MA219 – Linear Algebra 2022 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 7 (*due by Thursday, October 6* in TA's office hours, or previously in class)

Throughout this homework (and this course), F denotes an arbitrary field.

Question 1. Suppose \mathbb{F} -vector spaces V, W, X have ordered bases $(v_1, \ldots, v_n), (w_1, \ldots, w_m)$, and (x_1, \ldots, x_p) for positive integers n, m, p respectively. Write down a basis of the vector space of bilinear maps : $V \times W \to X$, and prove that it is a basis.

Question 2. Suppose a \mathbb{F} -vector space V has an ordered basis (v_1, \ldots, v_n) . For $1 \leq i_0 \leq n$, define the dual functionals $\varphi_{i_0} : V \to \mathbb{F}$ via:

$$\varphi_{v_{i_0}}\left(\sum_{i=1}^n c_i v_i\right) := c_{i_0}.$$

We discussed in class that $\varphi_{i_0} \in V^*$ (so you can assume this). Now show, these vectors form a basis of V^* . (This is called the *dual basis*, as discussed in class.)

Question 3. Recall the direct product and direct sum (or coproduct) of a set $\{V_i : i \in I\}$ of \mathbb{F} -vector spaces, constructed in class (and studied in the preceding homework set). The goal of this exercise is to show that

$$\left(\bigoplus_{i\in I} V_i\right)^* \cong \prod_{i\in I} V_i^*,$$

by going the 'reverse' way:

- (1) Given $\Phi = (\varphi_i)_{i \in I}$, with each $\varphi_i \in V_i^*$, first show that $(\varphi_i)_{i \in I}$ yields a linear map from $\bigoplus_{i \in I} V_i$ to \mathbb{F} . Let us call this map $T(\Phi)$.
- (2) Show that the assignment $T: \Phi \mapsto T(\Phi)$ is a linear map, from $\prod_{i \in I} V_i^*$ to $(\bigoplus_{i \in I} V_i)^*$.
- (3) Show that T is one-to-one and onto.

Question 4. (Interpolation.) Let $V = \mathbb{F}[x]$, the space of polynomials. Also say $a_1, \ldots, a_n \in \mathbb{F}$ are pairwise distinct scalars.

Verify for yourselves that for every scalar $a \in \mathbb{F}$, the evaluation map

$$E_a: p(x) \mapsto p(a)$$

is a linear map from all functions to \mathbb{F} , hence a linear map from the subspace of polynomials V to \mathbb{F} . In other words,

$$E_a \in V^* = (\mathbb{F}[x])^*, \quad \forall a \in \mathbb{F}.$$

The goal in this exercise is to prove that these evaluation maps are linearly independent. In fact, we will prove something stronger: the maps E_{a_1}, \ldots, E_{a_n} for pairwise distinct $a_i \in \mathbb{F}$, are the dual basis to a specific set of polynomials of degree at most n-1.

- (1) Define $p_i(x) := \prod_{1 \le j \le n, \ j \ne i} \frac{x a_j}{a_i a_j}$. Verify that $E_{a_j}(p_i) = p_i(a_j) = 0$ for all $j \ne i$, and $E_{a_i}(p_i) = p_i(a_i) = 1$.
- (2) Show that p_1, \ldots, p_n are linearly independent in V.
- (3) Show that p_1, \ldots, p_n form a basis of V_{n-1} , the space of polynomials in $\mathbb{F}[x]$ of degree at most n-1. (In particular, the E_{a_i} form the dual basis.)
- (4) Given arbitrary scalars $c_1, \ldots, c_n \in \mathbb{F}$, find a polynomial $p(x) \in V_{n-1}$ of degree at most n-1 (the 'interpolation') such that $p(a_i) = c_i$ for all i.