The critical exponent of a graph

Apoorva Khare
Indian Institute of Science, Bangalore

Working example

Definition. A real symmetric matrix A is positive (semidefinite) if all eigenvalues of A are $\geqslant 0$. (Equivalently, $u^{T} A u \geqslant 0$ for all vectors u.)

Notation. Given $N \geqslant 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in I. (Say $\left.\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R}).\right)$

Working example

Definition. A real symmetric matrix A is positive (semidefinite) if all eigenvalues of A are $\geqslant 0$. (Equivalently, $u^{T} A u \geqslant 0$ for all vectors u.)

Notation. Given $N \geqslant 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in I. (Say $\left.\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R}).\right)$

Example: Consider the following correlation matrices in \mathbb{P}_{5} :

$$
A=\left(\begin{array}{ccccc}
1 & 0.6 & 0 & 0 & 0 \\
0.6 & 1 & 0.5 & 0 & 0 \\
0 & 0.5 & 1 & 0.4 & 0 \\
0 & 0 & 0.4 & 1 & 0.3 \\
0 & 0 & 0 & 0.3 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
1 & 0.6 & 0.5 & 0 & 0 \\
0.6 & 1 & 0.6 & 0.5 & 0 \\
0.5 & 0.6 & 1 & 0.6 & 0.5 \\
0 & 0.5 & 0.6 & 1 & 0.6 \\
0 & 0 & 0.5 & 0.6 & 1
\end{array}\right) .
$$

(Pattern of zeros according to graphs: tree, banded graph.)

Working example

Definition. A real symmetric matrix A is positive (semidefinite) if all eigenvalues of A are $\geqslant 0$. (Equivalently, $u^{T} A u \geqslant 0$ for all vectors u.)

Notation. Given $N \geqslant 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in I. (Say $\left.\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R}).\right)$

Example: Consider the following correlation matrices in \mathbb{P}_{5} :

$$
A=\left(\begin{array}{ccccc}
1 & 0.6 & 0 & 0 & 0 \\
0.6 & 1 & 0.5 & 0 & 0 \\
0 & 0.5 & 1 & 0.4 & 0 \\
0 & 0 & 0.4 & 1 & 0.3 \\
0 & 0 & 0 & 0.3 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
1 & 0.6 & 0.5 & 0 & 0 \\
0.6 & 1 & 0.6 & 0.5 & 0 \\
0.5 & 0.6 & 1 & 0.6 & 0.5 \\
0 & 0.5 & 0.6 & 1 & 0.6 \\
0 & 0 & 0.5 & 0.6 & 1
\end{array}\right) .
$$

(Pattern of zeros according to graphs: tree, banded graph.)
Question: Raise each entry to the α th power for some $\alpha>0$. For which α are the resulting matrices positive?

Entrywise functions preserving positivity

More generally: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A]:=\left(f\left(a_{j k}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

Entrywise functions preserving positivity

More generally: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A]:=\left(f\left(a_{j k}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

- (Long history!) The Schur Product Theorem [Schur, Crelle 1911] says: if $A, B \in \mathbb{P}_{N}$, then so is $A \circ B:=\left(a_{i j} b_{i j}\right)$.
- As a consequence, $f(x)=x^{k}(k \geqslant 0)$ preserves positivity on \mathbb{P}_{N} for all N.

Entrywise functions preserving positivity

More generally: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A]:=\left(f\left(a_{j k}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

- (Long history!) The Schur Product Theorem [Schur, Crelle 1911] says: if $A, B \in \mathbb{P}_{N}$, then so is $A \circ B:=\left(a_{i j} b_{i j}\right)$.
- As a consequence, $f(x)=x^{k}(k \geqslant 0)$ preserves positivity on \mathbb{P}_{N} for all N.
- (Pólya-Szegö, 1925): Taking sums and limits, if $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ is convergent and $c_{k} \geqslant 0$, then $f[-]$ preserves positivity.

Entrywise functions preserving positivity

More generally: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A]:=\left(f\left(a_{j k}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

- (Long history!) The Schur Product Theorem [Schur, Crelle 1911] says: if $A, B \in \mathbb{P}_{N}$, then so is $A \circ B:=\left(a_{i j} b_{i j}\right)$.
- As a consequence, $f(x)=x^{k}(k \geqslant 0)$ preserves positivity on \mathbb{P}_{N} for all N.
- (Pólya-Szegö, 1925): Taking sums and limits, if $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ is convergent and $c_{k} \geqslant 0$, then $f[-]$ preserves positivity.

Question: Anything else?

Entrywise functions preserving positivity

More generally: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A]:=\left(f\left(a_{j k}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

- (Long history!) The Schur Product Theorem [Schur, Crelle 1911] says: if $A, B \in \mathbb{P}_{N}$, then so is $A \circ B:=\left(a_{i j} b_{i j}\right)$.
- As a consequence, $f(x)=x^{k}(k \geqslant 0)$ preserves positivity on \mathbb{P}_{N} for all N.
- (Pólya-Szegö, 1925): Taking sums and limits, if $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ is convergent and $c_{k} \geqslant 0$, then $f[-]$ preserves positivity.

Question: Anything else? Surprisingly, the answer is no, if we want to preserve positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose $I=(-1,1)$ and $f: I \rightarrow \mathbb{R}$. The following are equivalent:
(1) $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ and all N.
(2) f is analytic on I and has nonnegative Taylor coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on $(-1,1)$ with all $c_{k} \geqslant 0$.

Entrywise functions preserving positivity

More generally: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A]:=\left(f\left(a_{j k}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

- (Long history!) The Schur Product Theorem [Schur, Crelle 1911] says: if $A, B \in \mathbb{P}_{N}$, then so is $A \circ B:=\left(a_{i j} b_{i j}\right)$.
- As a consequence, $f(x)=x^{k}(k \geqslant 0)$ preserves positivity on \mathbb{P}_{N} for all N.
- (Pólya-Szegö, 1925): Taking sums and limits, if $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ is convergent and $c_{k} \geqslant 0$, then $f[-]$ preserves positivity.

Question: Anything else? Surprisingly, the answer is no, if we want to preserve positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose $I=(-1,1)$ and $f: I \rightarrow \mathbb{R}$. The following are equivalent:
(1) $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ and all N.
(2) f is analytic on I and has nonnegative Taylor coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on $(-1,1)$ with all $c_{k} \geqslant 0$.

Question: What about positivity preservers for fixed N ?

Entrywise functions preserving positivity

More generally: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A]:=\left(f\left(a_{j k}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

- (Long history!) The Schur Product Theorem [Schur, Crelle 1911] says: if $A, B \in \mathbb{P}_{N}$, then so is $A \circ B:=\left(a_{i j} b_{i j}\right)$.
- As a consequence, $f(x)=x^{k}(k \geqslant 0)$ preserves positivity on \mathbb{P}_{N} for all N.
- (Pólya-Szegö, 1925): Taking sums and limits, if $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ is convergent and $c_{k} \geqslant 0$, then $f[-]$ preserves positivity.

Question: Anything else? Surprisingly, the answer is no, if we want to preserve positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose $I=(-1,1)$ and $f: I \rightarrow \mathbb{R}$. The following are equivalent:
(1) $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ and all N.
(2) f is analytic on I and has nonnegative Taylor coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on $(-1,1)$ with all $c_{k} \geqslant 0$.

Question: What about positivity preservers for fixed N ? Open for $N \geqslant 3$.

Modern motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics. Let X_{1}, \ldots, X_{p} be a collection of random variables.

- Very large vectors: rare that all X_{j} depend strongly on each other.

Modern motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics. Let X_{1}, \ldots, X_{p} be a collection of random variables.

- Very large vectors: rare that all X_{j} depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.

