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As I mentioned in the abstract, there are several examples

where statistical or probabilistic ideas have played a role in

proving a result in mathematics which has nothing to do with

probability theory. Sometimes, the alternate proof via proba-

bilistic ideas may be simpler.

Weierstrass Theorem on approximation of a continuous function

on the unit interval by polynomials is one such:



Weierstrass proved in 1888 that every continuous function f on

[0, 1] can be uniformly approximated by polynomials. In 1912,

Bernstein gave an alternate proof. In his words, his proof used

Calculus of Probabilities.

Probability theory - which was still evolving (This was about

20 years before Kolmogorov’s book)!

Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités

(Demonstration of a theorem of Weierstrass based on the calculus of probabilities),

by Sergei Bernstein, Communications of the Kharkov Mathematical Society, Volume XIII,

1912/13, p. 1-2)}



Let us consider another such example: Consider a N ×N chess-

board. Each square is assigned a number 1 or 0. 1 means the

square is occupied and 0 means that the square is unoccupied.

Each such assignment is called a configuration. A configuration

is said to be feasible if all the neighbours of every occupied

square are unoccupied. (Every square that is not in the first or

last row or column has 8 neighbours.)

Thus a configuration is feasible if for every pair of adjacent

squares, at most one square has a 1 .



For a feasible configuration (denoted by Γ ),

let f(Γ) denote the number of 1’s in Γ.

The quantity of interest is the average of f(Γ) where the average

is taken over

the uniform distribution over the set of feasible configurations.

Denoting the feasible configurations by S the object of interest

is

α =
1

#S
∑
Γ∈S

f(Γ)



The total number of configurations is 2N∗N and even when

N = 25, this number is 2625 so it is not computationally feasible

to scan all configurations, count the feasible configurations and

take the average of f(Γ).



It is easy to see that when N=25, the total number of feasible

configurations is at least 2169. To see this, assign 0 to all squares

whose one of the coordinates is even (the squares are indexed

from 1 to 15). In the remaining 64 positions, we can assign a 1

or 0. It is clear that each such configuration is feasible and the

total number of such configurations is 2169. Clearly, this is only a

lower bound, the total will be a lot more. Thus computationally,

listing all feasible configurations is not possible!



Indeed, along with

α =
1

#S
∑
Γ∈S

f(Γ)

another quantity of interest is weighted average of f(Γ) with

weights being proportional to exp{−Kf(Γ)}: for some 0 <

K <∞, namely,

β =
1

#S
∑
Γ∈S

c exp{−Kf(Γ)}f(Γ)

where the constant c is such that c
∑

Γ∈#S exp{−Kf(Γ)} = 1.

How does one compute (or approximate) α and β?



Markov Chain: Let S be a finite set and let {Xn : n ≥ 0}
be a sequence of random variables such that for all n ≥ 0,

i, j, i0, i1, ..., in−1 ∈ S, we have

P (Xn+1 = j | X0 = i0, . . . Xn−1 = in−1, Xn = i) = P (Xn+1 = j | Xn = i) = pij

The matrix P = ((pij)) is called the transition probability ma-

trix of the Markov Chain {Xn}. Denoting the nth power of the

matrix P by P n = ((p
(n)
ij )), it can be seen that

P (Xn = j | X0 = i) = P (Xn+m = j | Xm = i) = p
(n)
ij .



Assuming that {Xn : n ≥ 0} is irreducible and aperiodic

(i) ∀i, j ∈ S, ∃n ≥ 1 such that p
(n)
ij > 0,

(ii) ∀i ∈ S, g.c.d.{n ≥ 1 : p
(n)
ii > 0} = 1,

it follows that for all i, j ∈ S

lim
n
p

(n)
ij = πj

where {πj : j ∈ S} is the unique eigenvector for the eigenvalue

1 of P such that
∑

j πj = 1.



