MA219 – Linear Algebra 2021 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 12 (*due by Thursday, November 17* in TA's office hours, or previously in class)

Question 1. Suppose $A \in \mathbb{F}^{m \times n}$ for $m, n \geq 1$, and P, Q are square, invertible matrices over \mathbb{F} (for an arbitrary field \mathbb{F}) such that PAQ is defined. Show that PAQ and A have the same rank.

Question 2. (Henceforth we work over \mathbb{R} or \mathbb{C} .) Suppose a vector v_0 in an inner product space V is such that v_0 is orthogonal to every vector in V. Show that $v_0 = \mathbf{0}_V$.

Question 3. Verify the following polarization identity in a real inner product space V:

$$(x,y) = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2), \quad \forall x, y \in V.$$

Question 4. Show the *triangle inequality* in a complex (or real) inner product space $V: ||x+y|| \le ||x|| + ||y||$ for all $x, y \in V$, with equality if and only if y = 0 or x is a non-negative scalar multiple of y.

Question 5. Let $V = \mathbb{R}^3$ and

$$\mathbf{w}_1 = (\pi, 0, 0)^T, \quad \mathbf{w}_2 = (e, \pi, 0)^T, \quad \mathbf{w}_3 = (1, 1, 1)^T$$

(or forget the transposes and work without them). Apply the Gram-Schmidt algorithm to compute an orthogonal triple $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ with the desired properties.