MA219 – Linear Algebra 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 2 (*due by Thursday, August 31* in TA's office hours, or previously in class)

Throughout this homework (and this course), \mathbb{F} denotes an arbitrary field.

Question 1. Solve the following systems of linear equations. Use row operations to obtain the RREF in all cases.

- (1) x + 2y + 3z = 0, x + y + z = 1, -x + z = 1, over a field of characteristic 0.
- (2) x + 4y + 5z = 1, y z = 3, x + z = 5, over a field of characteristic 7.

Question 2. Suppose \mathbb{F} is a field, and $n \ge 1$ an integer. For integers $1 \le i, j \le n$, define the $n \times n$ matrix E_{ij} as having all entries zero, except 1 in the (i, j)-entry.

Now find the span of the following sets – give (with some justification – maybe via the explicit description) the "conceptual description" (see e.g. towards the end of Lecture L06 in the videos).

- (1) The matrices E_{ii} for $1 \leq i \leq n$.
- (2) The matrices E_{ij} for i < j.
- (3) The polynomials $x^2 x, x^3 x^2, \ldots$ and the polynomial x, with $\mathbb{F} = \mathbb{R}$.

Question 3. For each of the following, explain whether or not the specified subset (of the corresponding vector space) is a subspace.

- (1) The subset of functions $f : \mathbb{R} \to \mathbb{R}$ satisfying: f(1) f(2) + 2f(3) = 0.
- (2) The subset of functions $f : \mathbb{R} \to \mathbb{R}$ satisfying: f(2) = f(3) + 1.
- (3) The subset of solutions to Ax = b for some vector $b \neq 0$. Here $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ for some integers $m, n \ge 1$.

Question 4. Suppose V is a vector space over \mathbb{F} , and $L \subset V$ is a linearly independent subset. If $v \in V$ is not in the span of L, show that $L \cup \{v\}$ is also linearly independent.

Question 5. Let $\mathbb{F} = \mathbb{Q}$.

- (1) Show that \mathbb{R} is not a finite-dimensional \mathbb{Q} -vector space.
- (2) Suppose V is a countable-dimensional Q-vector space, i.e. a vector space with a countably infinite basis $v_1, v_2, \ldots, v_n, \ldots$ Show that V is the union of its finite-dimensional subspaces V_n spanned by v_1, \ldots, v_n .
- (3) Show that \mathbb{R} is not a countable-dimensional \mathbb{Q} -vector space.

Question 6. Suppose S is a linearly independent subset of a vector space W (over a field \mathbb{F}). Consider a chain of linearly independent subsets in W:

$$S = S_0 \subset S_1 \subset S_2 \subset \cdots$$

Prove that $\bigcup_{i\geq 0} S_i$ is also a linearly independent subset. (In a special case, this is the 'upper bound' of a 'chain' that is used in proving that every vector space has a basis, via Zorn's Lemma.)