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As I mentioned in the abstract, there are several examples
where statistical or probabilistic ideas have played a role in
proving a result in mathematics which has nothing to do with
probability theory. Sometimes, the alternate proof via proba-

bilistic ideas may be simpler.

Weierstrass Theorem on approximation of a continuous function

on the unit interval by polynomials is one such:



Weierstrass proved in 1888 that every continuous function f on
[0, 1] can be uniformly approximated by polynomials. In 1912,
Bernstein gave an alternate proof. In his words, his proof used

Calculus of Probabilities.

Probability theory - which was still evolving (This was about

20 years before Kolmogorov’s book)!

Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités
(Demonstration of a theorem of Weierstrass based on the calculus of probabilities),

by Sergei Bernstein, Communications of the Kharkov Mathematical Society, Volume XIII,
1912/13, p. 1-2)}



Let us consider another such example: Consider a N X N chess-
board. Each square is assigned a number 1 or 0. 1 means the

square is occupied and 0 means that the square is unoccupied.

Each such assignment is called a configuration. A configuration
is said to be feasible if all the neighbours of every occupied
square are unoccupied. (Every square that is not in the first or

last row or column has 8 neighbours.)

Thus a configuration is feasible if for every pair of adjacent

squares, at most one square has a 1 .



For a feasible configuration (denoted by I' ),

let f(I') denote the number of 1’s in T'.

The quantity of interest is the average of f(I') where the average
is taken over

the uniform distribution over the set of feasible configurations.

Denoting the feasible configurations by & the object of interest

1S



2NV*N and even when

The total number of configurations is
N = 25, this number is 2%?° so it is not computationally feasible
to scan all configurations, count the feasible configurations and

take the average of f(I').



It is easy to see that when N=25, the total number of feasible
configurations is at least 2'%?. To see this, assign 0 to all squares
whose one of the coordinates is even (the squares are indexed
from 1 to 15). In the remaining 64 positions, we can assign a 1
or 0. It is clear that each such configuration is feasible and the
total number of such configurations is 21%?. Clearly, this is only a
lower bound, the total will be a lot more. Thus computationally,

listing all feasible configurations is not possible!



Indeed, along with

another quantity of interest is weighted average of f(I') with
weights being proportional to exp{—K f(I')}: for some 0 <
K < oo, namely,

B = %gcexp{ K f(T)}f(T)

where the constant c is such that ¢} y.,.sexp{—Kf(I')} = 1.

How does one compute (or approximate) o and 37



Markov Chain: Let S be a finite set and let {X,, : n
be a sequence of random variables such that for all n

0}

>
> 0,

’l:, j, ’l:(), ?:1, coey in—l € S, we have
P(Xn—l—l :.7 | XO — iOv"'Xn—l = in—th — 7') — P(Xn—|—1 :J | Xn — 7’) = DPij
The matrix P = ((pi;)) is called the transition probability ma-

trix of the Markov Chain {X,,}. Denoting the n'® power of the
matrix P by P" = ((pgl))), it can be seen that

P(X,=j|Xo=1)=PXnim=3| Xm=1) =p}.



Assuming that {X,, : n > 0} is irreducible and aperiodic
(i) Vi,5 € S, In > 1 such that pg-l) > 0,

(ii) Vi € S, g.c.d.{n > 1 :pg") > 0} =1,

it follows that for all 2,7 € S

lim p(-r'-z)

%] = Ty

where {m; : j € S} is the unique eigenvector for the eigenvalue
1 of P such that ) m; = 1.



The result
(n)

i .
im p;;

where {m; : j € S} is the unique eigenvector for the eigenvalue
1 of P such that )  m; = 1 is a Classical result on Markov
Chains and has several interesting proofs. Also follows from

Perron—Frobenius theorem on positive matrices.



How does one identify {7 : j € S}?

It can be expressed explicitly using Graph theory (the technique
is called Markov Chain Tree Theorem, due to F.T. Leighton and
R.L. Rivest 1983).

Of course ) ;p;; = 1 for all € S.

Simplest case : if

Y pij=1forallje€S,

?

then it is easy to see that m; = % where m = #S.

Such a P is called doubly stochastic.



The law of large numbers gives that for a irreducible and ape-
riodic Marov Chain {X,, : n > 0}:
for any function f : S — R, we have
1 :
lim — % f(X:) =) f(5)m;.
nis jes

It is a version of Ergodic theorem, also known as time average

equals the space average.