The result

lim
n
p

(n)
ij = πj

where {πj : j ∈ S} is the unique eigenvector for the eigenvalue

1 of P such that
∑

j πj = 1 is a Classical result on Markov

Chains and has several interesting proofs. Also follows from

Perron–Frobenius theorem on positive matrices.



How does one identify {πj : j ∈ S}?
It can be expressed explicitly using Graph theory (the technique

is called Markov Chain Tree Theorem, due to F.T. Leighton and

R.L. Rivest 1983).

Of course
∑

j pij = 1 for all i ∈ S.

Simplest case : if ∑
i

pij = 1 for all j ∈ S,

then it is easy to see that πj = 1
m

where m = #S.

Such a P is called doubly stochastic.



The law of large numbers gives that for a irreducible and ape-

riodic Marov Chain {Xn : n ≥ 0}:
for any function f : S 7→ R, we have

lim
n

1

n

n∑
t=1

f(Xt) =
∑
j∈S

f(j)πj.

It is a version of Ergodic theorem, also known as time average

equals the space average.



Thus returning to our problem of n×n chess board, if we can get

a irreducible aperiodic doubly stochastic transition probability

matrix P on S, then {πΓ} given by

πΓ =
1

#S

and hence

lim
n

1

n

n∑
t=1

f(Xt) =
1

#S
∑
Γ∈S

f(Γ).



Thus all we need to do in our first problem is to get a transition

function p
Γ,Λ

on the class of feasible configurations such that

it is irreducible aperiodic and doubly stochastic. Then simu-

lating {Xt : t = 0, 1, 2, . . . , n} for large n we can assert that

limn
1
n

∑n
t=1 f(Xt) approximates α.

How can we get such a p
Γ,Λ

when we cannot even find the car-

dinality of the set of feasible configurations?



Let us note that while we do not know the cardinality of the

set of feasible configurations, given a feasible configuration Λ,

we can list the set of feasible configurations Γ that are adjacent

to Λ.



Let us describe a transition function p
Γ,Λ

as follows:

Given a feasible configuration Γ ∈ S, choose a square s (out of

the N2 squares) with equal probability. If any of the neighbors

of s is occupied (has 1) then Λ = Γ ; if all the neighbors of s are

unoccupied (have 0) then flip the state of the square s.

While we can write an expression for p
Γ,Λ

, it is very easy to

write a code to implement the same.



It is easy to see that transition function {p
Γ,Λ
} is irreducible

aperiodic and p
Γ,Λ

= p
Γ,Λ

and hence it is doubly stochastic. Thus

lim
n

1

n

n∑
t=1

f(Xt) =
1

#S
∑
Γ∈S

f(Γ).

So we can approximate α = 1
#S
∑

Γ∈S f(Γ) without knowing how

large is S!



Interesting question: How large should n be to ensure that∣∣∣ 1

#S
∑
Γ∈S

f(Γ)− lim
n

1

n

n∑
t=1

f(Xt)
∣∣∣

is small?

The answer depends upon the probability transition function.



The answer depends upon (among other factors) the smallest

m such that p
(m)
ij > 0 for all i, j ∈ S.

In our problem of n×n chess board, it can be seen that m ≤ 2n2

works i.e. p(2n∗n)
Γ,Λ

> 0 for all feasible configurations Γ,Λ, while

the number #S grows faster than e
m
4 .

Thus p
Γ,Λ

is a good probability transition function for our prob-

lem of approximating α.



So we need to simulate {Xt : 1 ≤ t ≤ m} for a very large m

and then take

α̂m = lim
m

1

m

m∑
t=1

f(Xt)

as the estimate of α.

This idea was used in the Manhattan project and was named

Monte Caro technique in an article by Ulam and Metropolis in

1949.



In the chess board problem, we have already noted that it is

easy to simulate Xt+1 once we know what is Xt. So we need to

choose X0 and then start...

With current hardware, we can compute α̂m with m being mil-

lion rather quickly.

α̂m does depend upon X0. What do we do about it?



What can we do to approximate

β =
1

#S
∑
Γ∈S

c exp{−Kf(Γ)}f(Γ).

