The critical exponent of a graph

Apoorva Khare Indian Institute of Science, Bangalore

Working example

Definition. A real symmetric matrix A is *positive (semidefinite)* if all eigenvalues of A are ≥ 0 . (Equivalently, $u^T A u \ge 0$ for all vectors u.)

Notation. Given $N \ge 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Working example

Definition. A real symmetric matrix A is *positive (semidefinite)* if all eigenvalues of A are ≥ 0 . (Equivalently, $u^T A u \ge 0$ for all vectors u.)

Notation. Given $N \ge 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Example: Consider the following correlation matrices in \mathbb{P}_5 :

$$A = \begin{pmatrix} 1 & 0.6 & 0 & 0 & 0 \\ 0.6 & 1 & 0.5 & 0 & 0 \\ 0 & 0.5 & 1 & 0.4 & 0 \\ 0 & 0 & 0.4 & 1 & 0.3 \\ 0 & 0 & 0 & 0.3 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0.6 & 0.5 & 0 & 0 \\ 0.6 & 1 & 0.6 & 0.5 & 0 \\ 0.5 & 0.6 & 1 & 0.6 & 0.5 \\ 0 & 0.5 & 0.6 & 1 & 0.6 \\ 0 & 0 & 0.5 & 0.6 & 1 \end{pmatrix}$$

(Pattern of zeros according to graphs: tree, banded graph.)

Working example

Definition. A real symmetric matrix A is *positive (semidefinite)* if all eigenvalues of A are ≥ 0 . (Equivalently, $u^T A u \ge 0$ for all vectors u.)

Notation. Given $N \ge 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Example: Consider the following correlation matrices in \mathbb{P}_5 :

$$A = \begin{pmatrix} 1 & 0.6 & 0 & 0 & 0 \\ 0.6 & 1 & 0.5 & 0 & 0 \\ 0 & 0.5 & 1 & 0.4 & 0 \\ 0 & 0 & 0.4 & 1 & 0.3 \\ 0 & 0 & 0 & 0.3 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0.6 & 0.5 & 0 & 0 \\ 0.6 & 1 & 0.6 & 0.5 & 0 \\ 0.5 & 0.6 & 1 & 0.6 & 0.5 \\ 0 & 0.5 & 0.6 & 1 & 0.6 \\ 0 & 0 & 0.5 & 0.6 & 1 \end{pmatrix}$$

(Pattern of zeros according to graphs: tree, banded graph.)

Question: Raise each entry to the α th power for some $\alpha > 0$. For which α are the resulting matrices positive?

More generally: For which functions $f: I \to \mathbb{R}$ is it true that $f[A] := (f(a_{jk})) \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$?

More generally: For which functions $f: I \to \mathbb{R}$ is it true that

 $f[A] := (f(a_{jk})) \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$?

- (Long history!) The Schur Product Theorem [Schur, *Crelle* 1911] says: if $A, B \in \mathbb{P}_N$, then so is $A \circ B := (a_{ij}b_{ij})$.
- As a consequence, $f(x) = x^k$ ($k \ge 0$) preserves positivity on \mathbb{P}_N for all N.

More generally: For which functions $f:I\to \mathbb{R}$ is it true that

$$f[A] := (f(a_{jk})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$$

- (Long history!) The Schur Product Theorem [Schur, *Crelle* 1911] says: if $A, B \in \mathbb{P}_N$, then so is $A \circ B := (a_{ij}b_{ij})$.
- As a consequence, $f(x) = x^k$ ($k \ge 0$) preserves positivity on \mathbb{P}_N for all N.
- (Pólya–Szegö, 1925): Taking sums and limits, if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \ge 0$, then f[-] preserves positivity.

More generally: For which functions $f:I\to \mathbb{R}$ is it true that

$$f[A] := (f(a_{jk})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$$

- (Long history!) The Schur Product Theorem [Schur, *Crelle* 1911] says: if $A, B \in \mathbb{P}_N$, then so is $A \circ B := (a_{ij}b_{ij})$.
- As a consequence, $f(x) = x^k$ ($k \ge 0$) preserves positivity on \mathbb{P}_N for all N.
- (Pólya–Szegö, 1925): Taking sums and limits, if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \ge 0$, then f[-] preserves positivity.

Question: Anything else?

More generally: For which functions $f:I\to \mathbb{R}$ is it true that

 $f[A] := (f(a_{jk})) \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$?

- (Long history!) The Schur Product Theorem [Schur, *Crelle* 1911] says: if $A, B \in \mathbb{P}_N$, then so is $A \circ B := (a_{ij}b_{ij})$.
- As a consequence, $f(x) = x^k$ ($k \ge 0$) preserves positivity on \mathbb{P}_N for all N.
- (Pólya–Szegö, 1925): Taking sums and limits, if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \ge 0$, then f[-] preserves positivity.

Question: Anything else? Surprisingly, the answer is **no**, if we want to preserve positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (-1, 1) and $f : I \to \mathbb{R}$. The following are equivalent:

•
$$f[A] \in \mathbb{P}_N$$
 for all $A \in \mathbb{P}_N(I)$ and all N .

More generally: For which functions $f:I\to \mathbb{R}$ is it true that

 $f[A] := (f(a_{jk})) \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$?

- (Long history!) The Schur Product Theorem [Schur, *Crelle* 1911] says: if $A, B \in \mathbb{P}_N$, then so is $A \circ B := (a_{ij}b_{ij})$.
- As a consequence, $f(x) = x^k$ ($k \ge 0$) preserves positivity on \mathbb{P}_N for all N.
- (Pólya–Szegö, 1925): Taking sums and limits, if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \ge 0$, then f[-] preserves positivity.

Question: Anything else? Surprisingly, the answer is **no**, if we want to preserve positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (-1, 1) and $f : I \to \mathbb{R}$. The following are equivalent:

•
$$f[A] \in \mathbb{P}_N$$
 for all $A \in \mathbb{P}_N(I)$ and all N .

In other words, f(x) = ∑_{k=0}[∞] c_kx^k on (-1, 1) with all c_k ≥ 0.

Question: What about positivity preservers for *fixed* N? Apoorva Khare, IISc and APRG, Bangalore

More generally: For which functions $f:I\to \mathbb{R}$ is it true that

$$f[A] := (f(a_{jk})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$$

- (Long history!) The Schur Product Theorem [Schur, *Crelle* 1911] says: if $A, B \in \mathbb{P}_N$, then so is $A \circ B := (a_{ij}b_{ij})$.
- As a consequence, $f(x) = x^k$ ($k \ge 0$) preserves positivity on \mathbb{P}_N for all N.
- (Pólya–Szegö, 1925): Taking sums and limits, if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \ge 0$, then f[-] preserves positivity.

Question: Anything else? Surprisingly, the answer is **no**, if we want to preserve positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (-1, 1) and $f : I \to \mathbb{R}$. The following are equivalent:

•
$$f[A] \in \mathbb{P}_N$$
 for all $A \in \mathbb{P}_N(I)$ and all N .

Question: What about positivity preservers for *fixed* N? Open for $N \ge 3$. Apoorva Khare, IISc and APRG, Bangalore

Graphical models: Connections between statistics and combinatorics. Let X_1, \ldots, X_p be a collection of random variables.

• Very large vectors: rare that all X_j depend strongly on each other.

Graphical models: Connections between statistics and combinatorics. Let X_1, \ldots, X_p be a collection of random variables.

- Very large vectors: rare that all X_j depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.

Graphical models: Connections between statistics and combinatorics. Let X_1, \ldots, X_p be a collection of random variables.

- Very large vectors: rare that all X_j depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.

Covariance matrix Σ captures the linear relationships:

$$\Sigma = (\sigma_{jk})_{j,k=1}^p = (\operatorname{Cov}(X_j, X_k))_{j,k=1}^p$$

Important problem: Estimate Σ given data $x_1, \ldots, x_n \in \mathbb{R}^p$ of (X_1, \ldots, X_p) .

Graphical models: Connections between statistics and combinatorics. Let X_1, \ldots, X_p be a collection of random variables.

- Very large vectors: rare that all X_j depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.

Covariance matrix Σ captures the linear relationships:

$$\Sigma = (\sigma_{jk})_{j,k=1}^p = (\operatorname{Cov}(X_j, X_k))_{j,k=1}^p$$

Important problem: Estimate Σ given data $x_1, \ldots, x_n \in \mathbb{R}^p$ of (X_1, \ldots, X_p) .

Classical estimator (sample covariance matrix):

$$S := \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \overline{x}) (x_j - \overline{x})^T.$$

In modern "large p, small n" problems, S is known to be a *poor* estimator of Σ : (a) low rank, (b) no graphical structure.

Modern approach: Convex optimization: obtain *sparse* estimate of Σ .

Modern approach: Convex optimization: obtain *sparse* estimate of Σ .