Thus returning to our problem of n Xn chess board, if we can get
a irreducible aperiodic doubly stochastic transition probability
matrix P on 8, then {nr} given by

1
T #5

r

and hence

o1& 1
h;n;;ﬂxt) = %8 > F(D).

res



Thus all we need to do in our first problem is to get a transition
function p,, on the class of feasible configurations such that
it is irreducible aperiodic and doubly stochastic. Then simu-
lating {X; : t = 0,1,2,...,n} for large n we can assert that

lim, + >} | f(X:) approximates o.

How can we get such a p,, when we cannot even find the car-

dinality of the set of feasible configurations?



Let us note that while we do not know the cardinality of the
set of feasible configurations, given a feasible configuration A,

we can list the set of feasible configurations I' that are adjacent

to A.



Let us describe a transition function p,., as follows:

Given a feasible configuration I' € S, choose a square s (out of
the N? squares) with equal probability. If any of the neighbors
of s is occupied (has 1) then A = T ; if all the neighbors of s are
unoccupied (have 0) then flip the state of the square s.

While we can write an expression for p_.,, it is very easy to

write a code to implement the same.



It is easy to see that transition function {p,} is irreducible

aperiodic and Pra = Pra and hence it is doubly stochastic. Thus

1 1
llrliﬂggf(xt)—%ztf(r)-

res

So we can approximate o = # > res J(I') without knowing how

large is S!



Interesting question: How large should n be to ensure that

e A im0

res

is small?

The answer depends upon the probability transition function.



The answer depends upon (among other factors) the smallest

m such that pg-n) > 0 for all 2,5 € S.

In our problem of n X n chess board, it can be seen that m < 2n?
works 1.e. pg:*") > 0 for all feasible configurations I', A, while

the number #S grows faster than e4.

Thus p;. , is a good probability transition function for our prob-

lem of approximating a.



So we need to simulate {X; : 1 < t < m} for a very large m

and then take .
o1
Q= lim — Z f(Xt)
meoma
as the estimate of o.

This idea was used in the Manhattan project and was named
Monte Caro technique in an article by Ulam and Metropolis in

1949.



In the chess board problem, we have already noted that it is
easy to simulate X;,; once we know what is X;. So we need to

choose X and then start...

With current hardware, we can compute &,, with m being mil-

lion rather quickly.

&,,, does depend upon X,. What do we do about it?



What can we do to approximate

B = %écexp{ Kf()}f(T)-

Can we get hold of a suitable transition probability matrix g ,

so that
7t = cexp{—K£(I')}

is the unique eigenvector of g, , for eigenvalue 17

Then it would follow that limit of n!® power of the transition

probability matrix g , is 71':



If

' =cexp{—Kf(I')}
is the unique eigenvector of g, , for eigenvalue 1, then it would
follow that limit of n'* power of the transition probability ma-

trix is 77 and if {X,} is the Markov chain with transition prob-

abilities g ,, then

Y cexp{~KF(T)}(T) = B

1 n
lim =) f(X) =
L #S fcs



Usage of Monte Carlo techniques in the context of Markov
chain takes one to 1953 article Equation of State Calculations
by Fast Computing Machines by Nicholas Metropolis, Arianna
W. Rosenbluth, Marshall Rosenbluth, Augusta H. Teller and
Edward Teller.

The following idea of getting suitable transition function in our
context is a simplified version of the same. See :
https://en.wikipedia.org/wiki/Marshall_Rosenbluth for some in-

teresting commentary.



Let us start with p,. , that was described earlier (doubly stochas-

tic transition matrix) and let o(I'y A) = min {1, :z((i}))} and

praa(T5 A) if ' # A

1— > raPry T =A

Ara =



For adjacent configurations if 7*(A) < #«*(T"), then

T (A)
Qr o = Pra 7(T)
and
drr = Par

and using p, . = p; ,, it follows that

L (F)qr,A — ﬂ-*(A)qr,A

Using symmetry the same is true even when ©*(A) > #«*(T).



Thus g, , is an irreducible aperiodic transition probability func-
tion and that 7*(I')q, , = 7*(A)g, .. Hence

Z ﬂ-*(F)qI‘,A = " (A).

res
So if we can (easily) simulate Markov Chain {X; :t > 0} with

transition probability function {q; , }.



We have seen how to simulate samples from {p, , }. How do we

simulate samples from {q ,}?7

The idea goes back to von Neumann

(perhaps used in project Manhattan!).

It is known as rejection sampling method.