Modern motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.
Let X_{1}, \ldots, X_{p} be a collection of random variables.

- Very large vectors: rare that all X_{j} depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.

Covariance matrix Σ captures the linear relationships:

$$
\Sigma=\left(\sigma_{j k}\right)_{j, k=1}^{p}=\left(\operatorname{Cov}\left(X_{j}, X_{k}\right)\right)_{j, k=1}^{p}
$$

Important problem: Estimate Σ given data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ of $\left(X_{1}, \ldots, X_{p}\right)$.

Modern motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.
Let X_{1}, \ldots, X_{p} be a collection of random variables.

- Very large vectors: rare that all X_{j} depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.

Covariance matrix Σ captures the linear relationships:

$$
\Sigma=\left(\sigma_{j k}\right)_{j, k=1}^{p}=\left(\operatorname{Cov}\left(X_{j}, X_{k}\right)\right)_{j, k=1}^{p}
$$

Important problem: Estimate Σ given data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ of $\left(X_{1}, \ldots, X_{p}\right)$.
Classical estimator (sample covariance matrix):

$$
S:=\frac{1}{n-1} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(x_{j}-\bar{x}\right)^{T} .
$$

In modern "large p, small n " problems, S is known to be a poor estimator of Σ :
(a) low rank, (b) no graphical structure.

Covariance estimation: thresholding

Modern approach: Convex optimization: obtain sparse estimate of Σ.

Covariance estimation: thresholding

Modern approach: Convex optimization: obtain sparse estimate of Σ.

- Works well for dimensions up to a few thousands.
- Does not scale to modern problems with $100,000+$ variables (disease detection, climate sciences, finance...).

Covariance estimation: thresholding

Modern approach: Convex optimization: obtain sparse estimate of Σ.

- Works well for dimensions up to a few thousands.
- Does not scale to modern problems with $100,000+$ variables (disease detection, climate sciences, finance...).

Alternate approach: Thresholding covariance matrices

$$
\text { True } \Sigma=\left(\begin{array}{ccc}
1 & 0.2 & 0 \\
0.2 & 1 & 0.5 \\
0 & 0.5 & 1
\end{array}\right) \quad S=\left(\begin{array}{ccc}
0.95 & 0.18 & 0.02 \\
0.18 & 0.96 & 0.47 \\
0.02 & 0.47 & 0.98
\end{array}\right)
$$

Covariance estimation: thresholding

Modern approach: Convex optimization: obtain sparse estimate of Σ.

- Works well for dimensions up to a few thousands.
- Does not scale to modern problems with $100,000+$ variables (disease detection, climate sciences, finance...).

Alternate approach: Thresholding covariance matrices

$$
\text { True } \Sigma=\left(\begin{array}{ccc}
1 & 0.2 & 0 \\
0.2 & 1 & 0.5 \\
0 & 0.5 & 1
\end{array}\right) \quad S=\left(\begin{array}{ccc}
0.95 & 0.18 & 0.02 \\
0.18 & 0.96 & 0.47 \\
0.02 & 0.47 & 0.98
\end{array}\right)
$$

Natural to threshold small entries (thinking the variables are independent):

$$
\tilde{S}=\left(\begin{array}{ccc}
0.95 & 0.18 & \mathbf{0} \\
0.18 & 0.96 & 0.47 \\
\mathbf{0} & 0.47 & 0.98
\end{array}\right)
$$

Covariance estimation: thresholding

Modern approach: Convex optimization: obtain sparse estimate of Σ.

- Works well for dimensions up to a few thousands.
- Does not scale to modern problems with $100,000+$ variables (disease detection, climate sciences, finance...).

Alternate approach: Thresholding covariance matrices

$$
\text { True } \Sigma=\left(\begin{array}{ccc}
1 & 0.2 & 0 \\
0.2 & 1 & 0.5 \\
0 & 0.5 & 1
\end{array}\right) \quad S=\left(\begin{array}{ccc}
0.95 & 0.18 & 0.02 \\
0.18 & 0.96 & 0.47 \\
0.02 & 0.47 & 0.98
\end{array}\right)
$$

Natural to threshold small entries (thinking the variables are independent):

$$
\tilde{S}=\left(\begin{array}{ccc}
0.95 & 0.18 & \mathbf{0} \\
0.18 & 0.96 & 0.47 \\
\mathbf{0} & 0.47 & 0.98
\end{array}\right)
$$

Significant if $p \sim 100,000+$ and $\sim 1 \%$ entries of true Σ are nonzero.

- Highly scalable. Analysis on the cone - no optimization.

Covariance estimation: thresholding

Modern approach: Convex optimization: obtain sparse estimate of Σ.

- Works well for dimensions up to a few thousands.
- Does not scale to modern problems with $100,000+$ variables (disease detection, climate sciences, finance...).

Alternate approach: Thresholding covariance matrices

$$
\text { True } \Sigma=\left(\begin{array}{ccc}
1 & 0.2 & 0 \\
0.2 & 1 & 0.5 \\
0 & 0.5 & 1
\end{array}\right) \quad S=\left(\begin{array}{ccc}
0.95 & 0.18 & 0.02 \\
0.18 & 0.96 & 0.47 \\
0.02 & 0.47 & 0.98
\end{array}\right)
$$

Natural to threshold small entries (thinking the variables are independent):

$$
\tilde{S}=\left(\begin{array}{ccc}
0.95 & 0.18 & \mathbf{0} \\
0.18 & 0.96 & 0.47 \\
\mathbf{0} & 0.47 & 0.98
\end{array}\right)
$$

Significant if $p \sim 100,000+$ and $\sim 1 \%$ entries of true Σ are nonzero.

- Highly scalable. Analysis on the cone - no optimization.
- Question: When does this procedure preserve positivity (psd)? (Critical for applications, since covariance matrices are psd.)

Preserving positivity in fixed dimension

Schoenberg, Rudin: functions $f[-]$ preserving positivity on \mathbb{P}_{N} for all N.

Preserving positivity in fixed dimension

Schoenberg, Rudin: functions $f[-]$ preserving positivity on \mathbb{P}_{N} for all N.
Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

Preserving positivity in fixed dimension

Schoenberg, Rudin: functions $f[-]$ preserving positivity on \mathbb{P}_{N} for all N.
Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, 1979). Open when $N \geqslant 3$.

Preserving positivity in fixed dimension

Schoenberg, Rudin: functions $f[-]$ preserving positivity on \mathbb{P}_{N} for all N.
Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, 1979). Open when $N \geqslant 3$.

Question: Given $N \geqslant 3$, find one polynomial $f(z)$ with a negative coefficient, such that for all $N \times N$ correlation matrices $A=\left(a_{j k}\right)$, $f[A]:=\left(f\left(a_{j k}\right)\right)$ is positive semidefinite.

Preserving positivity in fixed dimension

Schoenberg, Rudin: functions $f[-]$ preserving positivity on \mathbb{P}_{N} for all N.
Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, 1979). Open when $N \geqslant 3$.

Question: Given $N \geqslant 3$, find one polynomial $f(z)$ with a negative coefficient, such that for all $N \times N$ correlation matrices $A=\left(a_{j k}\right)$, $f[A]:=\left(f\left(a_{j k}\right)\right)$ is positive semidefinite.

- Open to date. (Necessary conditions: Loewner, Horn, Trans. AMS 1969.)

Preserving positivity in fixed dimension

Schoenberg, Rudin: functions $f[-]$ preserving positivity on \mathbb{P}_{N} for all N.
Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, 1979). Open when $N \geqslant 3$.

Question: Given $N \geqslant 3$, find one polynomial $f(z)$ with a negative coefficient, such that for all $N \times N$ correlation matrices $A=\left(a_{j k}\right)$, $f[A]:=\left(f\left(a_{j k}\right)\right)$ is positive semidefinite.

