MA219 – Linear Algebra 2022 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 8 (*due by 9:30 am on Friday October 14* in TA's office, or previously in class)

Throughout this homework (and this course), F denotes an arbitrary field.

Question 1. Suppose V_1, \ldots, V_n, W are \mathbb{F} -vector spaces, and

$$T_1, \ldots, T_k: V_1 \times \cdots \times V_n \to W$$

are multilinear maps. Show that so is $\sum_{i=1}^{k} c_i T_i$, for any choice of scalars $c_i \in \mathbb{F}$. (For your homework, it will suffice to check the linearity in the *n*th argument.)

Question 2. Using results from class about how the determinant changes under elementary row operations (or other results about the determinant), compute the

determinants of the matrices
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$.

Question 3. Suppose $A \in \mathbb{F}^{n \times n}$ is block *lower* triangular – with blocks M_{ij} where $M_{ij} = 0$ for i < j, and with square diagonal entries M_{ii} . Using results from class, compute det A.

Question 4. Given a square matrix $A \in \mathbb{F}^{n \times n}$, define its adjugate matrix $adj(A) \in \mathbb{F}^{n \times n}$ to have (i, j) entry $(-1)^{i+j} \det A_{j|i}$, where $A_{j|i} \in \mathbb{F}^{(n-1) \times (n-1)}$ is the matrix obtained by removing the jth row and ith column of A. Prove the following properties for any matrix $A \in \mathbb{F}^{n \times n}$, say with $n \geq 2$:

- (1) $adj(A) \cdot A = A \cdot adj(A) = (\det A) \mathrm{Id}_n$.
- (2) If A is singular then adj(A) is also singular.
- (3) $\det(adjA) = (\det A)^{n-1}.$
- (4) $adj(A^T) = adj(A)^T$.

Question 5. A Vandermonde matrix is a matrix of the form

$$M_{n \times n} = \begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ 1 & a_3 & a_3^2 & \cdots & a_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{pmatrix}$$

where $n \ge 1$ is an integer, and $a_1, \ldots, a_n \in \mathbb{F}$ are scalars. Prove (e.g. by induction on n) that if $n \ge 2$, then $\det M = \prod_{1 \le i < j \le n} (a_j - a_i)$.