MA219 – Linear Algebra 2022 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 5 (*due by Thursday, September 15* in TA's office hours, or previously in class)

Throughout this homework (and this course), F denotes an arbitrary field.

Question 1. Suppose V, W are \mathbb{F} -vector spaces, and $T: V \to W$ is an \mathbb{F} -linear transformation.

- (1) Show that $T(\mathbf{0}_V) = \mathbf{0}_W$ and that T(-v) = -T(v) for all $v \in V$.
- (2) Suppose T is a bijection of sets. Prove that the inverse map T^{-1} is also a linear transformation.

Question 2. Suppose V is an \mathbb{F} -vector space, with ordered basis $\mathcal{B} = (v_1, \dots, v_n)$. Prove that the map $\eta: V \to \mathbb{F}^n$, sending a vector $v = c_1v_1 + \dots + c_nv_n$ to the column vector $[v]_{\mathcal{B}} = (c_1, \dots, c_n)^T$, is a vector space isomorphism.

Question 3. Suppose V, W are \mathbb{F} -vector spaces. Show that $Lin_{\mathbb{F}}(V, W)$, the space of \mathbb{F} -linear maps : $V \to W$, is a vector space.

Question 4. Suppose $A, B \in \mathbb{F}^{m \times n}$ for some integers $m, n \geq 1$. Prove that the following are equivalent:

- (1) A = B.
- (2) Av = Bv for all vectors $v \in \mathbb{F}^n$.
- (3) $A\mathbf{e}_j = B\mathbf{e}_j$ for all $1 \le j \le n$.

Question 5. Suppose \mathbb{F} is a field, and $T : \mathbb{F}^2 \to \mathbb{F}^2$ is the linear operator $T(x_1, x_2) := (x_2, -x_1)$, where $(x_1, x_2)^T = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$ is with respect to the standard ordered basis $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2)$.

- (1) What is the matrix of T given by $[T]_{\mathcal{B},\mathcal{B}}$?
- (2) What is the matrix of T given by $[T]_{\mathcal{B},\mathcal{B}'}$, where $\mathcal{B}' = (\mathbf{e}_1 + \mathbf{e}_2, -\mathbf{e}_1)$?
- (3) What is the transition matrix of \mathcal{B}' into \mathcal{B} ? Meaning, find the matrix P such that $[v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}$ for all $v \in \mathbb{F}^2$.
- (4) Suppose \mathbb{F} has characteristic not 2 (so 2 = 1 + 1 in \mathbb{F}). What is the coordinate vector of $(2, -1)^T$ in the standard basis, when written out in the basis \mathcal{B}' ?

Question 6. Suppose $\mathbb{F} = \mathbb{R}$, $V = \mathbb{R}^2$, and $\theta \in \mathbb{R}$. Suppose $T : V \to V$ is the linear transformation that rotates a vector counterclockwise by θ (radians). Compute the matrix of T with respect to the standard basis of V.

Question 7. We have seen that (by convention,) the zero vector space over any field has exactly one basis: the empty set. Now:

- (1) Classify all nonzero vector spaces over all fields, which also have exactly one unordered basis i.e., exactly one basis up to permuting its basis elements.
- (2) Classify all nonzero vector spaces over all fields, which have exactly two unordered bases.