- Open to date. (Necessary conditions: Loewner, Horn, Trans. AMS 1969.)
- We answer this affirmatively (with characterizations) in recent work:
- [Belton, Guillot, K., Putinar], Adv. Math., 2016
- [K., Tao], Amer. J. Math., in press.

Preserving positivity in fixed dimension

Schoenberg, Rudin: functions $f[-]$ preserving positivity on \mathbb{P}_{N} for all N.
Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, 1979). Open when $N \geqslant 3$.

Question: Given $N \geqslant 3$, find one polynomial $f(z)$ with a negative coefficient, such that for all $N \times N$ correlation matrices $A=\left(a_{j k}\right)$, $f[A]:=\left(f\left(a_{j k}\right)\right)$ is positive semidefinite.

- Open to date. (Necessary conditions: Loewner, Horn, Trans. AMS 1969.)
- We answer this affirmatively (with characterizations) in recent work:
- [Belton, Guillot, K., Putinar], Adv. Math., 2016
- [K., Tao], Amer. J. Math., in press.
- Proofs crucially involve Schur polynomials, Schur positivity, ...

Preserving positivity in fixed dimension: refinements

Question: Which entrywise maps $f[-]$ preserve positivity on \mathbb{P}_{N} for fixed N ?

Preserving positivity in fixed dimension: refinements

Question: Which entrywise maps $f[-]$ preserve positivity on \mathbb{P}_{N} for fixed N ?
We revisit this problem with modern applications in mind. Applications motivate many new exciting problems.

Preserving positivity in fixed dimension: refinements

Question: Which entrywise maps $f[-]$ preserve positivity on \mathbb{P}_{N} for fixed N ?
We revisit this problem with modern applications in mind.
Applications motivate many new exciting problems.
(1) Imposing rank constraints: Rank corresponds to (known) sample size. [Guillot, K., Rajaratnam], Trans. AMS 2017.

Preserving positivity in fixed dimension: refinements

Question: Which entrywise maps $f[-]$ preserve positivity on \mathbb{P}_{N} for fixed N ?
We revisit this problem with modern applications in mind.
Applications motivate many new exciting problems.
(1) Imposing rank constraints: Rank corresponds to (known) sample size. [Guillot, K., Rajaratnam], Trans. AMS 2017.
(2) Imposing sparsity constraints: Sparsity pattern arises from domain-specific knowledge, e.g., underlying graphical model. [Guillot, K., Rajaratnam], Trans. AMS 2016.

Preserving positivity in fixed dimension: refinements

Question: Which entrywise maps $f[-]$ preserve positivity on \mathbb{P}_{N} for fixed N ?
We revisit this problem with modern applications in mind. Applications motivate many new exciting problems.
(1) Imposing rank constraints: Rank corresponds to (known) sample size. [Guillot, K., Rajaratnam], Trans. AMS 2017.
(2) Imposing sparsity constraints: Sparsity pattern arises from domain-specific knowledge, e.g., underlying graphical model. [Guillot, K., Rajaratnam], Trans. AMS 2016.
(3) Focus on distinguished families to get insights into general case. Well-studied family in theory and applications: power functions x^{α} where $\alpha>0$.

Preserving positivity in fixed dimension: refinements

Question: Which entrywise maps $f[-]$ preserve positivity on \mathbb{P}_{N} for fixed N ?
We revisit this problem with modern applications in mind. Applications motivate many new exciting problems.
(1) Imposing rank constraints: Rank corresponds to (known) sample size. [Guillot, K., Rajaratnam], Trans. AMS 2017.
(2) Imposing sparsity constraints: Sparsity pattern arises from domain-specific knowledge, e.g., underlying graphical model. [Guillot, K., Rajaratnam], Trans. AMS 2016.
(3) Focus on distinguished families to get insights into general case. Well-studied family in theory and applications: power functions x^{α} where $\alpha>0$.
(Applications use functions such as hard- and soft- thresholding, and powers, to regularize covariance matrices.)

Preserving positivity in fixed dimension: refinements

Question: Which entrywise maps $f[-]$ preserve positivity on \mathbb{P}_{N} for fixed N ?
We revisit this problem with modern applications in mind. Applications motivate many new exciting problems.
(1) Imposing rank constraints: Rank corresponds to (known) sample size. [Guillot, K., Rajaratnam], Trans. AMS 2017.
(2) Imposing sparsity constraints: Sparsity pattern arises from domain-specific knowledge, e.g., underlying graphical model. [Guillot, K., Rajaratnam], Trans. AMS 2016.
(3) Focus on distinguished families to get insights into general case. Well-studied family in theory and applications: power functions x^{α} where $\alpha>0$.
(Applications use functions such as hard- and soft- thresholding, and powers, to regularize covariance matrices.)

Question: Which power functions applied entrywise preserve positivity on \mathbb{P}_{N} for fixed N ? (Subject of this talk.)

Powers preserving positivity

Theorem (FitzGerald and Horn, J. Math. Anal. Appl. 1977)

Let $N \geqslant 2$. Then:
(1) $f(x)=x^{\alpha}$ preserves positivity on $\mathbb{P}_{N}((0, \infty))$ if $\alpha \geqslant N-2$.

Powers preserving positivity

Theorem (FitzGerald and Horn, J. Math. Anal. Appl. 1977)

Let $N \geqslant 2$. Then:
(1) $f(x)=x^{\alpha}$ preserves positivity on $\mathbb{P}_{N}((0, \infty))$ if $\alpha \geqslant N-2$.
(2) If $\alpha<N-2$ is not an integer, there is a matrix $A=\left(a_{j k}\right) \in \mathbb{P}_{N}((0, \infty))$ such that $A^{\circ \alpha}:=\left(a_{j k}^{\alpha}\right) \notin \mathbb{P}_{N}$.

Powers preserving positivity

Theorem (FitzGerald and Horn, J. Math. Anal. Appl. 1977)

Let $N \geqslant 2$. Then:
(1) $f(x)=x^{\alpha}$ preserves positivity on $\mathbb{P}_{N}((0, \infty))$ if $\alpha \geqslant N-2$.
(2) If $\alpha<N-2$ is not an integer, there is a matrix $A=\left(a_{j k}\right) \in \mathbb{P}_{N}((0, \infty))$ such that $A^{\circ \alpha}:=\left(a_{j k}^{\alpha}\right) \notin \mathbb{P}_{N}$.
In other words, $f(x)=x^{\alpha}$ preserves positivity on $\mathbb{P}_{N}((0, \infty))$ if and only if $\alpha \in \mathbb{N} \cup[N-2, \infty)$.

Critical exponent:

$N-2=$ smallest α_{0} such that $\alpha \geqslant \alpha_{0}$ preserves positivity.

Powers preserving positivity

Theorem (FitzGerald and Horn, J. Math. Anal. Appl. 1977)

Let $N \geqslant 2$. Then:
(1) $f(x)=x^{\alpha}$ preserves positivity on $\mathbb{P}_{N}((0, \infty))$ if $\alpha \geqslant N-2$.
(2) If $\alpha<N-2$ is not an integer, there is a matrix $A=\left(a_{j k}\right) \in \mathbb{P}_{N}((0, \infty))$ such that $A^{\circ \alpha}:=\left(a_{j k}^{\alpha}\right) \notin \mathbb{P}_{N}$.
In other words, $f(x)=x^{\alpha}$ preserves positivity on $\mathbb{P}_{N}((0, \infty))$ if and only if $\alpha \in \mathbb{N} \cup[N-2, \infty)$.