John von Neumann, “Various techniques used in connection with random
digits” (summary written by George E. Forsythe), pp. 36-38 of Monte Carlo
Method, [U. s.] National Bureau of Standards, Applied Mathematics Series,
vol. 12 (1951). Reprinted in John von Neumann, Collected Works, vol. 5,

pp. 768-770, Pergamon Press, 1963.

In a technical report written by George E. Forsythe wrote

The author presents a generalisation he worked out in 1950
of von Neumann’s method of generating random samples from
the exponential distribution by comparisons of uniform random

numbers on (0,l).



This technique called Rejection sampling is due to von Neu-
mann (1950). Since he had been working with the Manhattan
project in the 1940s, and some of these ideas may be from that

project.

In the early ’50s, an idea similar to that of von Neumann in
the context of finite samples was introduced by D B Lahiri (at
Indian Statistical Institute) to come up with probability pro-

portional to size (pps) method of sampling.



We have seen that we can simulate Markov chain with transition
probabilities Proa- So von Neumann’s recipe is: given X; =
I', generate a sample A with probability p., and accept the
proposal (of moving from I' to A with probability «(I", A), and
staying put at I' if the proposal is rejected.

This again is easy to implement (note that in our chess board

example,

a(T, A) = min{1, £33

and does not need any information about the class of feasible

configurations.



This algorithm is known as the Metropolis algorithm for sim-
ulating a Markov Chain whose unique invariant distribution is
proportional to a given function f on the state space. One does

NOT need to know the constant of proportionality.

All we need is a good transition probability function that is

irreducible and aperiodic on the state space that is reversible

(pij = pji)'



Hastings proposed a modification.
Suppose one has a good algorithm for a Markov chain with
transition probability function {p;; : ¢,5 € S} that is easy to
simulate and we with to obtain a transition probability func-
tion {q;; : ¢,5 € S} that has {h(¢) : ¢ € S} as the stationary
distribution, let

h(3)pji

’ h(i)Pij} ey

Qij = pij min{l

and q;; — 1 — Zj;éq Qij-



It can be checked that
h(i)q;; = h(j)qj; Vi,j € S

and thus

> h(i)gi; = h(j)-

€S
As in the Metropolis algorithm, if we can simulate from {p;; :

j € S} then using rejection sampling we can simulate from
{Qij j € S}
How to choose initial conditions X,?

One sample or several samples 77



The same result works in S = R and S = R<.

Aim: To approximate

/5 ()h(y)dp(y)

where h(y) = chy(y) is a density and ¢ is a given function.

Suppose that the constant c is not known, but only h; is known.



Suppose f(x,y) is density of a Markov chain on S,
such that f(x,y) = f(y,x) and for A € B(S) one has

P(Xy€EA| X =1x) = Lf(m,y)du(y)

We define a transition function ) as follows: Let

a(z,y) = min{1, 18} = min{1, 14}
and for A € B(S),z € A

QX €EA| X, =) = /A £ (@ ) (e, y)dpu(y)

QXppy =2 | X, =) =1 — /S_{ D)



Once we have a efficient algorithm to simulate X;,; = y given
X; = x, we treat the move as proposal, and accept the proposal
(of moving from x to y with probability a(xz,y), and staying

put at x if the proposal is rejected.

The density f(x,y) in turn could be f(x,y) = ¢(y — ) where
¢ is a suitable density with mean 0.

Examples

1: ¢ being Gaussian distribution with mean 0, variance o2.
2: ¢ being Laplace distribution with mean 0 and scale 3.

3: ¢ being Uniform distribution on (—a,a), a > 0.



Likewise we can have a version of Hastings algorithm, called
Metropolis-Hastings algorithm:

Suppose f(x,y) is density of a Markov chain
{X::t>0}on S,

so that for A € B(S) one has

P(Xi €A| X, =x) = /A £ (2, ) dp(y)-

We assume that such an {X; : ¢ > 0} on S is easy to simulate



We define a transition function ) as follows: Let

) F@m)y _ s hi(v) £ (y,z)
)R Flag) ) = mindl, gyt

and for A € B(S),z € A

a(x,y) = min{l

QX €EA| X =) = /A £ (@ y) (e, y)du(y)

QX1 =x | Xg=x)=1— /S_{ }f(:c,t)a(:c,t)du(t).



For the Metropolis-Hastings algorithm, we do not need to as-

sume that f(x,y) is symmetric. For example, we can even take
f(z,y) = o(y)!

We could even take a combination of two algorithms - at each
step, we use one algorithm with probability p and the other
with probability 1 — p.