Can we get hold of a suitable transition probability matrix q
Γ,Λ

so that

π∗
Γ

= c exp{−Kf(Γ)}

is the unique eigenvector of q
Γ,Λ

for eigenvalue 1?

Then it would follow that limit of nth power of the transition

probability matrix q
Γ,Λ

is π∗
Γ



If

π∗
Γ

= c exp{−Kf(Γ)}

is the unique eigenvector of q
Γ,Λ

for eigenvalue 1, then it would

follow that limit of nth power of the transition probability ma-

trix is π∗
Γ

and if {Xt} is the Markov chain with transition prob-

abilities q
Γ,Λ

, then

lim
n

1

n

n∑
t=1

f(Xt) =
1

#S
∑
Γ∈S

c exp{−Kf(Γ)}f(Γ) = β



Usage of Monte Carlo techniques in the context of Markov

chain takes one to 1953 article Equation of State Calculations

by Fast Computing Machines by Nicholas Metropolis, Arianna

W. Rosenbluth, Marshall Rosenbluth, Augusta H. Teller and

Edward Teller.

The following idea of getting suitable transition function in our

context is a simplified version of the same. See :

https://en.wikipedia.org/wiki/Marshall_Rosenbluth for some in-

teresting commentary.



Let us start with p
Γ,Λ

that was described earlier (doubly stochas-

tic transition matrix) and let α(Γ,Λ) = min
{

1, π
∗(Λ)
π∗(Γ)

}
and

q
Γ,Λ

=

pΓ,Λ
α(Γ,Λ) if Γ 6= Λ

1−
∑

Γ 6=Λ pΓ,Λ
if Γ = Λ



For adjacent configurations if π∗(Λ) ≤ π∗(Γ), then

q
Γ,Λ

= p
Γ,Λ

π∗(Λ)

π∗(Γ)

and

q
Λ,Γ

= p
Λ,Γ

and using p
Λ,Γ

= p
Γ,Λ

, it follows that

π∗(Γ)q
Γ,Λ

= π∗(Λ)q
Γ,Λ

Using symmetry the same is true even when π∗(Λ) ≥ π∗(Γ).



Thus q
Γ,Λ

is an irreducible aperiodic transition probability func-

tion and that π∗(Γ)q
Γ,Λ

= π∗(Λ)q
Λ,Γ
. Hence∑

Γ∈S

π∗(Γ)q
Γ,Λ

= π∗(Λ).

So if we can (easily) simulate Markov Chain {Xt : t ≥ 0} with

transition probability function {q
Γ,Λ
}.



We have seen how to simulate samples from {p
Γ,Λ
}. How do we

simulate samples from {q
Γ,Λ
}?

The idea goes back to von Neumann

(perhaps used in project Manhattan!).

It is known as rejection sampling method.



John von Neumann, “Various techniques used in connection with random

digits” (summary written by George E. Forsythe), pp. 36-38 of Monte Carlo

Method, [U. s.] National Bureau of Standards, Applied Mathematics Series,

vol. 12 (1951). Reprinted in John von Neumann, Collected Works, vol. 5,

pp. 768-770, Pergamon Press, 1963.

In a technical report written by George E. Forsythe wrote

The author presents a generalisation he worked out in 1950

of von Neumann’s method of generating random samples from

the exponential distribution by comparisons of uniform random

numbers on (0,l).



This technique called Rejection sampling is due to von Neu-

mann (1950). Since he had been working with the Manhattan

project in the 1940s, and some of these ideas may be from that

project.

In the early ’50s, an idea similar to that of von Neumann in

the context of finite samples was introduced by D B Lahiri (at

Indian Statistical Institute) to come up with probability pro-

portional to size (pps) method of sampling.



We have seen that we can simulate Markov chain with transition

probabilities p
Γ,Λ

. So von Neumann’s recipe is: given Xt =

Γ, generate a sample Λ with probability p
Γ,Λ

and accept the

proposal (of moving from Γ to Λ with probability α(Γ,Λ), and

staying put at Γ if the proposal is rejected.