Critical exponent:
$N-2=$ smallest α_{0} such that $\alpha \geqslant \alpha_{0}$ preserves positivity.
So for $A=\left(\begin{array}{ccccc}1 & 0.6 & 0 & 0 & 0 \\ 0.6 & 1 & 0.5 & 0 & 0 \\ 0 & 0.5 & 1 & 0.4 & 0 \\ 0 & 0 & 0.4 & 1 & 0.3 \\ 0 & 0 & 0 & 0.3 & 1\end{array}\right)$, all powers $\alpha \in \mathbb{N} \cup[3, \infty)$ work.

FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn's result is easy, but ingenious.
Proved by induction on N. Clear for $N=2$. Now suppose it holds for $N-1$.

FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn's result is easy, but ingenious.
Proved by induction on N. Clear for $N=2$. Now suppose it holds for $N-1$.
Fix $\alpha \geqslant N-2$, and consider $A \in \mathbb{P}_{N}([0, \infty))$.

FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn's result is easy, but ingenious.
Proved by induction on N. Clear for $N=2$. Now suppose it holds for $N-1$.
Fix $\alpha \geqslant N-2$, and consider $A \in \mathbb{P}_{N}([0, \infty))$.

- If $a_{N N}=0$, done by induction.

FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn's result is easy, but ingenious.
Proved by induction on N. Clear for $N=2$. Now suppose it holds for $N-1$.
Fix $\alpha \geqslant N-2$, and consider $A \in \mathbb{P}_{N}([0, \infty))$.

- If $a_{N N}=0$, done by induction.
- Suppose $a_{N N} \neq 0$. Write $A=\left(\begin{array}{cc}B & \xi \\ \xi^{T} & a_{N N}\end{array}\right), \quad \zeta:=\frac{1}{\sqrt{a_{N N}}}\binom{\xi}{a_{N N}}$.

Note: $A-\zeta \zeta^{T}$ is psd, with last row and column zero.

FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn's result is easy, but ingenious.
Proved by induction on N. Clear for $N=2$. Now suppose it holds for $N-1$.
Fix $\alpha \geqslant N-2$, and consider $A \in \mathbb{P}_{N}([0, \infty))$.

- If $a_{N N}=0$, done by induction.
- Suppose $a_{N N} \neq 0$. Write $A=\left(\begin{array}{cc}B & \xi \\ \xi^{T} & a_{N N}\end{array}\right), \quad \zeta:=\frac{1}{\sqrt{a_{N N}}}\binom{\xi}{a_{N N}}$.

Note: $A-\zeta \zeta^{T}$ is psd, with last row and column zero.

- By elementary calculus, for any $x, y \geqslant 0$,

$$
x^{\alpha}-y^{\alpha}=\alpha \int_{0}^{1}(x-y)(\lambda x+(1-\lambda) y)^{\alpha-1} d \lambda .
$$

Therefore,

FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn's result is easy, but ingenious.
Proved by induction on N. Clear for $N=2$. Now suppose it holds for $N-1$.
Fix $\alpha \geqslant N-2$, and consider $A \in \mathbb{P}_{N}([0, \infty))$.

- If $a_{N N}=0$, done by induction.
- Suppose $a_{N N} \neq 0$. Write $A=\left(\begin{array}{cc}B & \xi \\ \xi^{T} & a_{N N}\end{array}\right), \quad \zeta:=\frac{1}{\sqrt{a_{N N}}}\binom{\xi}{a_{N N}}$.

Note: $A-\zeta \zeta^{T}$ is psd, with last row and column zero.

- By elementary calculus, for any $x, y \geqslant 0$,

$$
x^{\alpha}-y^{\alpha}=\alpha \int_{0}^{1}(x-y)(\lambda x+(1-\lambda) y)^{\alpha-1} d \lambda .
$$

Therefore, the following holds (entry by entry):

$$
A^{\circ \alpha}-\left(\zeta \zeta^{T}\right)^{\circ \alpha}=\alpha \int_{0}^{1}\left(A-\zeta \zeta^{T}\right) \circ\left(\lambda A+(1-\lambda) \zeta \zeta^{T}\right)^{\circ(\alpha-1)} d \lambda
$$

FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn's result is easy, but ingenious.
Proved by induction on N. Clear for $N=2$. Now suppose it holds for $N-1$.
Fix $\alpha \geqslant N-2$, and consider $A \in \mathbb{P}_{N}([0, \infty))$.

- If $a_{N N}=0$, done by induction.
- Suppose $a_{N N} \neq 0$. Write $A=\left(\begin{array}{cc}B & \xi \\ \xi^{T} & a_{N N}\end{array}\right), \quad \zeta:=\frac{1}{\sqrt{a_{N N}}}\binom{\xi}{a_{N N}}$.

Note: $A-\zeta \zeta^{T}$ is psd, with last row and column zero.

- By elementary calculus, for any $x, y \geqslant 0$,

$$
x^{\alpha}-y^{\alpha}=\alpha \int_{0}^{1}(x-y)(\lambda x+(1-\lambda) y)^{\alpha-1} d \lambda .
$$

Therefore, the following holds (entry by entry):

$$
A^{\circ \alpha}-\left(\zeta \zeta^{T}\right)^{\circ \alpha}=\alpha \int_{0}^{1}\left(A-\zeta \zeta^{T}\right) \circ\left(\lambda A+(1-\lambda) \zeta \zeta^{T}\right)^{\circ(\alpha-1)} d \lambda
$$

- The right-hand side is positive semidefinite by induction,

FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn's result is easy, but ingenious.
Proved by induction on N. Clear for $N=2$. Now suppose it holds for $N-1$.
Fix $\alpha \geqslant N-2$, and consider $A \in \mathbb{P}_{N}([0, \infty))$.

- If $a_{N N}=0$, done by induction.
- Suppose $a_{N N} \neq 0$. Write $A=\left(\begin{array}{cc}B & \xi \\ \xi^{T} & a_{N N}\end{array}\right), \quad \zeta:=\frac{1}{\sqrt{a_{N N}}}\binom{\xi}{a_{N N}}$.

Note: $A-\zeta \zeta^{T}$ is psd, with last row and column zero.

- By elementary calculus, for any $x, y \geqslant 0$,

$$
x^{\alpha}-y^{\alpha}=\alpha \int_{0}^{1}(x-y)(\lambda x+(1-\lambda) y)^{\alpha-1} d \lambda .
$$

Therefore, the following holds (entry by entry):

$$
A^{\circ \alpha}-\left(\zeta \zeta^{T}\right)^{\circ \alpha}=\alpha \int_{0}^{1}\left(A-\zeta \zeta^{T}\right) \circ\left(\lambda A+(1-\lambda) \zeta \zeta^{T}\right)^{\circ(\alpha-1)} d \lambda
$$

- The right-hand side is positive semidefinite by induction, hence so is the left-hand side. Thus $A^{\circ \alpha} \in \mathbb{P}_{N}$.

Matrices with structures of zeros: the cone \mathbb{P}_{G}

Refine the FitzGerald-Horn problem for matrices with zeros.

Matrices with structures of zeros: the cone \mathbb{P}_{G}

Refine the FitzGerald-Horn problem for matrices with zeros.
A graph $G=(V, E)$ is a set of vertices V and edges $E \subset V \times V$:

Matrices with structures of zeros: the cone \mathbb{P}_{G}

Refine the FitzGerald-Horn problem for matrices with zeros.
A graph $G=(V, E)$ is a set of vertices V and edges $E \subset V \times V$:

Given a graph $G=(V, E)$ with $V=\{1, \ldots, n\}$, define

$$
\mathbb{P}_{G}:=\left\{A \in \mathbb{P}_{n}: a_{j k}=0 \text { if }(j, k) \notin E \text { and } j \neq k\right\}
$$

Note: $a_{j k}$ can be zero if $(j, k) \in E$.
Example:

$$
\left(\begin{array}{llll}
* & * & 0 & * \\
* & * & * & 0 \\
0 & * & * & * \\
* & 0 & * & *
\end{array}\right)
$$

A first example: trees

Problem 1: Compute the set of powers preserving positivity for G :

$$
\mathcal{H}_{G}:=\left\{\alpha \geqslant 0: A^{\circ \alpha} \in \mathbb{P}_{G} \text { for all } A \in \mathbb{P}_{G}([0, \infty))\right\}
$$

$C E(G):=$ smallest α_{0} s.t. x^{α} preserves positivity on $\mathbb{P}_{G}, \forall \alpha \geqslant \alpha_{0}$.

