

MA219 – Linear Algebra 2022 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 13 (*due by Tuesday, November 29* in TA's office hours on Tuesday)

Question 1. Show that if $A, B \in \mathbb{C}^{n \times n}$ are unitary matrices, then so are $AB, A^{-1}, A^T, \overline{A}$.

Question 2. You may have seen the fact that real symmetric matrices are diagonalizable, with all eigenvalues real – and this holds more generally for all complex Hermitian matrices ($A^* = A$). Similarly, you may have seen that if A is skew-Hermitian ($A^* = -A$), then A is diagonalizable with purely imaginary eigenvalues.

More generally now, suppose $z \in \mathbb{C}$ is a complex number, and suppose $A^* = zA$ for some matrix $A \in \mathbb{C}^{n \times n}$ and scalar $z \in \mathbb{C}$.

- (1) If $|z| \neq 1$, show that $A = \mathbf{0}_{n \times n}$.
- (2) Now suppose $|z| = 1$. Describe all diagonal matrices D with this property.
- (3) Again suppose $|z| = 1$. Prove that every matrix A such that $A^* = zA$ is of the form UDU^* , where $U \in \mathbb{C}^{n \times n}$ is unitary and D is as in the previous part.

Question 3. Suppose $\mathbb{F} = \mathbb{R}$ and $V = \mathbb{R}^3$. Let $W \subset V$ be the subspace

$$W := \{(x, y, z)^T \in V : x + 2y + 3z = 0\}.$$

- (1) Write down an orthogonal basis for W and one for W^\perp .
- (2) Using this basis, compute $P_W(v)$, the projection onto W of $v = (1, 1, 1)^T$.
- (3) Compute $P_W(v)$ differently, as $v - P_{W^\perp}(v)$.
- (4) Compute the matrix of the linear operator $P_W : V \rightarrow V$ with respect to the standard basis.
- (5) Suppose (w_1, w_2) form an orthonormal basis of W , and w_3 of W^\perp . Let $\mathcal{B} = (w_1, w_2, w_3)$. Compute $[P_W]_{\mathcal{B}}$. (In particular, this should tell you the eigenvalues of P_W and their algebraic (= geometric) multiplicities.)

Question 4. Suppose $A \in \mathbb{C}^{n \times n}$ is a triangular matrix which is normal. Prove that A is diagonal.