- Works well for dimensions up to a few thousands.
- Does not scale to modern problems with 100,000+ variables (disease detection, climate sciences, finance...).

Modern approach: Convex optimization: obtain *sparse* estimate of Σ .

- Works well for dimensions up to a few thousands.
- Does not scale to modern problems with 100,000+ variables (disease detection, climate sciences, finance...).

Alternate approach: Thresholding covariance matrices

True
$$\Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix}$$
 $S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.47 \\ 0.02 & 0.47 & 0.98 \end{pmatrix}$

Modern approach: Convex optimization: obtain *sparse* estimate of Σ .

- Works well for dimensions up to a few thousands.
- Does not scale to modern problems with 100,000+ variables (disease detection, climate sciences, finance...).

Alternate approach: Thresholding covariance matrices

True
$$\Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix}$$
 $S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.47 \\ 0.02 & 0.47 & 0.98 \end{pmatrix}$

Natural to *threshold* small entries (thinking the variables are independent):

$$\tilde{S} = \begin{pmatrix} 0.95 & 0.18 & \mathbf{0} \\ 0.18 & 0.96 & 0.47 \\ \mathbf{0} & 0.47 & 0.98 \end{pmatrix}$$

Modern approach: Convex optimization: obtain *sparse* estimate of Σ .

- Works well for dimensions up to a few thousands.
- Does not scale to modern problems with 100,000+ variables (disease detection, climate sciences, finance...).

Alternate approach: Thresholding covariance matrices

True
$$\Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix}$$
 $S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.47 \\ 0.02 & 0.47 & 0.98 \end{pmatrix}$

Natural to *threshold* small entries (thinking the variables are independent):

$$\tilde{S} = \begin{pmatrix} 0.95 & 0.18 & \mathbf{0} \\ 0.18 & 0.96 & 0.47 \\ \mathbf{0} & 0.47 & 0.98 \end{pmatrix}$$

Significant if $p\sim 100,000+$ and $\sim 1\%$ entries of true Σ are nonzero.

• Highly scalable. Analysis on the cone - no optimization.

Modern approach: Convex optimization: obtain *sparse* estimate of Σ .

- Works well for dimensions up to a few thousands.
- Does not scale to modern problems with 100,000+ variables (disease detection, climate sciences, finance...).

Alternate approach: Thresholding covariance matrices

True
$$\Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix}$$
 $S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.47 \\ 0.02 & 0.47 & 0.98 \end{pmatrix}$

Natural to *threshold* small entries (thinking the variables are independent):

$$\tilde{S} = \begin{pmatrix} 0.95 & 0.18 & \mathbf{0} \\ 0.18 & 0.96 & 0.47 \\ \mathbf{0} & 0.47 & 0.98 \end{pmatrix}$$

Significant if $p\sim 100,000+$ and $\sim 1\%$ entries of true Σ are nonzero.

- Highly scalable. Analysis on the cone no optimization.
- Question: When does this procedure preserve positivity (psd)? (Critical for applications, since covariance matrices are psd.)

Schoenberg, Rudin: functions f[-] preserving positivity on \mathbb{P}_N for all N.

Schoenberg, Rudin: functions f[-] preserving positivity on \mathbb{P}_N for all N.

Preserving positivity for *fixed* N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.

Schoenberg, Rudin: functions f[-] preserving positivity on \mathbb{P}_N for all N.

Preserving positivity for *fixed* N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, 1979). Open when $N \ge 3$.

Schoenberg, Rudin: functions f[-] preserving positivity on \mathbb{P}_N for all N.

Preserving positivity for *fixed* N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, 1979). Open when $N \ge 3$.

Question: Given $N \ge 3$, find *one* polynomial f(z) with a negative coefficient, such that for all $N \times N$ correlation matrices $A = (a_{jk})$, $f[A] := (f(a_{jk}))$ is positive semidefinite.

Schoenberg, Rudin: functions f[-] preserving positivity on \mathbb{P}_N for all N.

Preserving positivity for *fixed* N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, 1979). Open when $N \ge 3$.

Question: Given $N \ge 3$, find *one* polynomial f(z) with a negative coefficient, such that for all $N \times N$ correlation matrices $A = (a_{jk})$, $f[A] := (f(a_{jk}))$ is positive semidefinite.

• Open to date. (Necessary conditions: Loewner, Horn, Trans. AMS 1969.)

Schoenberg, Rudin: functions f[-] preserving positivity on \mathbb{P}_N for all N.

Preserving positivity for *fixed* N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, 1979). Open when $N \ge 3$.

Question: Given $N \ge 3$, find *one* polynomial f(z) with a negative coefficient, such that for all $N \times N$ correlation matrices $A = (a_{jk})$, $f[A] := (f(a_{jk}))$ is positive semidefinite.

- Open to date. (Necessary conditions: Loewner, Horn, Trans. AMS 1969.)
- We answer this affirmatively (with characterizations) in recent work:
 - [Belton, Guillot, K., Putinar], Adv. Math., 2016
 - [K., Tao], Amer. J. Math., in press.

Schoenberg, Rudin: functions f[-] preserving positivity on \mathbb{P}_N for all N.

Preserving positivity for *fixed* N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, 1979). Open when $N \ge 3$.

Question: Given $N \ge 3$, find *one* polynomial f(z) with a negative coefficient, such that for all $N \times N$ correlation matrices $A = (a_{jk})$, $f[A] := (f(a_{jk}))$ is positive semidefinite.

- Open to date. (Necessary conditions: Loewner, Horn, Trans. AMS 1969.)
- We answer this affirmatively (with characterizations) in recent work:
 - [Belton, Guillot, K., Putinar], Adv. Math., 2016
 - [K., Tao], Amer. J. Math., in press.
- Proofs crucially involve Schur polynomials, Schur positivity, ...

Powers and functions preserving positivity Powers and sparsity constraints Classical results and modern motivations Entrywise powers in fixed dimension

Preserving positivity in fixed dimension: refinements

Question: Which entrywise maps f[-] preserve positivity on \mathbb{P}_N for fixed N?

Question: Which entrywise maps f[-] preserve positivity on \mathbb{P}_N for fixed N?

We revisit this problem with modern applications in mind. Applications motivate many new exciting problems.

Question: Which entrywise maps f[-] preserve positivity on \mathbb{P}_N for fixed N?

We revisit this problem with modern applications in mind. Applications motivate many new exciting problems.

Imposing <u>rank constraints</u>: Rank corresponds to (known) sample size. [Guillot, K., Rajaratnam], Trans. AMS 2017.

Question: Which entrywise maps f[-] preserve positivity on \mathbb{P}_N for fixed N?

We revisit this problem with modern applications in mind. Applications motivate many new exciting problems.

- Imposing <u>rank constraints</u>: Rank corresponds to (known) sample size. [Guillot, K., Rajaratnam], *Trans. AMS* 2017.
- Imposing <u>sparsity constraints</u>: Sparsity pattern arises from domain-specific knowledge, e.g., underlying graphical model. [Guillot, K., Rajaratnam], *Trans. AMS* 2016.

Question: Which entrywise maps f[-] preserve positivity on \mathbb{P}_N for fixed N?

We revisit this problem with modern applications in mind. Applications motivate many new exciting problems.

- Imposing <u>rank constraints</u>: Rank corresponds to (known) sample size. [Guillot, K., Rajaratnam], Trans. AMS 2017.
- Imposing <u>sparsity constraints</u>: Sparsity pattern arises from domain-specific knowledge, e.g., underlying graphical model. [Guillot, K., Rajaratnam], *Trans. AMS* 2016.
- Socus on distinguished families to get insights into general case. Well-studied family in theory and applications: power functions x^{α} where $\alpha > 0$.

Question: Which entrywise maps f[-] preserve positivity on \mathbb{P}_N for fixed N?

We revisit this problem with modern applications in mind. Applications motivate many new exciting problems.

- Imposing <u>rank constraints</u>: Rank corresponds to (known) sample size. [Guillot, K., Rajaratnam], *Trans. AMS* 2017.
- Imposing <u>sparsity constraints</u>: Sparsity pattern arises from domain-specific knowledge, e.g., underlying graphical model. [Guillot, K., Rajaratnam], *Trans. AMS* 2016.
- Focus on distinguished families to get insights into general case.
 Well-studied family in theory and applications:
 power functions x^α where α > 0.

(Applications use functions such as hard- and soft- thresholding, and powers, to regularize covariance matrices.)

Question: Which entrywise maps f[-] preserve positivity on \mathbb{P}_N for fixed N?

We revisit this problem with modern applications in mind. Applications motivate many new exciting problems.

- Imposing <u>rank constraints</u>: Rank corresponds to (known) sample size. [Guillot, K., Rajaratnam], *Trans. AMS* 2017.
- Imposing <u>sparsity constraints</u>: Sparsity pattern arises from domain-specific knowledge, e.g., underlying graphical model. [Guillot, K., Rajaratnam], *Trans. AMS* 2016.
- Focus on distinguished families to get insights into general case. Well-studied family in theory and applications:

power functions x^{α} where $\alpha > 0$.