A first example: trees

Problem 1: Compute the set of powers preserving positivity for G :

$$
\mathcal{H}_{G}:=\left\{\alpha \geqslant 0: A^{\circ \alpha} \in \mathbb{P}_{G} \text { for all } A \in \mathbb{P}_{G}([0, \infty))\right\}
$$

$$
C E(G):=\text { smallest } \alpha_{0} \text { s.t. } x^{\alpha} \text { preserves positivity on } \mathbb{P}_{G}, \forall \alpha \geqslant \alpha_{0}
$$

Problem 2: How does the structure of G relate to the set of powers preserving positivity? (FitzGerald-Horn studied the case $G=K_{n}$.)

A first example: trees

Problem 1: Compute the set of powers preserving positivity for G :

$$
\mathcal{H}_{G}:=\left\{\alpha \geqslant 0: A^{\circ \alpha} \in \mathbb{P}_{G} \text { for all } A \in \mathbb{P}_{G}([0, \infty))\right\}
$$

$$
C E(G):=\text { smallest } \alpha_{0} \text { s.t. } x^{\alpha} \text { preserves positivity on } \mathbb{P}_{G}, \forall \alpha \geqslant \alpha_{0}
$$

Problem 2: How does the structure of G relate to the set of powers preserving positivity? (FitzGerald-Horn studied the case $G=K_{n}$.)

Definition: A tree is a connected graph containing no cycles.

A first example: trees

Problem 1: Compute the set of powers preserving positivity for G :

$$
\mathcal{H}_{G}:=\left\{\alpha \geqslant 0: A^{\circ \alpha} \in \mathbb{P}_{G} \text { for all } A \in \mathbb{P}_{G}([0, \infty))\right\}
$$

$$
C E(G):=\text { smallest } \alpha_{0} \text { s.t. } x^{\alpha} \text { preserves positivity on } \mathbb{P}_{G}, \forall \alpha \geqslant \alpha_{0}
$$

Problem 2: How does the structure of G relate to the set of powers preserving positivity? (FitzGerald-Horn studied the case $G=K_{n}$.)

Definition: A tree is a connected graph containing no cycles.

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Let T be a tree with at least 3 vertices. Then $\mathcal{H}_{T}=[1, \infty)$.

Functions preserving positivity for trees

More generally, classify all functions preserving positivity for trees:

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Suppose $I=[0, R)$ and $f: I \rightarrow[0, \infty)$ with $f(0)=0$. Let \mathcal{T} be any collection of trees, at least one with $\geqslant 3$ vertices, and let A_{3} denote the path graph on 3 vertices. Then the following are equivalent:

Functions preserving positivity for trees

More generally, classify all functions preserving positivity for trees:

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Suppose $I=[0, R)$ and $f: I \rightarrow[0, \infty)$ with $f(0)=0$. Let \mathcal{T} be any collection of trees, at least one with $\geqslant 3$ vertices, and let A_{3} denote the path graph on 3 vertices. Then the following are equivalent:
(1) $f[A] \in \mathbb{P}_{T}$ for all trees $T \in \mathcal{T}$ and all matrices $A \in \mathbb{P}_{T}(I)$;
(2) $f[A] \in \mathbb{P}_{A_{3}}$ for every $A \in \mathbb{P}_{A_{3}}(I)$;

Functions preserving positivity for trees

More generally, classify all functions preserving positivity for trees:

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Suppose $I=[0, R)$ and $f: I \rightarrow[0, \infty)$ with $f(0)=0$. Let \mathcal{T} be any collection of trees, at least one with $\geqslant 3$ vertices, and let A_{3} denote the path graph on 3 vertices. Then the following are equivalent:
(1) $f[A] \in \mathbb{P}_{T}$ for all trees $T \in \mathcal{T}$ and all matrices $A \in \mathbb{P}_{T}(I)$;
(2) $f[A] \in \mathbb{P}_{A_{3}}$ for every $A \in \mathbb{P}_{A_{3}}(I)$;
(3) The function f satisfies: $f(\sqrt{x y})^{2} \leqslant f(x) f(y), \quad \forall x, y \in I$ and is superadditive on I, i.e.,

$$
f(x+y) \geqslant f(x)+f(y), \quad \forall x, y, x+y \in I
$$

Functions preserving positivity for trees

More generally, classify all functions preserving positivity for trees:

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Suppose $I=[0, R)$ and $f: I \rightarrow[0, \infty)$ with $f(0)=0$. Let \mathcal{T} be any collection of trees, at least one with $\geqslant 3$ vertices, and let A_{3} denote the path graph on 3 vertices. Then the following are equivalent:
(1) $f[A] \in \mathbb{P}_{T}$ for all trees $T \in \mathcal{T}$ and all matrices $A \in \mathbb{P}_{T}(I)$;
(2) $f[A] \in \mathbb{P}_{A_{3}}$ for every $A \in \mathbb{P}_{A_{3}}(I)$;
(3) The function f satisfies: $f(\sqrt{x y})^{2} \leqslant f(x) f(y), \quad \forall x, y \in I$ and is superadditive on I, i.e.,

$$
f(x+y) \geqslant f(x)+f(y), \quad \forall x, y, x+y \in I
$$

- First known characterization for non-complete graphs.

Functions preserving positivity for trees

More generally, classify all functions preserving positivity for trees:

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Suppose $I=[0, R)$ and $f: I \rightarrow[0, \infty)$ with $f(0)=0$. Let \mathcal{T} be any collection of trees, at least one with $\geqslant 3$ vertices, and let A_{3} denote the path graph on 3 vertices. Then the following are equivalent:
(1) $f[A] \in \mathbb{P}_{T}$ for all trees $T \in \mathcal{T}$ and all matrices $A \in \mathbb{P}_{T}(I)$;
(2) $f[A] \in \mathbb{P}_{A_{3}}$ for every $A \in \mathbb{P}_{A_{3}}(I)$;
(3) The function f satisfies: $f(\sqrt{x y})^{2} \leqslant f(x) f(y), \quad \forall x, y \in I$ and is superadditive on I, i.e.,

$$
f(x+y) \geqslant f(x)+f(y), \quad \forall x, y, x+y \in I
$$

- First known characterization for non-complete graphs.
- Characterization does not depend on the family \mathcal{T}.

Functions preserving positivity for trees (cont.)

$(\mathbf{1}) \Longrightarrow(2)$. Immediate.
$(\mathbf{2}) \Longrightarrow(3)$. Suppose $f[-]: \mathbb{P}_{A_{3}} \rightarrow \mathbb{P}_{A_{3}}$.
Then $f[-]: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$, proving the first condition in (3),

Functions preserving positivity for trees (cont.)

$(\mathbf{1}) \Longrightarrow(2)$. Immediate.
$(\mathbf{2}) \Longrightarrow(\mathbf{3})$. Suppose $f[-]: \mathbb{P}_{A_{3}} \rightarrow \mathbb{P}_{A_{3}}$.
Then $f[-]: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$, proving the first condition in (3),
and $\operatorname{det} f[M] \geqslant 0$ for $M=\left(\begin{array}{ccc}x & x & 0 \\ x & x+y & y \\ 0 & y & y\end{array}\right)$, proving $f(x+y) \geqslant f(x)+f(y)$.