This again is easy to implement (note that in our chess board

example,

α(Γ,Λ) = min{1, f(Λ)
f(Γ)
}

and does not need any information about the class of feasible

configurations.



This algorithm is known as the Metropolis algorithm for sim-

ulating a Markov Chain whose unique invariant distribution is

proportional to a given function f on the state space. One does

NOT need to know the constant of proportionality.

All we need is a good transition probability function that is

irreducible and aperiodic on the state space that is reversible

(pij = pji).



Hastings proposed a modification.

Suppose one has a good algorithm for a Markov chain with

transition probability function {pij : i, j ∈ S} that is easy to

simulate and we with to obtain a transition probability func-

tion {qij : i, j ∈ S} that has {h(i) : i ∈ S} as the stationary

distribution, let

qij = pij min
{

1,
h(j)pji

h(i)pij

}
if i 6= j

and qii = 1−
∑

j 6=q qij.



It can be checked that

h(i)qij = h(j)qji ∀i, j ∈ S

and thus ∑
i∈S

h(i)qij = h(j).

As in the Metropolis algorithm, if we can simulate from {pij :

j ∈ S} then using rejection sampling we can simulate from

{qij : j ∈ S}.

How to choose initial conditions X0?

One sample or several samples ??



The same result works in S = R and S = Rd.

Aim: To approximate ∫
S

φ(y)h(y)dµ(y)

where h(y) = ch1(y) is a density and φ is a given function.

Suppose that the constant c is not known, but only h1 is known.



Suppose f(x, y) is density of a Markov chain on S,

such that f(x, y) = f(y, x) and for A ∈ B(S) one has

P (Xt+1 ∈ A | Xt = x) =

∫
A

f(x, y)dµ(y)

We define a transition function Q as follows: Let

α(x, y) = min{1, h(y)
h(x)
} = min{1, h1(y)

h1(x)
}

and for A ∈ B(S), x 6∈ A

Q(Xt+1 ∈ A | Xt = x) =

∫
A

f(x, y)α(x, y)dµ(y)

Q(Xt+1 = x | Xt = x) = 1−
∫
S−{x}

f(x, t)α(x, t)dµ(t).



Once we have a efficient algorithm to simulate Xt+1 = y given

Xt = x, we treat the move as proposal, and accept the proposal

(of moving from x to y with probability α(x, y), and staying

put at x if the proposal is rejected.

The density f(x, y) in turn could be f(x, y) = φ(y − x) where

φ is a suitable density with mean 0.

Examples

1: φ being Gaussian distribution with mean 0, variance σ2.

2: φ being Laplace distribution with mean 0 and scale β.

3: φ being Uniform distribution on (−a, a), a > 0.



Likewise we can have a version of Hastings algorithm, called

Metropolis-Hastings algorithm:

Suppose f(x, y) is density of a Markov chain

{Xt : t ≥ 0} on S,

so that for A ∈ B(S) one has

P (Xt+1 ∈ A | Xt = x) =

∫
A

f(x, y)dµ(y).

We assume that such an {Xt : t ≥ 0} on S is easy to simulate



We define a transition function Q as follows: Let

α(x, y) = min{1, h(y)f(y,x)
h(x)f(x,y)

} = min{1, h1(y)f(y,x)
h1(x)f(x,y)

}

and for A ∈ B(S), x 6∈ A

Q(Xt+1 ∈ A | Xt = x) =

∫
A

f(x, y)α(x, y)dµ(y)

Q(Xt+1 = x | Xt = x) = 1−
∫
S−{x}

f(x, t)α(x, t)dµ(t).



For the Metropolis-Hastings algorithm, we do not need to as-

sume that f(x, y) is symmetric. For example, we can even take

f(x, y) = φ(y)!

We could even take a combination of two algorithms - at each

step, we use one algorithm with probability p and the other

with probability 1− p.