(Applications use functions such as hard- and soft- thresholding, and powers, to regularize covariance matrices.)

Question: Which power functions applied entrywise preserve positivity on \mathbb{P}_N for fixed N? (Subject of this talk.)

Powers and functions preserving positivity Powers and sparsity constraints Classical results and modern motivations Entrywise powers in fixed dimension

Powers preserving positivity

Theorem (FitzGerald and Horn, J. Math. Anal. Appl. 1977)

Let $N \ge 2$. Then:

• $f(x) = x^{\alpha}$ preserves positivity on $\mathbb{P}_N((0,\infty))$ if $\alpha \ge N-2$.

Powers preserving positivity

Theorem (FitzGerald and Horn, J. Math. Anal. Appl. 1977)

Let $N \ge 2$. Then:

- $f(x) = x^{\alpha}$ preserves positivity on $\mathbb{P}_N((0,\infty))$ if $\alpha \ge N-2$.
- 2 If $\alpha < N-2$ is not an integer, there is a matrix $A = (a_{jk}) \in \mathbb{P}_N((0,\infty))$ such that $A^{\circ \alpha} := (a_{jk}^{\alpha}) \notin \mathbb{P}_N$.

Powers preserving positivity

Theorem (FitzGerald and Horn, J. Math. Anal. Appl. 1977)

Let $N \ge 2$. Then:

- $f(x) = x^{\alpha}$ preserves positivity on $\mathbb{P}_N((0,\infty))$ if $\alpha \ge N-2$.
- 2 If $\alpha < N-2$ is not an integer, there is a matrix $A = (a_{jk}) \in \mathbb{P}_N((0,\infty))$ such that $A^{\circ \alpha} := (a_{jk}^{\alpha}) \notin \mathbb{P}_N$.

In other words, $f(x) = x^{\alpha}$ preserves positivity on $\mathbb{P}_N((0,\infty))$ if and only if $\alpha \in \mathbb{N} \cup [N-2,\infty)$.

Critical exponent:

N-2 = smallest α_0 such that $\alpha \ge \alpha_0$ preserves positivity.

Powers preserving positivity

Theorem (FitzGerald and Horn, J. Math. Anal. Appl. 1977)

Let $N \ge 2$. Then:

- $f(x) = x^{\alpha}$ preserves positivity on $\mathbb{P}_N((0,\infty))$ if $\alpha \ge N-2$.
- 2 If $\alpha < N-2$ is not an integer, there is a matrix $A = (a_{jk}) \in \mathbb{P}_N((0,\infty))$ such that $A^{\circ \alpha} := (a_{jk}^{\alpha}) \notin \mathbb{P}_N$.

In other words, $f(x) = x^{\alpha}$ preserves positivity on $\mathbb{P}_N((0,\infty))$ if and only if $\alpha \in \mathbb{N} \cup [N-2,\infty)$.

Critical exponent:

N-2 = smallest α_0 such that $\alpha \ge \alpha_0$ preserves positivity.

$$\mathsf{So} \text{ for } A = \begin{pmatrix} 1 & 0.6 & 0 & 0 & 0 \\ 0.6 & 1 & 0.5 & 0 & 0 \\ 0 & 0.5 & 1 & 0.4 & 0 \\ 0 & 0 & 0.4 & 1 & 0.3 \\ 0 & 0 & 0 & 0.3 & 1 \end{pmatrix}, \text{ all powers } \alpha \in \mathbb{N} \cup [3, \infty) \text{ work.}$$

The proof of FitzGerald and Horn's result is easy, but ingenious.

Proved by induction on N. Clear for N = 2. Now suppose it holds for N - 1.

The proof of FitzGerald and Horn's result is easy, but ingenious.

Proved by induction on N. Clear for N = 2. Now suppose it holds for N - 1.

Fix $\alpha \ge N-2$, and consider $A \in \mathbb{P}_N([0,\infty))$.

Powers and functions preserving positivity Powers and sparsity constraints Classical results and modern motivations Entrywise powers in fixed dimension

FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn's result is easy, but ingenious.

Proved by induction on N. Clear for N = 2. Now suppose it holds for N - 1.

Fix $\alpha \ge N-2$, and consider $A \in \mathbb{P}_N([0,\infty))$.

• If $a_{NN} = 0$, done by induction.

The proof of FitzGerald and Horn's result is easy, but ingenious.

Proved by induction on N. Clear for N = 2. Now suppose it holds for N - 1.

Fix $\alpha \ge N-2$, and consider $A \in \mathbb{P}_N([0,\infty))$.

- If $a_{NN} = 0$, done by induction.
- Suppose $a_{NN} \neq 0$. Write $A = \begin{pmatrix} B & \xi \\ \xi^T & a_{NN} \end{pmatrix}$, $\zeta := \frac{1}{\sqrt{a_{NN}}} \begin{pmatrix} \xi \\ a_{NN} \end{pmatrix}$.

Note: $A - \zeta \zeta^T$ is psd, with last row and column zero.

The proof of FitzGerald and Horn's result is easy, but ingenious.

Proved by induction on N. Clear for N = 2. Now suppose it holds for N - 1.

Fix $\alpha \ge N-2$, and consider $A \in \mathbb{P}_N([0,\infty))$.

- If $a_{NN} = 0$, done by induction.
- Suppose $a_{NN} \neq 0$. Write $A = \begin{pmatrix} B & \xi \\ \xi^T & a_{NN} \end{pmatrix}$, $\zeta := \frac{1}{\sqrt{a_{NN}}} \begin{pmatrix} \xi \\ a_{NN} \end{pmatrix}$. *Note:* $A - \zeta \zeta^T$ is psd, with last row and column zero.

• By elementary calculus, for any $x, y \ge 0$,

$$x^{\alpha} - y^{\alpha} = \alpha \int_0^1 (x - y) (\lambda x + (1 - \lambda)y)^{\alpha - 1} d\lambda.$$

Therefore,

The proof of FitzGerald and Horn's result is easy, but ingenious.

Proved by induction on N. Clear for N = 2. Now suppose it holds for N - 1.

Fix $\alpha \ge N-2$, and consider $A \in \mathbb{P}_N([0,\infty))$.

- If $a_{NN} = 0$, done by induction.
- Suppose $a_{NN} \neq 0$. Write $A = \begin{pmatrix} B & \xi \\ \xi^T & a_{NN} \end{pmatrix}$, $\zeta := \frac{1}{\sqrt{a_{NN}}} \begin{pmatrix} \xi \\ a_{NN} \end{pmatrix}$. *Note:* $A - \zeta \zeta^T$ is psd, with last row and column zero.

• By elementary calculus, for any $x, y \ge 0$,

$$x^{\alpha} - y^{\alpha} = \alpha \int_0^1 (x - y) (\lambda x + (1 - \lambda)y)^{\alpha - 1} d\lambda.$$

Therefore, the following holds (entry by entry):

$$A^{\circ\alpha} - (\zeta\zeta^T)^{\circ\alpha} = \alpha \int_0^1 (A - \zeta\zeta^T) \circ (\lambda A + (1 - \lambda)\zeta\zeta^T)^{\circ(\alpha - 1)} d\lambda.$$

The proof of FitzGerald and Horn's result is easy, but ingenious.

Proved by induction on N. Clear for N = 2. Now suppose it holds for N - 1.

Fix $\alpha \ge N-2$, and consider $A \in \mathbb{P}_N([0,\infty))$.

- If $a_{NN} = 0$, done by induction.
- Suppose $a_{NN} \neq 0$. Write $A = \begin{pmatrix} B & \xi \\ \xi^T & a_{NN} \end{pmatrix}$, $\zeta := \frac{1}{\sqrt{a_{NN}}} \begin{pmatrix} \xi \\ a_{NN} \end{pmatrix}$. *Note:* $A - \zeta \zeta^T$ is psd, with last row and column zero.

• By elementary calculus, for any $x, y \ge 0$,

$$x^{\alpha} - y^{\alpha} = \alpha \int_0^1 (x - y) (\lambda x + (1 - \lambda)y)^{\alpha - 1} d\lambda.$$

Therefore, the following holds (entry by entry):

$$A^{\circ\alpha} - (\zeta\zeta^T)^{\circ\alpha} = \alpha \int_0^1 (A - \zeta\zeta^T) \circ (\lambda A + (1 - \lambda)\zeta\zeta^T)^{\circ(\alpha - 1)} d\lambda.$$

• The right-hand side is positive semidefinite by induction,

The proof of FitzGerald and Horn's result is easy, but ingenious.

Proved by induction on N. Clear for N = 2. Now suppose it holds for N - 1.

Fix $\alpha \ge N-2$, and consider $A \in \mathbb{P}_N([0,\infty))$.