Functions preserving positivity for trees (cont.)

$(\mathbf{1}) \Longrightarrow(2)$. Immediate.
$(\mathbf{2}) \Longrightarrow(\mathbf{3})$. Suppose $f[-]: \mathbb{P}_{A_{3}} \rightarrow \mathbb{P}_{A_{3}}$.
Then $f[-]: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$, proving the first condition in (3),
and $\operatorname{det} f[M] \geqslant 0$ for $M=\left(\begin{array}{ccc}x & x & 0 \\ x & x+y & y \\ 0 & y & y\end{array}\right)$, proving $f(x+y) \geqslant f(x)+f(y)$.
$(3) \Longrightarrow(1)$.
The proof uses induction on n, and Schur complements:

$$
\mathbf{M}:=\left(\begin{array}{ccccc}
& & & 0 \\
\mathbf{A}_{(n-1) \times(n-1)} & \vdots \\
& & & \\
& & & \\
\hline 0 & \cdots & 0 & a_{n-1, n} & a_{n-1, n}
\end{array}\right)
$$

Functions preserving positivity for trees (cont.)

$(\mathbf{3}) \Longrightarrow(\mathbf{1})$. Suppose f satisfies (3) and preserves \mathbb{P}_{G} for a tree on $n-1$ vertices. Let $G^{\prime}=G \cup\{(n-1, n)\}$.

Functions preserving positivity for trees (cont.)

$(\mathbf{3}) \Longrightarrow(\mathbf{1})$. Suppose f satisfies (3) and preserves \mathbb{P}_{G} for a tree on $n-1$ vertices. Let $G^{\prime}=G \cup\{(n-1, n)\}$.
Then for $M \in \mathbb{P}_{G^{\prime}}([0, R))$,

$$
M=\left(\begin{array}{cc}
A & b \mathbf{e}_{n-1} \\
b \mathbf{e}_{n-1}^{T} & c
\end{array}\right),
$$

with Schur complement $S_{M}:=A-\left(b^{2} / c\right) E_{n-1, n-1} \in \mathbb{P}_{G}([0, R))$.

Functions preserving positivity for trees (cont.)

$(\mathbf{3}) \Longrightarrow(\mathbf{1})$. Suppose f satisfies (3) and preserves \mathbb{P}_{G} for a tree on $n-1$ vertices. Let $G^{\prime}=G \cup\{(n-1, n)\}$.
Then for $M \in \mathbb{P}_{G^{\prime}}([0, R))$,

$$
M=\left(\begin{array}{cc}
A & b \mathbf{e}_{n-1} \\
b \mathbf{e}_{n-1}^{T} & c
\end{array}\right),
$$

with Schur complement $S_{M}:=A-\left(b^{2} / c\right) E_{n-1, n-1} \in \mathbb{P}_{G}([0, R))$.
Want to prove: $S_{f[M]}$ is positive semidefinite.

Functions preserving positivity for trees (cont.)

$(\mathbf{3}) \Longrightarrow(\mathbf{1})$. Suppose f satisfies (3) and preserves \mathbb{P}_{G} for a tree on $n-1$ vertices. Let $G^{\prime}=G \cup\{(n-1, n)\}$.
Then for $M \in \mathbb{P}_{G^{\prime}}([0, R))$,

$$
M=\left(\begin{array}{cc}
A & b \mathbf{e}_{n-1} \\
b \mathbf{e}_{n-1}^{T} & c
\end{array}\right),
$$

with Schur complement $S_{M}:=A-\left(b^{2} / c\right) E_{n-1, n-1} \in \mathbb{P}_{G}([0, R))$.
Want to prove: $S_{f[M]}$ is positive semidefinite.
Now $S_{f[M]}=f\left[S_{M}\right]+d E_{n-1, n-1}$, where

$$
d=f\left(a_{n-1, n-1}\right)-f(b)^{2} / f(c)-f\left(a_{n-1, n-1}-b^{2} / c\right)
$$

Functions preserving positivity for trees (cont.)

$(\mathbf{3}) \Longrightarrow(\mathbf{1})$. Suppose f satisfies (3) and preserves \mathbb{P}_{G} for a tree on $n-1$ vertices. Let $G^{\prime}=G \cup\{(n-1, n)\}$.
Then for $M \in \mathbb{P}_{G^{\prime}}([0, R))$,

$$
M=\left(\begin{array}{cc}
A & b \mathbf{e}_{n-1} \\
b \mathbf{e}_{n-1}^{T} & c
\end{array}\right),
$$

with Schur complement $S_{M}:=A-\left(b^{2} / c\right) E_{n-1, n-1} \in \mathbb{P}_{G}([0, R))$.
Want to prove: $S_{f[M]}$ is positive semidefinite.
Now $S_{f[M]}=f\left[S_{M}\right]+d E_{n-1, n-1}$, where

$$
\begin{aligned}
d & =f\left(a_{n-1, n-1}\right)-f(b)^{2} / f(c)-f\left(a_{n-1, n-1}-b^{2} / c\right) \\
& \geqslant f\left(a_{n-1, n-1}\right)-f\left(b^{2} / c\right)-f\left(a_{n-1, n-1}-b^{2} / c\right)
\end{aligned}
$$

Functions preserving positivity for trees (cont.)

$(\mathbf{3}) \Longrightarrow(\mathbf{1})$. Suppose f satisfies (3) and preserves \mathbb{P}_{G} for a tree on $n-1$ vertices. Let $G^{\prime}=G \cup\{(n-1, n)\}$.
Then for $M \in \mathbb{P}_{G^{\prime}}([0, R))$,

$$
M=\left(\begin{array}{cc}
A & b \mathbf{e}_{n-1} \\
b \mathbf{e}_{n-1}^{T} & c
\end{array}\right),
$$

with Schur complement $S_{M}:=A-\left(b^{2} / c\right) E_{n-1, n-1} \in \mathbb{P}_{G}([0, R))$.
Want to prove: $S_{f[M]}$ is positive semidefinite.
Now $S_{f[M]}=f\left[S_{M}\right]+d E_{n-1, n-1}$, where

$$
\begin{aligned}
d & =f\left(a_{n-1, n-1}\right)-f(b)^{2} / f(c)-f\left(a_{n-1, n-1}-b^{2} / c\right) \\
& \geqslant f\left(a_{n-1, n-1}\right)-f\left(b^{2} / c\right)-f\left(a_{n-1, n-1}-b^{2} / c\right) \\
& \geqslant 0
\end{aligned}
$$

General graphs

$C E(T)=1$ for all trees T, and $C E\left(K_{n}\right)=n-2$.

What is $C E(G)$ in general?

General graphs

$C E(T)=1$ for all trees T, and $C E\left(K_{n}\right)=n-2$.

What is $C E(G)$ in general? Some preliminary observations:
(1) If G has n vertices then $\alpha \geqslant n-2$ preserves positivity.

General graphs

$C E(T)=1$ for all trees T, and $C E\left(K_{n}\right)=n-2$.

What is $C E(G)$ in general? Some preliminary observations:
(1) If G has n vertices then $\alpha \geqslant n-2$ preserves positivity.
(2) If G contains K_{m} as an induced subgraph, then $\alpha<m-2$ does not preserve positivity $(\alpha \notin \mathbb{N})$.

General graphs

$C E(T)=1$ for all trees T, and $C E\left(K_{n}\right)=n-2$.

What is $C E(G)$ in general? Some preliminary observations:
(1) If G has n vertices then $\alpha \geqslant n-2$ preserves positivity.
(2) If G contains K_{m} as an induced subgraph, then $\alpha<m-2$ does not preserve positivity $(\alpha \notin \mathbb{N})$.

