(1) The matrices $E_{i i}$ for $1 \leq i \leq n$.
(2) The matrices $E_{i j}$ for $i<j$.
(3) The polynomials $x^{2}-x, x^{3}-x^{2}, \ldots$ and the polynomial x, with $\mathbb{F}=\mathbb{R}$.

Question 3. For each of the following, explain whether or not the specified subset (of the corresponding vector space) is a subspace.
(1) The subset of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying: $f(1)-f(2)+2 f(3)=0$.
(2) The subset of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying: $f(2)=f(3)+1$.
(3) The subset of solutions to $A x=b$ for some vector $b \neq 0$. Here $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$ for some integers $m, n \geq 1$.

Question 4. Suppose V is a vector space over \mathbb{F}, and $L \subset V$ is a linearly independent subset. If $v \in V$ is not in the span of L, show that $L \cup\{v\}$ is also linearly independent.

Question 5. Let $\mathbb{F}=\mathbb{Q}$.
(1) Show that \mathbb{R} is not a finite-dimensional \mathbb{Q}-vector space.
(2) Suppose V is a countable-dimensional \mathbb{Q}-vector space, i.e. a vector space with a countably infinite basis $v_{1}, v_{2}, \ldots, v_{n}, \ldots$ Show that V is the union of its finite-dimensional subspaces V_{n} spanned by v_{1}, \ldots, v_{n}.
(3) Show that \mathbb{R} is not a countable-dimensional \mathbb{Q}-vector space.

Question 6. Suppose S is a linearly independent subset of a vector space W (over a field \mathbb{F}). Consider a chain of linearly independent subsets in W :

$$
S=S_{0} \subset S_{1} \subset S_{2} \subset \cdots
$$

Prove that $\bigcup_{i \geq 0} S_{i}$ is also a linearly independent subset. (In a special case, this is the 'upper bound' of a 'chain' that is used in proving that every vector space has a basis, via Zorn's Lemma.)