- If $a_{NN} = 0$, done by induction.
- Suppose $a_{NN} \neq 0$. Write $A = \begin{pmatrix} B & \xi \\ \xi^T & a_{NN} \end{pmatrix}$, $\zeta := \frac{1}{\sqrt{a_{NN}}} \begin{pmatrix} \xi \\ a_{NN} \end{pmatrix}$. *Note:* $A - \zeta \zeta^T$ is psd, with last row and column zero.

• By elementary calculus, for any $x, y \ge 0$,

$$x^{\alpha} - y^{\alpha} = \alpha \int_0^1 (x - y) (\lambda x + (1 - \lambda)y)^{\alpha - 1} d\lambda.$$

Therefore, the following holds (entry by entry):

$$A^{\circ\alpha} - (\zeta\zeta^T)^{\circ\alpha} = \alpha \int_0^1 (A - \zeta\zeta^T) \circ (\lambda A + (1 - \lambda)\zeta\zeta^T)^{\circ(\alpha - 1)} d\lambda.$$

• The right-hand side is positive semidefinite by induction, hence so is the left-hand side. Thus $A^{\circ \alpha} \in \mathbb{P}_N$.

Apoorva Khare, IISc and APRG, Bangalore

Matrices with structures of zeros: the cone \mathbb{P}_G

Refine the FitzGerald–Horn problem for matrices with zeros.

Matrices with structures of zeros: the cone \mathbb{P}_G

Refine the FitzGerald-Horn problem for matrices with zeros.

A graph G = (V, E) is a set of vertices V and edges $E \subset V \times V$:

Matrices with structures of zeros: the cone \mathbb{P}_G

Refine the FitzGerald-Horn problem for matrices with zeros.

A graph G = (V, E) is a set of vertices V and edges $E \subset V \times V$:

Given a graph G = (V, E) with $V = \{1, \ldots, n\}$, define

 $\mathbb{P}_G := \{ A \in \mathbb{P}_n : a_{jk} = 0 \text{ if } (j,k) \notin E \text{ and } j \neq k \}.$

Note: a_{jk} can be zero if $(j,k) \in E$.

Apoorva Khare, IISc and APRG, Bangalore

Problem 1: Compute the set of powers preserving positivity for G:

$$\mathcal{H}_G := \{ \alpha \ge 0 : A^{\circ \alpha} \in \mathbb{P}_G \text{ for all } A \in \mathbb{P}_G([0,\infty)) \}$$

CE(G) := smallest α_0 s.t. x^{α} preserves positivity on $\mathbb{P}_G, \forall \alpha \ge \alpha_0$.

Problem 1: Compute the set of powers preserving positivity for G:

$$\mathcal{H}_G := \{ \alpha \ge 0 : A^{\circ \alpha} \in \mathbb{P}_G \text{ for all } A \in \mathbb{P}_G([0,\infty)) \}$$

CE(G) := smallest α_0 s.t. x^{α} preserves positivity on $\mathbb{P}_G, \forall \alpha \ge \alpha_0$.

Problem 2: How does the structure of G relate to the set of powers preserving positivity? (FitzGerald–Horn studied the case $G = K_n$.)

Problem 1: Compute the set of powers preserving positivity for G:

$$\mathcal{H}_G := \{ \alpha \ge 0 : A^{\circ \alpha} \in \mathbb{P}_G \text{ for all } A \in \mathbb{P}_G([0,\infty)) \}$$

CE(G) := smallest α_0 s.t. x^{α} preserves positivity on $\mathbb{P}_G, \forall \alpha \ge \alpha_0$.

Problem 2: How does the structure of G relate to the set of powers preserving positivity? (FitzGerald–Horn studied the case $G = K_n$.)

Definition: A tree is a connected graph containing no cycles.

Problem 1: Compute the set of powers preserving positivity for G:

$$\mathcal{H}_G := \{ \alpha \ge 0 : A^{\circ \alpha} \in \mathbb{P}_G \text{ for all } A \in \mathbb{P}_G([0,\infty)) \}$$

CE(G) := smallest α_0 s.t. x^{α} preserves positivity on $\mathbb{P}_G, \forall \alpha \ge \alpha_0$.

Problem 2: How does the structure of G relate to the set of powers preserving positivity? (FitzGerald–Horn studied the case $G = K_n$.)

Definition: A tree is a connected graph containing no cycles.

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Let T be a tree with at least 3 vertices. Then $\mathcal{H}_T = [1, \infty)$.

Functions preserving positivity for trees

More generally, classify all functions preserving positivity for trees:

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Suppose I = [0, R) and $f : I \to [0, \infty)$ with f(0) = 0. Let \mathcal{T} be any collection of trees, at least one with ≥ 3 vertices, and let A_3 denote the path graph on 3 vertices. Then the following are equivalent:

Functions preserving positivity for trees

More generally, classify all functions preserving positivity for trees:

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Suppose I = [0, R) and $f : I \to [0, \infty)$ with f(0) = 0. Let \mathcal{T} be any collection of trees, at least one with ≥ 3 vertices, and let A_3 denote the path graph on 3 vertices. Then the following are equivalent:

1
$$f[A] \in \mathbb{P}_T$$
 for all trees $T \in \mathcal{T}$ and all matrices $A \in \mathbb{P}_T(I)$;

2
$$f[A] \in \mathbb{P}_{A_3}$$
 for every $A \in \mathbb{P}_{A_3}(I)$;

Functions preserving positivity for trees

More generally, classify all functions preserving positivity for trees:

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Suppose I = [0, R) and $f : I \to [0, \infty)$ with f(0) = 0. Let \mathcal{T} be any collection of trees, at least one with ≥ 3 vertices, and let A_3 denote the path graph on 3 vertices. Then the following are equivalent:

1
$$f[A] \in \mathbb{P}_T$$
 for all trees $T \in \mathcal{T}$ and all matrices $A \in \mathbb{P}_T(I)$;

2
$$f[A] \in \mathbb{P}_{A_3}$$
 for every $A \in \mathbb{P}_{A_3}(I)$;

Functions preserving positivity for trees

More generally, classify all functions preserving positivity for trees:

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Suppose I = [0, R) and $f : I \to [0, \infty)$ with f(0) = 0. Let \mathcal{T} be any collection of trees, at least one with ≥ 3 vertices, and let A_3 denote the path graph on 3 vertices. Then the following are equivalent:

1
$$f[A] \in \mathbb{P}_T$$
 for all trees $T \in \mathcal{T}$ and all matrices $A \in \mathbb{P}_T(I)$;

2
$$f[A] \in \mathbb{P}_{A_3}$$
 for every $A \in \mathbb{P}_{A_3}(I)$;

3 The function
$$f$$
 satisfies: $f(\sqrt{xy})^2 \leq f(x)f(y), \quad \forall x, y \in I$
and is superadditive on I , i.e.,
 $f(x+y) \geq f(x) + f(y), \quad \forall x, y, x+y \in I.$

• First known characterization for non-complete graphs.

Functions preserving positivity for trees

More generally, classify all functions preserving positivity for trees:

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Suppose I = [0, R) and $f : I \to [0, \infty)$ with f(0) = 0. Let \mathcal{T} be any collection of trees, at least one with ≥ 3 vertices, and let A_3 denote the path graph on 3 vertices. Then the following are equivalent:

• $f[A] \in \mathbb{P}_T$ for all trees $T \in \mathcal{T}$ and all matrices $A \in \mathbb{P}_T(I)$;

2
$$f[A] \in \mathbb{P}_{A_3}$$
 for every $A \in \mathbb{P}_{A_3}(I)$;

3 The function
$$f$$
 satisfies: $f(\sqrt{xy})^2 \leq f(x)f(y), \quad \forall x, y \in I$
and is superadditive on I , i.e.,
 $f(x+y) \geq f(x) + f(y), \quad \forall x, y, x+y \in I.$

- First known characterization for non-complete graphs.
- $\bullet\,$ Characterization does not depend on the family ${\cal T}.$

Functions preserving positivity for trees (cont.)

 $(1) \implies (2).$ Immediate.

(2) \implies (3). Suppose $f[-] : \mathbb{P}_{A_3} \to \mathbb{P}_{A_3}$. Then $f[-] : \mathbb{P}_2 \to \mathbb{P}_2$, proving the first condition in (3),

Functions preserving positivity for trees (cont.)

 $(1)\implies (2). \ {\sf Immediate}.$

(2)
$$\implies$$
 (3). Suppose $f[-] : \mathbb{P}_{A_3} \to \mathbb{P}_{A_3}$.
Then $f[-] : \mathbb{P}_2 \to \mathbb{P}_2$, proving the first condition in (3),
and det $f[M] \ge 0$ for $M = \begin{pmatrix} x & x & 0 \\ x & x + y & y \\ 0 & y & y \end{pmatrix}$, proving $f(x+y) \ge f(x) + f(y)$.

Functions preserving positivity for trees (cont.)