Consequence: $m-2 \leqslant C E(G) \leqslant n-2$.

Question: Is the critical exponent of G equal to the clique number minus 2?

General graphs

$C E(T)=1$ for all trees T, and $C E\left(K_{n}\right)=n-2$.
What is $C E(G)$ in general? Some preliminary observations:
(1) If G has n vertices then $\alpha \geqslant n-2$ preserves positivity.
(2) If G contains K_{m} as an induced subgraph, then $\alpha<m-2$ does not preserve positivity $(\alpha \notin \mathbb{N})$.

Consequence: $m-2 \leqslant C E(G) \leqslant n-2$.

Question: Is the critical exponent of G equal to the clique number minus 2?
Answer: No. Counterexample: $G=K_{4}^{(1)}$ (K_{4} minus a chord).

$K_{4}^{(1)}$

Clearly, the maximal clique is K_{3}. However, we can show that $\mathcal{H}_{K_{4}^{(1)}}=\{1\} \cup[2, \infty)$.

Chordal graphs

Trees are graphs with no cycles of length $n \geqslant 3$.

Chordal graphs

Trees are graphs with no cycles of length $n \geqslant 3$.
Definition: A graph is chordal if it does not contain an induced cycle of length $n \geqslant 4$.

Chordal graphs

Trees are graphs with no cycles of length $n \geqslant 3$.
Definition: A graph is chordal if it does not contain an induced cycle of length $n \geqslant 4$.

Chordal

Not Chordal

Chordal graphs

Trees are graphs with no cycles of length $n \geqslant 3$.
Definition: A graph is chordal if it does not contain an induced cycle of length $n \geqslant 4$.

Chordal

Not Chordal

- Names: Triangulated, decomposable, rigid circuit graphs...

Chordal graphs

Trees are graphs with no cycles of length $n \geqslant 3$.
Definition: A graph is chordal if it does not contain an induced cycle of length $n \geqslant 4$.

Chordal

Not Chordal

- Names: Triangulated, decomposable, rigid circuit graphs...
- Examples: Trees, complete graphs, triangulation of any graph, Apollonian graphs, band graphs, split graphs, etc.

Chordal graphs

Trees are graphs with no cycles of length $n \geqslant 3$.
Definition: A graph is chordal if it does not contain an induced cycle of length $n \geqslant 4$.

Chordal

Not Chordal

- Names: Triangulated, decomposable, rigid circuit graphs...
- Examples: Trees, complete graphs, triangulation of any graph, Apollonian graphs, band graphs, split graphs, etc.
- Occur in many applications: positive definite completion problems, maximum likelihood estimation in graphical models, Gaussian elimination, etc.

Chordal graphs

Theorem

The following are equivalent:
(1) G is chordal (i.e., every cycle of length 4 or more has a chord);
(2) G can be obtained by pasting complete graphs along complete subgraphs.

Example:

Chordal graphs

Theorem

The following are equivalent:
(1) G is chordal (i.e., every cycle of length 4 or more has a chord);
(2) G can be obtained by pasting complete graphs along complete subgraphs.

Example:

Chordal graphs

Theorem

The following are equivalent:
(1) G is chordal (i.e., every cycle of length 4 or more has a chord);
(2) G can be obtained by pasting complete graphs along complete subgraphs.

Example:

Chordal graphs

Theorem

The following are equivalent:
(1) G is chordal (i.e., every cycle of length 4 or more has a chord);
(2) G can be obtained by pasting complete graphs along complete subgraphs.

Example:

Chordal graphs

Theorem

The following are equivalent:
(1) G is chordal (i.e., every cycle of length 4 or more has a chord);
(2) G can be obtained by pasting complete graphs along complete subgraphs.

Example:

Chordal graphs

Theorem

The following are equivalent:
(1) G is chordal (i.e., every cycle of length 4 or more has a chord);
(2) G can be obtained by pasting complete graphs along complete subgraphs.

Example:

Chordal graphs

Theorem

The following are equivalent:
(1) G is chordal (i.e., every cycle of length 4 or more has a chord);
(2) G can be obtained by pasting complete graphs along complete subgraphs.

Example:

Chordal graphs

Theorem

The following are equivalent:
(1) G is chordal (i.e., every cycle of length 4 or more has a chord);
(2) G can be obtained by pasting complete graphs along complete subgraphs.

Example:

Chordal graphs

Theorem

The following are equivalent:
(1) G is chordal (i.e., every cycle of length 4 or more has a chord);
(2) G can be obtained by pasting complete graphs along complete subgraphs.

Example:

Chordal graphs

Theorem

The following are equivalent:
(1) G is chordal (i.e., every cycle of length 4 or more has a chord);
(2) G can be obtained by pasting complete graphs along complete subgraphs.

Example:

Chordal graphs

Theorem

The following are equivalent:
(1) G is chordal (i.e., every cycle of length 4 or more has a chord);
(2) G can be obtained by pasting complete graphs along complete subgraphs.

Example:

Powers preserving positivity for chordal graphs

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be any chordal graph with at least 2 vertices and let $r=m_{G}$ be the largest integer such that either K_{r} or $K_{r}^{(1)}$ is an induced subgraph of G. Then

$$
\mathcal{H}_{G}=\mathbb{N} \cup\left[m_{G}-2, \infty\right)
$$

In particular, $C E(G)=m_{G}-2$.

- m_{G} is a novel graph invariant emerging out of positivity.

Powers preserving positivity for chordal graphs

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be any chordal graph with at least 2 vertices and let $r=m_{G}$ be the largest integer such that either K_{r} or $K_{r}^{(1)}$ is an induced subgraph of G. Then

$$
\mathcal{H}_{G}=\mathbb{N} \cup\left[m_{G}-2, \infty\right)
$$

In particular, $C E(G)=m_{G}-2$.

- m_{G} is a novel graph invariant emerging out of positivity.

Example 1. Band graphs with bandwidth $d: C E(G)=\min (d, n-2)$.

Powers preserving positivity for chordal graphs

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be any chordal graph with at least 2 vertices and let $r=m_{G}$ be the largest integer such that either K_{r} or $K_{r}^{(1)}$ is an induced subgraph of G. Then

$$
\mathcal{H}_{G}=\mathbb{N} \cup\left[m_{G}-2, \infty\right)
$$

In particular, $C E(G)=m_{G}-2$.

- m_{G} is a novel graph invariant emerging out of positivity.

Example 1. Band graphs with bandwidth $d: C E(G)=\min (d, n-2)$.
So for $B=\left(\begin{array}{ccccc}1 & 0.6 & 0.5 & 0 & 0 \\ 0.6 & 1 & 0.6 & 0.5 & 0 \\ 0.5 & 0.6 & 1 & 0.6 & 0.5 \\ 0 & 0.5 & 0.6 & 1 & 0.6 \\ 0 & 0 & 0.5 & 0.6 & 1\end{array}\right)$, all powers $\geqslant 2=d$ work.

Critical exponents of well-known chordal graphs

Example 2: Complete graph K_{r} or almost complete graph $K_{r}^{(1)}$: $C E(G)=r-2$.

Example 3: Trees: $C E(G)=1$. (So for the working example A, all powers $\geqslant 1$ work.)

Critical exponents of well-known chordal graphs

Example 2: Complete graph K_{r} or almost complete graph $K_{r}^{(1)}$:
$C E(G)=r-2$.
Example 3: Trees: $C E(G)=1$. (So for the working example A, all powers $\geqslant 1$ work.)

Example 4: A split graph is a graph that can be partitioned as a clique C and an independent set (no adjacent vertices) $V \backslash C$.

Source: Wikipedia.

As a consequence of the theorem, for every split graph G,

$$
C E(G)=\max (|C|-2, \max \operatorname{deg}(V \backslash C))
$$

Critical exponents of well-known chordal graphs

Example 2: Complete graph K_{r} or almost complete graph $K_{r}^{(1)}$: $C E(G)=r-2$.

