MA219 – Linear Algebra 2023 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 1 (*due by Thursday, August 17* in TA's office hours, or previously in class)

Question 1. The goal here is to show that the set of complex numbers

$$\mathbb{C} := \{a + bi = a + b\sqrt{-1} : a, b \in \mathbb{R}\}$$

under the operations

$$(a+bi) + (c+di) := (a+c) + (b+d)i, \quad (a+bi) \cdot (c+di) := (ac-bd) + (ad+bc)i, 0 := 0 + 0i, \quad 1 := 1 + 0i,$$

$$-(a+bi) := (-a) + (-b)i, \quad (a+bi)^{-1} := \frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i$$

is a field. (You are allowed to use that \mathbb{R} is a field.)

I felt you should do some of these verifications at least once in your life – and it is not likely you will get to do this in any other course – so here, **prove that**:

- (1) Multiplication is associative.
- (2) $z \cdot z^{-1} = 1$ for all nonzero complex z.
- (3) The distributive law holds.

Question 2. Suppose \mathbb{F} is a field, with $a, b \in \mathbb{F}$. Prove the following statements.

- (1) The elements a^{-1} (for $a \neq 0$) and -a are unique in \mathbb{F} .
- (2) $-a = (-1) \cdot a$.
- (3) $(-1)^2 = 1$.
- (4) ab = 0 in \mathbb{F} , if and only if a = 0 or b = 0.

Question 3. Show that if a field \mathbb{F} contains a subfield \mathbb{E} , then \mathbb{F} is a vector space over \mathbb{E} .

Question 4. Prove that a subset W of an \mathbb{F} -vector space V is a subspace if and only if $cw + w' \in W$ for all $w, w' \in W$ and $c \in \mathbb{F}$.

Question 5. Suppose V is a vector space over a field \mathbb{F} , and $c \in \mathbb{F}, v \in V$. Prove that $c \cdot \mathbf{0} = \mathbf{0} = 0 \cdot v$, where 0 is the zero in \mathbb{F} and **0** is the zero in V.

Question 6. In class, we saw that the set of functions from any set to a field is a vector space. Now let me mention why **every** vector space is a subspace of such a space of functions.

Let B be a nonempty set, and \mathbb{F} a field. Define $Fun_0(B, \mathbb{F})$ to be the set of all functions $f : B \to \mathbb{F}$ such that f(b) = 0 for all but finitely many $b \in B$. Show that $Fun_0(B, \mathbb{F})$ is an \mathbb{F} -vector space.

Note: You are allowed to use the fact mentioned in class, that the set of *all* functions $Fun(B, \mathbb{F})$ is an \mathbb{F} -vector space, which might help bypass a lot of the routine verifications for the subset Fun_0 . (Similar to part (2) of the next question.)

(Later, we will say that every \mathbb{F} -vector space V has a "basis" B, and then the space V can in fact be identified precisely with our space here: $Fun_0(B, \mathbb{F})$.)

Question 7. Prove that:

- (1) $(AB)^T = B^T A^T$ for all $A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times p}$ by checking entry by entry.
- (2) (B+C)A = BA+CA for $B, C \in \mathbb{F}^{m \times n}, A \in \mathbb{F}^{n \times p}$ without using any entry-byentry calculations, but using the previous part and that A(B+C) = AB+AC(shown in class) whenever defined.

Question 8. The *trace* of a square matrix $A = (a_{ij})_{i,j=1}^n$ is the sum of its diagonal entries: $a_{11} + a_{22} + \cdots + a_{nn}$. Given integers $m, n \ge 1$ and matrices $A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times m}$, prove that AB and BA have the same trace, even if they have different sizes.

Question 9. Suppose $A \in \mathbb{F}^{m \times n}$, $B \in \mathbb{F}^{n \times p}$ are invertible. Prove that $(A^T)^{-1} = (A^{-1})^T$ and $(AB)^{-1} = B^{-1}A^{-1}$. (Prove only from one side, e.g. $M \cdot M^{-1} = \text{Id}$, not from both sides.)