 $(1)\implies (2). \ {\sf Immediate}.$

$$\begin{array}{l} \textbf{(2)} \implies \textbf{(3). Suppose } f[-]: \mathbb{P}_{A_3} \to \mathbb{P}_{A_3}. \\ \text{Then } f[-]: \mathbb{P}_2 \to \mathbb{P}_2, \text{ proving the first condition in (3),} \\ \text{and } \det f[M] \geqslant 0 \text{ for } M = \begin{pmatrix} x & x & 0 \\ x & x+y & y \\ 0 & y & y \end{pmatrix}, \text{ proving } f(x+y) \geqslant f(x) + f(y). \end{array}$$

 $(3) \implies (1).$ The proof uses induction on n, and Schur complements:

Functions preserving positivity for trees (cont.)

(3) \implies (1). Suppose f satisfies (3) and preserves \mathbb{P}_G for a tree on n-1 vertices. Let $G' = G \cup \{(n-1,n)\}$.

(3) \implies (1). Suppose f satisfies (3) and preserves \mathbb{P}_G for a tree on n-1 vertices. Let $G' = G \cup \{(n-1,n)\}$. Then for $M \in \mathbb{P}_{G'}([0,R))$,

$$M = \begin{pmatrix} A & b\mathbf{e}_{n-1} \\ b\mathbf{e}_{n-1}^T & c \end{pmatrix},$$

with Schur complement $S_M := A - (b^2/c)E_{n-1,n-1} \in \mathbb{P}_G([0,R)).$

(3) \implies (1). Suppose f satisfies (3) and preserves \mathbb{P}_G for a tree on n-1 vertices. Let $G' = G \cup \{(n-1,n)\}$. Then for $M \in \mathbb{P}_{G'}([0,R))$,

$$M = \begin{pmatrix} A & b\mathbf{e}_{n-1} \\ b\mathbf{e}_{n-1}^T & c \end{pmatrix},$$

with Schur complement $S_M := A - (b^2/c)E_{n-1,n-1} \in \mathbb{P}_G([0,R)).$

Want to prove: $S_{f[M]}$ is positive semidefinite.

(3) \implies (1). Suppose f satisfies (3) and preserves \mathbb{P}_G for a tree on n-1 vertices. Let $G' = G \cup \{(n-1,n)\}$. Then for $M \in \mathbb{P}_{G'}([0,R))$,

$$M = \begin{pmatrix} A & b\mathbf{e}_{n-1} \\ b\mathbf{e}_{n-1}^T & c \end{pmatrix},$$

with Schur complement $S_M := A - (b^2/c)E_{n-1,n-1} \in \mathbb{P}_G([0,R)).$

Want to prove: $S_{f[M]}$ is positive semidefinite. Now $S_{f[M]} = f[S_M] + dE_{n-1,n-1}$, where

$$d = f(a_{n-1,n-1}) - f(b)^2 / f(c) - f(a_{n-1,n-1} - b^2 / c)$$

(3) \implies (1). Suppose f satisfies (3) and preserves \mathbb{P}_G for a tree on n-1 vertices. Let $G' = G \cup \{(n-1,n)\}$. Then for $M \in \mathbb{P}_{G'}([0,R))$,

$$M = \begin{pmatrix} A & b\mathbf{e}_{n-1} \\ b\mathbf{e}_{n-1}^T & c \end{pmatrix},$$

with Schur complement $S_M := A - (b^2/c)E_{n-1,n-1} \in \mathbb{P}_G([0,R)).$

Want to prove: $S_{f[M]}$ is positive semidefinite. Now $S_{f[M]} = f[S_M] + dE_{n-1,n-1}$, where

$$d = f(a_{n-1,n-1}) - f(b)^2 / f(c) - f(a_{n-1,n-1} - b^2 / c)$$

$$\geq f(a_{n-1,n-1}) - f(b^2 / c) - f(a_{n-1,n-1} - b^2 / c)$$

(3) \implies (1). Suppose f satisfies (3) and preserves \mathbb{P}_G for a tree on n-1 vertices. Let $G' = G \cup \{(n-1,n)\}$. Then for $M \in \mathbb{P}_{G'}([0,R))$,

$$M = \begin{pmatrix} A & b\mathbf{e}_{n-1} \\ b\mathbf{e}_{n-1}^T & c \end{pmatrix},$$

with Schur complement $S_M := A - (b^2/c)E_{n-1,n-1} \in \mathbb{P}_G([0,R)).$

Want to prove: $S_{f[M]}$ is positive semidefinite. Now $S_{f[M]} = f[S_M] + dE_{n-1,n-1}$, where

$$d = f(a_{n-1,n-1}) - f(b)^2 / f(c) - f(a_{n-1,n-1} - b^2 / c)$$

$$\geq f(a_{n-1,n-1}) - f(b^2 / c) - f(a_{n-1,n-1} - b^2 / c)$$

$$\geq 0.$$

CE(T) = 1 for all trees T, and $CE(K_n) = n - 2$.

What is CE(G) in general?

- CE(T) = 1 for all trees T, and $CE(K_n) = n 2$.
- What is CE(G) in general? Some preliminary observations:
 - 1 If G has n vertices then $\alpha \ge n-2$ preserves positivity.

CE(T) = 1 for all trees T, and $CE(K_n) = n - 2$.

What is CE(G) in general? Some preliminary observations:

- 1 If G has n vertices then $\alpha \ge n-2$ preserves positivity.
- If G contains K_m as an induced subgraph, then α < m − 2 does not preserve positivity (α ∉ N).</p>

CE(T) = 1 for all trees T, and $CE(K_n) = n - 2$.

What is CE(G) in general? Some preliminary observations:

- 1 If G has n vertices then $\alpha \ge n-2$ preserves positivity.
- If G contains K_m as an induced subgraph, then α < m − 2 does not preserve positivity (α ∉ N).

Consequence: $m - 2 \leq CE(G) \leq n - 2$.

Question: Is the critical exponent of G equal to the clique number minus 2?

General graphs

$$CE(T) = 1$$
 for all trees T, and $CE(K_n) = n - 2$.

What is CE(G) in general? Some preliminary observations:

- 1 If G has n vertices then $\alpha \ge n-2$ preserves positivity.
- If G contains K_m as an induced subgraph, then α < m − 2 does not preserve positivity (α ∉ N).

Consequence: $m - 2 \leq CE(G) \leq n - 2$.

Question: Is the critical exponent of G equal to the clique number minus 2? Answer: No. Counterexample: $G = K_4^{(1)}$ (K_4 minus a chord).

Clearly, the maximal clique is K_3 . However, we can show that $\mathcal{H}_{K_4^{(1)}} = \{1\} \cup [2, \infty)$.

Trees are graphs with no cycles of length $n \ge 3$.

Trees are graphs with no cycles of length $n \ge 3$.

Definition: A graph is *chordal* if it does not contain an induced cycle of length $n \ge 4$.

Trees are graphs with no cycles of length $n \ge 3$.

Definition: A graph is *chordal* if it does not contain an induced cycle of length $n \ge 4$.

Chordal

Not Chordal

Trees are graphs with no cycles of length $n \ge 3$.

Definition: A graph is *chordal* if it does not contain an induced cycle of length $n \ge 4$.

• Names: Triangulated, decomposable, rigid circuit graphs...

Trees are graphs with no cycles of length $n \ge 3$.

Definition: A graph is *chordal* if it does not contain an induced cycle of length $n \ge 4$.

- Names: Triangulated, decomposable, rigid circuit graphs...
- *Examples:* Trees, complete graphs, triangulation of any graph, Apollonian graphs, band graphs, split graphs, etc.

Trees are graphs with no cycles of length $n \ge 3$.

Definition: A graph is *chordal* if it does not contain an induced cycle of length $n \ge 4$.

- Names: Triangulated, decomposable, rigid circuit graphs...
- *Examples:* Trees, complete graphs, triangulation of any graph, Apollonian graphs, band graphs, split graphs, etc.
- Occur in many *applications*: positive definite completion problems, maximum likelihood estimation in graphical models, Gaussian elimination, etc.

Theorem

The following are equivalent:

- G is chordal (i.e., every cycle of length 4 or more has a chord);
- **2** *G* can be obtained by pasting complete graphs along complete subgraphs.

Theorem

The following are equivalent:

- G is chordal (i.e., every cycle of length 4 or more has a chord);
- **2** *G* can be obtained by pasting complete graphs along complete subgraphs.

Theorem

The following are equivalent:

- G is chordal (i.e., every cycle of length 4 or more has a chord);
- **2** *G* can be obtained by pasting complete graphs along complete subgraphs.

Theorem

The following are equivalent:

- G is chordal (i.e., every cycle of length 4 or more has a chord);
- **2** *G* can be obtained by pasting complete graphs along complete subgraphs.

Theorem

The following are equivalent:

- G is chordal (i.e., every cycle of length 4 or more has a chord);
- **2** *G* can be obtained by pasting complete graphs along complete subgraphs.

