MA219 - Linear Algebra
 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 1 (due by Thursday, August 17 in TA's office hours, or previously in class)

Question 1. The goal here is to show that the set of complex numbers

$$
\mathbb{C}:=\{a+b i=a+b \sqrt{-1}: a, b \in \mathbb{R}\}
$$

under the operations

$$
\begin{aligned}
(a+b i)+(c+d i) & :=(a+c)+(b+d) i, \quad(a+b i) \cdot(c+d i):=(a c-b d)+(a d+b c) i, \\
0 & :=0+0 i, \quad 1:=1+0 i, \\
-(a+b i) & :=(-a)+(-b) i, \quad(a+b i)^{-1}:=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i
\end{aligned}
$$

is a field. (You are allowed to use that \mathbb{R} is a field.)
I felt you should do some of these verifications at least once in your life - and it is not likely you will get to do this in any other course - so here, prove that:
(1) Multiplication is associative.
(2) $z \cdot z^{-1}=1$ for all nonzero complex z.
(3) The distributive law holds.

Question 2. Suppose \mathbb{F} is a field, with $a, b \in \mathbb{F}$. Prove the following statements.
(1) The elements a^{-1} (for $a \neq 0$) and $-a$ are unique in \mathbb{F}.
(2) $-a=(-1) \cdot a$.
(3) $(-1)^{2}=1$.
(4) $a b=0$ in \mathbb{F}, if and only if $a=0$ or $b=0$.

Question 3. Show that if a field \mathbb{F} contains a subfield \mathbb{E}, then \mathbb{F} is a vector space over \mathbb{E}.

Question 4. Prove that a subset W of an \mathbb{F}-vector space V is a subspace if and only if $c w+w^{\prime} \in W$ for all $w, w^{\prime} \in W$ and $c \in \mathbb{F}$.

Question 5. Suppose V is a vector space over a field \mathbb{F}, and $c \in \mathbb{F}, v \in V$. Prove that $c \cdot \mathbf{0}=\mathbf{0}=0 \cdot v$, where 0 is the zero in \mathbb{F} and $\mathbf{0}$ is the zero in V.

Question 6. In class, we saw that the set of functions from any set to a field is a vector space. Now let me mention why every vector space is a subspace of such a space of functions.

Let B be a nonempty set, and \mathbb{F} a field. Define $\operatorname{Fun}_{0}(B, \mathbb{F})$ to be the set of all functions $f: B \rightarrow \mathbb{F}$ such that $f(b)=0$ for all but finitely many $b \in B$. Show that $\operatorname{Fun}_{0}(B, \mathbb{F})$ is an \mathbb{F}-vector space.
Note: You are allowed to use the fact mentioned in class, that the set of all functions $\operatorname{Fun}(B, \mathbb{F})$ is an \mathbb{F}-vector space, which might help bypass a lot of the routine verifications for the subset $F u n_{0}$. (Similar to part (2) of the next question.)
(Later, we will say that every \mathbb{F}-vector space V has a "basis" B, and then the space V can in fact be identified precisely with our space here: $F u n_{0}(B, \mathbb{F})$.)
Question 7. Prove that:
(1) $(A B)^{T}=B^{T} A^{T}$ for all $A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times p}$ - by checking entry by entry.
(2) $(B+C) A=B A+C A$ for $B, C \in \mathbb{F}^{m \times n}, A \in \mathbb{F}^{n \times p}$ - without using any entry-byentry calculations, but using the previous part and that $A(B+C)=A B+A C$ (shown in class) whenever defined.

Question 8. The trace of a square matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$ is the sum of its diagonal entries: $a_{11}+a_{22}+\cdots+a_{n n}$. Given integers $m, n \geq 1$ and matrices $A \in \mathbb{F}^{m \times n}, B \in$ $\mathbb{F}^{n \times m}$, prove that $A B$ and $B A$ have the same trace, even if they have different sizes.

Question 9. Suppose $A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times p}$ are invertible. Prove that $\left(A^{T}\right)^{-1}=$ $\left(A^{-1}\right)^{T}$ and $(A B)^{-1}=B^{-1} A^{-1}$. (Prove only from one side, e.g. $M \cdot M^{-1}=\mathrm{Id}$, not from both sides.)