Theorem

The following are equivalent:

- G is chordal (i.e., every cycle of length 4 or more has a chord);
- **2** *G* can be obtained by pasting complete graphs along complete subgraphs.

Theorem

The following are equivalent:

- G is chordal (i.e., every cycle of length 4 or more has a chord);
- **2** *G* can be obtained by pasting complete graphs along complete subgraphs.

Theorem

The following are equivalent:

- G is chordal (i.e., every cycle of length 4 or more has a chord);
- **2** *G* can be obtained by pasting complete graphs along complete subgraphs.

Theorem

The following are equivalent:

- G is chordal (i.e., every cycle of length 4 or more has a chord);
- **2** *G* can be obtained by pasting complete graphs along complete subgraphs.

Theorem

The following are equivalent:

- G is chordal (i.e., every cycle of length 4 or more has a chord);
- **2** *G* can be obtained by pasting complete graphs along complete subgraphs.

Theorem

The following are equivalent:

- G is chordal (i.e., every cycle of length 4 or more has a chord);
- **2** *G* can be obtained by pasting complete graphs along complete subgraphs.

Powers preserving positivity for chordal graphs

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be any chordal graph with at least 2 vertices and let $r = m_G$ be the largest integer such that either K_r or $K_r^{(1)}$ is an induced subgraph of G. Then

$$\mathcal{H}_G = \mathbb{N} \cup [m_G - 2, \infty).$$

In particular, $CE(G) = m_G - 2$.

• m_G is a novel graph invariant emerging out of positivity.

Powers preserving positivity for chordal graphs

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be any chordal graph with at least 2 vertices and let $r = m_G$ be the largest integer such that either K_r or $K_r^{(1)}$ is an induced subgraph of G. Then

$$\mathcal{H}_G = \mathbb{N} \cup [m_G - 2, \infty).$$

In particular, $CE(G) = m_G - 2$.

• m_G is a novel graph invariant emerging out of positivity.

Example 1. Band graphs with bandwidth d: $CE(G) = \min(d, n-2)$.

Powers preserving positivity for chordal graphs

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be any chordal graph with at least 2 vertices and let $r = m_G$ be the largest integer such that either K_r or $K_r^{(1)}$ is an induced subgraph of G. Then

$$\mathcal{H}_G = \mathbb{N} \cup [m_G - 2, \infty).$$

In particular, $CE(G) = m_G - 2$.

• m_G is a novel graph invariant emerging out of positivity.

Example 1. Band graphs with bandwidth d: $CE(G) = \min(d, n-2)$.

So for
$$B = \begin{pmatrix} 1 & 0.6 & 0.5 & 0 & 0 \\ 0.6 & 1 & 0.6 & 0.5 & 0 \\ 0.5 & 0.6 & 1 & 0.6 & 0.5 \\ 0 & 0.5 & 0.6 & 1 & 0.6 \\ 0 & 0 & 0.5 & 0.6 & 1 \end{pmatrix}$$
, all powers $\ge 2 = d$ work.

Apoorva Khare, IISc and APRG, Bangalore

Critical exponents of well-known chordal graphs

Example 2: Complete graph K_r or almost complete graph $K_r^{(1)}$: CE(G) = r - 2.

Example 3: Trees: CE(G) = 1. (So for the working example A, all powers ≥ 1 work.)

Critical exponents of well-known chordal graphs

Example 2: Complete graph K_r or almost complete graph $K_r^{(1)}$: CE(G) = r - 2.

Example 3: Trees: CE(G) = 1. (So for the working example A, all powers ≥ 1 work.)

Example 4: A *split graph* is a graph that can be partitioned as a clique C and an independent set (no adjacent vertices) $V \setminus C$.

Critical exponents of well-known chordal graphs

Example 2: Complete graph K_r or almost complete graph $K_r^{(1)}$: CE(G) = r - 2.

Example 3: Trees: CE(G) = 1. (So for the working example A, all powers ≥ 1 work.)

Example 4: A *split graph* is a graph that can be partitioned as a clique C and an independent set (no adjacent vertices) $V \setminus C$.

Source: Wikipedia.

As a consequence of the theorem, for every split graph G,

 $CE(G) = \max(|C| - 2, \max \deg(V \setminus C)).$

Example 5: Apollonian graphs are obtained by recursively subdividing triangles. I.e., maximal planar graphs. $CE(G) = \min(3, |V| - 2).$

Apoorva Khare, IISc and APRG, Bangalore

Source: Wikipedia.

Powers preserving positivity for chordal graphs

Some key ideas for the proof:

Powers preserving positivity for chordal graphs

Some key ideas for the proof:

Matrix decompositions: If (A, S, B) is a decomposition of G, every M ∈ P_G decomposes as M = M₁ + M₂ with M₁ ∈ P_{A∪S} and M₂ ∈ P_{B∪S}:

Powers preserving positivity for chordal graphs

Some key ideas for the proof:

Matrix decompositions: If (A, S, B) is a decomposition of G, every M ∈ P_G decomposes as M = M₁ + M₂ with M₁ ∈ P_{A∪S} and M₂ ∈ P_{B∪S}:

$$\begin{pmatrix} M_{AA} & M_{AS} & 0 \\ M_{AS}^T & M_{SS} & M_{SB} \\ 0 & M_{SB}^T & M_{BB} \end{pmatrix} = \begin{pmatrix} M_{AA} & M_{AS} & 0 \\ M_{AS}^T & M_{AS}^T M_{AA}^{-1} M_{AS} & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & M_{SS} - M_{AS}^T M_{AA}^{-1} M_{AS} & M_{SB} \\ 0 & M_{SB}^T & M_{BB} \end{pmatrix}$$

Powers preserving positivity for chordal graphs

Some key ideas for the proof:

Matrix decompositions: If (A, S, B) is a decomposition of G, every M ∈ P_G decomposes as M = M₁ + M₂ with M₁ ∈ P_{A∪S} and M₂ ∈ P_{B∪S}:

$$\begin{pmatrix} M_{AA} & M_{AS} & 0 \\ M_{AS}^T & M_{SS} & M_{SB} \\ 0 & M_{SB}^T & M_{BB} \end{pmatrix} = \begin{pmatrix} M_{AA} & M_{AS} & 0 \\ M_{AS}^T & M_{AS}^T M_{AA}^{-1} M_{AS} & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & M_{SS} - M_{AS}^T M_{AA}^{-1} M_{AS} & M_{SB} \\ 0 & M_{SB}^T & M_{BB} \end{pmatrix}$$

2 Loewner super-additive functions on \mathbb{P}_n or on rank one matrices:

$$f[A+B] - (f[A] + f[B]) \in \mathbb{P}_n \qquad \forall A, B.$$

Loewner super-additive powers (under rank constraints) classified in [Guillot, K., Rajaratnam], *J. Math. Anal. Appl.*, 2015.

Powers preserving positivity for chordal graphs

Some key ideas for the proof:

Matrix decompositions: If (A, S, B) is a decomposition of G, every M ∈ P_G decomposes as M = M₁ + M₂ with M₁ ∈ P_{A∪S} and M₂ ∈ P_{B∪S}:

$$\begin{pmatrix} M_{AA} & M_{AS} & 0 \\ M_{AS}^T & M_{SS} & M_{SB} \\ 0 & M_{SB}^T & M_{BB} \end{pmatrix} = \begin{pmatrix} M_{AA} & M_{AS} & 0 \\ M_{AS}^T & M_{AS}^T M_{AA}^{-1} M_{AS} & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & M_{SS} - M_{AS}^T M_{AA}^{-1} M_{AS} & M_{SB} \\ 0 & M_{SB}^T & M_{BB} \end{pmatrix}$$

2 Loewner super-additive functions on \mathbb{P}_n or on rank one matrices:

$$f[A+B] - (f[A] + f[B]) \in \mathbb{P}_n \qquad \forall A, B.$$

Loewner super-additive powers (under rank constraints) classified in [Guillot, K., Rajaratnam], *J. Math. Anal. Appl.*, 2015.

Induction and properties of chordal graphs (decomposition, ordering of cliques, etc.).

Functions preserving positivity for chordal graphs

Using the above ideas, we show more strongly, a sufficient condition for general functions preserving positivity on \mathbb{P}_G :

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be a chordal graph with a perfect elimination ordering of its vertices $\{v_1, \ldots, v_n\}$. For all $1 \leq k \leq n$, let G_k denote the induced subgraph formed by $\{v_1, \ldots, v_k\}$.

Using the above ideas, we show more strongly, a sufficient condition for general functions preserving positivity on \mathbb{P}_G :

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be a chordal graph with a perfect elimination ordering of its vertices $\{v_1, \ldots, v_n\}$. For all $1 \le k \le n$, let G_k denote the induced subgraph formed by $\{v_1, \ldots, v_k\}$. Define

 $c := clique number of G, \qquad d := \max_{k=1} \deg_{G_k}(v_k).$

Using the above ideas, we show more strongly, a sufficient condition for general functions preserving positivity on \mathbb{P}_G :

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be a chordal graph with a perfect elimination ordering of its vertices $\{v_1, \ldots, v_n\}$. For all $1 \le k \le n$, let G_k denote the induced subgraph formed by $\{v_1, \ldots, v_k\}$. Define

 $c := clique number of G, \qquad d := \max_{k=1} \deg_{G_k}(v_k).$

Suppose $f : \mathbb{R} \to \mathbb{R}$ is any function such that:

• f[-] preserves positivity on rank one matrices in $\mathbb{P}_c(\mathbb{R})$; and

2 $f[M + uu^T] \ge f[M] + f[uu^T]$ for all $M \in \mathbb{P}_d(\mathbb{R})$ and $u \in \mathbb{R}^d$.

Using the above ideas, we show more strongly, a sufficient condition for general functions preserving positivity on \mathbb{P}_G :

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be a chordal graph with a perfect elimination ordering of its vertices $\{v_1, \ldots, v_n\}$. For all $1 \le k \le n$, let G_k denote the induced subgraph formed by $\{v_1, \ldots, v_k\}$. Define

 $c := clique number of G, \qquad d := \max_{k=1,\dots,n} \deg_{G_k}(v_k).$

Suppose $f : \mathbb{R} \to \mathbb{R}$ is any function such that:

• f[-] preserves positivity on rank one matrices in $\mathbb{P}_c(\mathbb{R})$; and

2)
$$f[M + uu^T] \ge f[M] + f[uu^T]$$
 for all $M \in \mathbb{P}_d(\mathbb{R})$ and $u \in \mathbb{R}^d$.

Then f[-] preserves positivity on $\mathbb{P}_G(\mathbb{R})$.

Using the above ideas, we show more strongly, a sufficient condition for general functions preserving positivity on \mathbb{P}_G :

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be a chordal graph with a perfect elimination ordering of its vertices $\{v_1, \ldots, v_n\}$. For all $1 \le k \le n$, let G_k denote the induced subgraph formed by $\{v_1, \ldots, v_k\}$. Define

 $c := clique number of G, \qquad d := \max_{k=1,\dots,n} \deg_{G_k}(v_k).$

Suppose $f : \mathbb{R} \to \mathbb{R}$ is any function such that:

• f[-] preserves positivity on rank one matrices in $\mathbb{P}_c(\mathbb{R})$; and

2
$$f[M + uu^T] \ge f[M] + f[uu^T]$$
 for all $M \in \mathbb{P}_d(\mathbb{R})$ and $u \in \mathbb{R}^d$.

Then f[-] preserves positivity on $\mathbb{P}_G(\mathbb{R})$.

If d = 1 then c = 2 and G is a tree, and the converse is also true. [G.-K.-R., *Trans. AMS* 2016]

Non-chordal graphs

Working examples A, B showed: we improve somewhat on state-of-the-art.

Non-chordal graphs

Working examples A, B showed: we improve somewhat on state-of-the-art. Our results sometimes improve *significantly* on state-of-the-art:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

If G is a connected bipartite graph with $n \ge 3$ vertices, then $\mathcal{H}_G = [1, \infty)$.

$$\mathbb{P}_G \quad \ni \quad \begin{pmatrix} \mathrm{Id}_m & B \\ B^T & \mathrm{Id}_n \end{pmatrix}$$

Working examples A, B showed: we improve somewhat on state-of-the-art. Our results sometimes improve *significantly* on state-of-the-art:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

If G is a connected bipartite graph with $n \ge 3$ vertices, then $\mathcal{H}_G = [1, \infty)$.

$$\mathbb{P}_G \quad \ni \quad \begin{pmatrix} \mathrm{Id}_m & B \\ B^T & \mathrm{Id}_n \end{pmatrix}$$

Proof uses a completely different approach based on the fact that,

 $\rho(A^{\circ \alpha}) \leqslant \rho(A)^{\alpha} \qquad \text{for } A \in \mathbb{P}_n, \alpha \geqslant 1,$ where $\rho(M) = \text{spectral radius of } M.$

Working examples A, B showed: we improve somewhat on state-of-the-art. Our results sometimes improve *significantly* on state-of-the-art:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

If G is a connected bipartite graph with $n \ge 3$ vertices, then $\mathcal{H}_G = [1, \infty)$.

$$\mathbb{P}_G \quad \ni \quad \begin{pmatrix} \mathrm{Id}_m & B \\ B^T & \mathrm{Id}_n \end{pmatrix}$$

Proof uses a completely different approach based on the fact that,

 $\rho(A^{\circ\alpha}) \leqslant \rho(A)^{\alpha} \quad \text{for } A \in \mathbb{P}_n, \alpha \ge 1,$

where $\rho(M) = \text{spectral radius of } M$.

- State-of-the-art: any power $\alpha \ge m + n 2$ works.
- Our result: any power ≥ 1 works!

Working examples A, B showed: we improve somewhat on state-of-the-art. Our results sometimes improve *significantly* on state-of-the-art:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

If G is a connected bipartite graph with $n \ge 3$ vertices, then $\mathcal{H}_G = [1, \infty)$.

$$\mathbb{P}_G \quad \ni \quad \begin{pmatrix} \mathrm{Id}_m & B \\ B^T & \mathrm{Id}_n \end{pmatrix}$$

Proof uses a completely different approach based on the fact that,

 $\rho(A^{\circ\alpha}) \leqslant \rho(A)^{\alpha} \quad \text{for } A \in \mathbb{P}_n, \alpha \geqslant 1,$

where $\rho(M) = \text{spectral radius of } M$.

- State-of-the-art: any power $\alpha \ge m + n 2$ works.
- Our result: *any power* ≥ 1 *works!* Thus, small powers may be safely used to regularize "dense" covariance/correlation matrices.

Working examples A, B showed: we improve somewhat on state-of-the-art. Our results sometimes improve *significantly* on state-of-the-art:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

If G is a connected bipartite graph with $n \ge 3$ vertices, then $\mathcal{H}_G = [1, \infty)$.

$$\mathbb{P}_G \quad \ni \quad \begin{pmatrix} \mathrm{Id}_m & B \\ B^T & \mathrm{Id}_n \end{pmatrix}$$

Proof uses a completely different approach based on the fact that,

 $\rho(A^{\circ\alpha}) \leqslant \rho(A)^{\alpha} \quad \text{for } A \in \mathbb{P}_n, \alpha \geqslant 1,$

where $\rho(M) = \text{spectral radius of } M$.

- State-of-the-art: any power $\alpha \ge m + n 2$ works.
- Our result: *any power* ≥ 1 *works!* Thus, small powers may be safely used to regularize "dense" covariance/correlation matrices.

• Not chordal, yet: 1 is the biggest r-2 such that K_r or $K_r^{(1)} \subset G$.

Apoorva Khare, IISc and APRG, Bangalore

Preserving positivity according to trees, chordal graphs Non-chordal graphs; future work

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all $n \ge 3$, $\mathcal{H}_{C_n} = [1, \infty)$.

Preserving positivity according to trees, chordal graphs Non-chordal graphs; future work

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all $n \ge 3$, $\mathcal{H}_{C_n} = [1, \infty)$.

Remark: 1 is the biggest r-2 such that K_r or $K_r^{(1)} \subset C_n$.

Preserving positivity according to trees, chordal graphs Non-chordal graphs; future work

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all $n \ge 3$, $\mathcal{H}_{C_n} = [1, \infty)$.

Remark: 1 is the biggest r-2 such that K_r or $K_r^{(1)} \subset C_n$.

Question: For any graph G, is $\mathcal{H}_G = \mathbb{N} \cup [m_G - 2, \infty)$, where $r = m_G$ is the biggest integer such that K_r or $K_r^{(1)} \subset G$?

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all $n \ge 3$, $\mathcal{H}_{C_n} = [1, \infty)$.

Remark: 1 is the biggest r-2 such that K_r or $K_r^{(1)} \subset C_n$.

Question: For any graph G, is $\mathcal{H}_G = \mathbb{N} \cup [m_G - 2, \infty)$, where $r = m_G$ is the biggest integer such that K_r or $K_r^{(1)} \subset G$?

Coalescences: The coalescence of two graphs G_1, G_2 is any graph obtained from $G_1 \bigsqcup G_2$ by identifying a vertex from both of them.

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all $n \ge 3$, $\mathcal{H}_{C_n} = [1, \infty)$.

Remark: 1 is the biggest r-2 such that K_r or $K_r^{(1)} \subset C_n$.

Question: For any graph G, is $\mathcal{H}_G = \mathbb{N} \cup [m_G - 2, \infty)$, where $r = m_G$ is the biggest integer such that K_r or $K_r^{(1)} \subset G$?

Coalescences: The coalescence of two graphs G_1, G_2 is any graph obtained from $G_1 \bigsqcup G_2$ by identifying a vertex from both of them.

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Suppose G_1, \ldots, G_k are connected graphs with at least one edge each. Let G denote any coalescence of the G_i . Then x^{α} preserves positivity on \mathbb{P}_G if and only if $\alpha \ge 1$ and x^{α} preserves positivity on all \mathbb{P}_{G_i} .

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all $n \ge 3$, $\mathcal{H}_{C_n} = [1, \infty)$.

Remark: 1 is the biggest r-2 such that K_r or $K_r^{(1)} \subset C_n$.

Question: For any graph G, is $\mathcal{H}_G = \mathbb{N} \cup [m_G - 2, \infty)$, where $r = m_G$ is the biggest integer such that K_r or $K_r^{(1)} \subset G$?

Coalescences: The coalescence of two graphs G_1, G_2 is any graph obtained from $G_1 \bigsqcup G_2$ by identifying a vertex from both of them.

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Suppose G_1, \ldots, G_k are connected graphs with at least one edge each. Let G denote any coalescence of the G_i . Then x^{α} preserves positivity on \mathbb{P}_G if and only if $\alpha \ge 1$ and x^{α} preserves positivity on all \mathbb{P}_{G_i} . In particular, $CE(G) = \max(1, CE(G_1), \ldots, CE(G_k)).$

So far, we only considered matrices with nonnegative entries, and powers x^{α} .

So far, we only considered matrices with nonnegative entries, and powers $x^{\alpha}.$

However, we are often forced to work with 'powers of negative numbers' (even for $\mathbb{P}_G([0,\infty))$), as Schur complements can contain negative entries.

So far, we only considered matrices with nonnegative entries, and powers $x^{\alpha}.$

However, we are often forced to work with 'powers of negative numbers' (even for $\mathbb{P}_G([0,\infty))$), as Schur complements can contain negative entries.

Even and odd extensions of the power functions:

$$\phi_{\alpha}(x) := |x|^{\alpha}, \qquad \psi_{\alpha}(x) := \operatorname{sgn}(x)|x|^{\alpha}, \qquad \forall \ x \in \mathbb{R} \setminus \{0\},$$

and $\phi_{\alpha}(0) = \psi_{\alpha}(0) := 0.$

So far, we only considered matrices with nonnegative entries, and powers x^{α} . However, we are often forced to work with 'powers of negative numbers' (even for $\mathbb{P}_G([0,\infty))$), as Schur complements can contain negative entries.

Even and odd extensions of the power functions:

$$\phi_{\alpha}(x) := |x|^{\alpha}, \qquad \psi_{\alpha}(x) := \operatorname{sgn}(x)|x|^{\alpha}, \qquad \forall \ x \in \mathbb{R} \setminus \{0\},$$

and $\phi_{\alpha}(0) = \psi_{\alpha}(0) := 0$. Also define:

$$\begin{aligned} \mathcal{H}_{G}^{\psi} &:= \{ \alpha \in \mathbb{R} : \psi_{\alpha}[A] \in \mathbb{P}_{G} \text{ for all } A \in \mathbb{P}_{G}(\mathbb{R}) \}, \\ \mathcal{H}_{G}^{\phi} &:= \{ \alpha \in \mathbb{R} : \phi_{\alpha}[A] \in \mathbb{P}_{G} \text{ for all } A \in \mathbb{P}_{G}(\mathbb{R}) \}. \end{aligned}$$

So far, we only considered matrices with nonnegative entries, and powers x^{α} . However, we are often forced to work with 'powers of negative numbers' (even for $\mathbb{P}_G([0,\infty))$), as Schur complements can contain negative entries.

Even and odd extensions of the power functions:

$$\phi_{\alpha}(x) := |x|^{\alpha}, \qquad \psi_{\alpha}(x) := \operatorname{sgn}(x)|x|^{\alpha}, \qquad \forall \ x \in \mathbb{R} \setminus \{0\},$$

and $\phi_{\alpha}(0) = \psi_{\alpha}(0) := 0$. Also define:

$$\begin{aligned} \mathcal{H}_{G}^{\psi} &:= \{ \alpha \in \mathbb{R} : \psi_{\alpha}[A] \in \mathbb{P}_{G} \text{ for all } A \in \mathbb{P}_{G}(\mathbb{R}) \}, \\ \mathcal{H}_{G}^{\phi} &:= \{ \alpha \in \mathbb{R} : \phi_{\alpha}[A] \in \mathbb{P}_{G} \text{ for all } A \in \mathbb{P}_{G}(\mathbb{R}) \}. \end{aligned}$$

• Our main result about chordal graphs extends to \mathcal{H}_G^{ψ} and \mathcal{H}_G^{ϕ} :

$$\begin{split} \mathcal{H}_G^{\psi} &= (-1+2\mathbb{N}) \cup [r-2,\infty), \\ \mathcal{H}_G^{\phi} &= 2\mathbb{N} \cup [r-2,\infty) \qquad (\text{e.g.}, \ G = K_r). \end{split}$$

So far, we only considered matrices with nonnegative entries, and powers x^{α} . However, we are often forced to work with 'powers of negative numbers' (even for $\mathbb{P}_G([0,\infty))$), as Schur complements can contain negative entries.

Even and odd extensions of the power functions:

$$\phi_{\alpha}(x) := |x|^{\alpha}, \qquad \psi_{\alpha}(x) := \operatorname{sgn}(x)|x|^{\alpha}, \qquad \forall \ x \in \mathbb{R} \setminus \{0\},$$

and $\phi_{\alpha}(0) = \psi_{\alpha}(0) := 0$. Also define:

$$\begin{aligned} \mathcal{H}_{G}^{\psi} &:= \{ \alpha \in \mathbb{R} : \psi_{\alpha}[A] \in \mathbb{P}_{G} \text{ for all } A \in \mathbb{P}_{G}(\mathbb{R}) \}, \\ \mathcal{H}_{G}^{\phi} &:= \{ \alpha \in \mathbb{R} : \phi_{\alpha}[A] \in \mathbb{P}_{G} \text{ for all } A \in \mathbb{P}_{G}(\mathbb{R}) \}. \end{aligned}$$

• Our main result about chordal graphs extends to \mathcal{H}_G^{ψ} and \mathcal{H}_G^{ϕ} :

$$\begin{aligned} \mathcal{H}_G^{\psi} &= (-1+2\mathbb{N}) \cup [r-2,\infty), \\ \mathcal{H}_G^{\phi} &= 2\mathbb{N} \cup [r-2,\infty) \qquad (\text{e.g.}, \ G = K_r). \end{aligned}$$

• We have $\mathcal{H}^{\psi}_{C_n} = [1, \infty)$. However, $\mathcal{H}^{\phi}_{C_4} = [2, \infty)$.

Apoorva Khare, IISc and APRG, Bangalore

Open problems

- **1** Does the same combinatorial rule for chordal/cycle graphs, also work for \mathbb{P}_G for all G? Namely, for all G, is $\mathcal{H}_G = \mathcal{H}_G^{\psi} = \mathbb{N} \cup [m_G 2, \infty)$, where $r = m_G$ is the biggest integer such that K_r or $K_r^{(1)} \subset G$?
- 2 For which graphs G is $CE^{\psi}(G) \neq CE^{\phi}(G)$?

Open problems

- **1** Does the same combinatorial rule for chordal/cycle graphs, also work for \mathbb{P}_G for all G? Namely, for all G, is $\mathcal{H}_G = \mathcal{H}_G^{\psi} = \mathbb{N} \cup [m_G 2, \infty)$, where $r = m_G$ is the biggest integer such that K_r or $K_r^{(1)} \subset G$?
- 2 For which graphs G is $CE^{\psi}(G) \neq CE^{\phi}(G)$?
- The critical exponent of a graph always appears to be an integer. Can this be proved directly (without computing the critical exponent explicitly)?
- Onnections to other (purely combinatorial) graph invariants?

Apoorva Khare, IISc and APRG, Bangalore

References

- Critical exponents of graphs, J. Combin. Theory Ser. A, 2016. (With D. Guillot and B. Rajaratnam.) (Extended abstract in FPSAC 2017.)
- [2] Preserving positivity for matrices with sparsity constraints, *Transactions of the AMS*, 2016. (With D. Guillot and B. Rajaratnam.)
- [3] On the sign patterns of entrywise positivity preservers in fixed dimension. *Amer. J. Math.*, in press. (With T. Tao.) (Extended abstract in FPSAC 2018.)
- [4] Matrix positivity preservers in fixed dimension. I, *Advances in Math.*, 2016. (With A. Belton, D. Guillot, and M. Putinar.) (Extended abstract in FPSAC 2016.)
- [5] Matrix analysis and preservers of (total) positivity, Lecture notes (website); forthcoming book – Cambridge Press + TRIM.