Example 3: Trees: $C E(G)=1$. (So for the working example A, all powers $\geqslant 1$ work.)

Example 4: A split graph is a graph that can be partitioned as a clique C and an independent set (no adjacent vertices) $V \backslash C$.

Source: Wikipedia.

As a consequence of the theorem, for every split graph G,

$$
C E(G)=\max (|C|-2, \max \operatorname{deg}(V \backslash C))
$$

Example 5: Apollonian graphs are obtained by recursively subdividing triangles.
l.e., maximal planar graphs.
$C E(G)=\min (3,|V|-2)$.

Source: Wikipedia.

Powers preserving positivity for chordal graphs

Some key ideas for the proof:

Powers preserving positivity for chordal graphs

Some key ideas for the proof:
(1) Matrix decompositions: If (A, S, B) is a decomposition of G, every $M \in \mathbb{P}_{G}$ decomposes as $M=M_{1}+M_{2}$ with $M_{1} \in \mathbb{P}_{A \cup S}$ and $M_{2} \in \mathbb{P}_{B \cup S}:$

Powers preserving positivity for chordal graphs

Some key ideas for the proof:
(1) Matrix decompositions: If (A, S, B) is a decomposition of G, every $M \in \mathbb{P}_{G}$ decomposes as $M=M_{1}+M_{2}$ with $M_{1} \in \mathbb{P}_{A \cup S}$ and $M_{2} \in \mathbb{P}_{B \cup S}:$

$$
\left(\begin{array}{ccc}
M_{A A} & M_{A S} & 0 \\
M_{A S}^{T} & M_{S S} & M_{S B} \\
0 & M_{S B}^{T} & M_{B B}
\end{array}\right)=\left(\begin{array}{ccc}
M_{A A} & M_{A S} & 0 \\
M_{A S}^{T} & M_{A S}^{T} M_{A A}^{-1} M_{A S} & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & M_{S S}-M_{A S}^{T} M_{A A}^{-1} M_{A S} & M_{S B} \\
0 & M_{S B}^{T} & M_{B B}
\end{array}\right) .
$$

Powers preserving positivity for chordal graphs

Some key ideas for the proof:
(1) Matrix decompositions: If (A, S, B) is a decomposition of G, every $M \in \mathbb{P}_{G}$ decomposes as $M=M_{1}+M_{2}$ with $M_{1} \in \mathbb{P}_{A \cup S}$ and $M_{2} \in \mathbb{P}_{B \cup S}:$

$$
\left(\begin{array}{ccc}
M_{A A} & M_{A S} & 0 \\
M_{A S}^{T} & M_{S S} & M_{S B} \\
0 & M_{S B}^{T} & M_{B B}
\end{array}\right)=\left(\begin{array}{ccc}
M_{A A} & M_{A S} & 0 \\
M_{A S}^{T} & M_{A S}^{T} M_{A A}^{-1} M_{A S} & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & M_{S S}-M_{A S}^{T} M_{A A}^{-1} M_{A S} & M_{S B} \\
0 & M_{S B}^{T} & M_{B B}
\end{array}\right) .
$$

(2) Loewner super-additive functions on \mathbb{P}_{n} or on rank one matrices:

$$
f[A+B]-(f[A]+f[B]) \in \mathbb{P}_{n} \quad \forall A, B
$$

Loewner super-additive powers (under rank constraints) classified in [Guillot, K., Rajaratnam], J. Math. Anal. Appl., 2015.

Powers preserving positivity for chordal graphs

Some key ideas for the proof:
(1) Matrix decompositions: If (A, S, B) is a decomposition of G, every $M \in \mathbb{P}_{G}$ decomposes as $M=M_{1}+M_{2}$ with $M_{1} \in \mathbb{P}_{A \cup S}$ and $M_{2} \in \mathbb{P}_{B \cup S}:$

$$
\left(\begin{array}{ccc}
M_{A A} & M_{A S} & 0 \\
M_{A S}^{T} & M_{S S} & M_{S B} \\
0 & M_{S B}^{T} & M_{B B}
\end{array}\right)=\left(\begin{array}{ccc}
M_{A A} & M_{A S} & 0 \\
M_{A S}^{T} & M_{A S}^{T} M_{A A}^{-1} M_{A S} & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & M_{S S}-M_{A S}^{T} M_{A A}^{-1} M_{A S} & M_{S B} \\
0 & M_{S B}^{T} & M_{B B}
\end{array}\right) .
$$

(2) Loewner super-additive functions on \mathbb{P}_{n} or on rank one matrices:

$$
f[A+B]-(f[A]+f[B]) \in \mathbb{P}_{n} \quad \forall A, B
$$

Loewner super-additive powers (under rank constraints) classified in [Guillot, K., Rajaratnam], J. Math. Anal. Appl., 2015.
(3) Induction and properties of chordal graphs (decomposition, ordering of cliques, etc.).

Functions preserving positivity for chordal graphs

Using the above ideas, we show more strongly, a sufficient condition for general functions preserving positivity on \mathbb{P}_{G} :

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be a chordal graph with a perfect elimination ordering of its vertices $\left\{v_{1}, \ldots, v_{n}\right\}$. For all $1 \leqslant k \leqslant n$, let G_{k} denote the induced subgraph formed by $\left\{v_{1}, \ldots, v_{k}\right\}$.

Functions preserving positivity for chordal graphs

Using the above ideas, we show more strongly, a sufficient condition for general functions preserving positivity on \mathbb{P}_{G} :

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be a chordal graph with a perfect elimination ordering of its vertices $\left\{v_{1}, \ldots, v_{n}\right\}$. For all $1 \leqslant k \leqslant n$, let G_{k} denote the induced subgraph formed by $\left\{v_{1}, \ldots, v_{k}\right\}$. Define

$$
c:=\text { clique number of } G, \quad d:=\max _{k=1, \ldots, n} \operatorname{deg}_{G_{k}}\left(v_{k}\right) .
$$

Functions preserving positivity for chordal graphs

Using the above ideas, we show more strongly, a sufficient condition for general functions preserving positivity on \mathbb{P}_{G} :

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be a chordal graph with a perfect elimination ordering of its vertices $\left\{v_{1}, \ldots, v_{n}\right\}$. For all $1 \leqslant k \leqslant n$, let G_{k} denote the induced subgraph formed by $\left\{v_{1}, \ldots, v_{k}\right\}$. Define

$$
c:=\text { clique number of } G, \quad d:=\max _{k=1, \ldots, n} \operatorname{deg}_{G_{k}}\left(v_{k}\right) .
$$

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is any function such that:
(1) $f[-]$ preserves positivity on rank one matrices in $\mathbb{P}_{c}(\mathbb{R})$; and
(2) $f\left[M+u u^{T}\right] \geqslant f[M]+f\left[u u^{T}\right]$ for all $M \in \mathbb{P}_{d}(\mathbb{R})$ and $u \in \mathbb{R}^{d}$.

Functions preserving positivity for chordal graphs

Using the above ideas, we show more strongly, a sufficient condition for general functions preserving positivity on \mathbb{P}_{G} :

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be a chordal graph with a perfect elimination ordering of its vertices $\left\{v_{1}, \ldots, v_{n}\right\}$. For all $1 \leqslant k \leqslant n$, let G_{k} denote the induced subgraph formed by $\left\{v_{1}, \ldots, v_{k}\right\}$. Define

$$
c:=\text { clique number of } G, \quad d:=\max _{k=1, \ldots, n} \operatorname{deg}_{G_{k}}\left(v_{k}\right)
$$

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is any function such that:
(1) $f[-]$ preserves positivity on rank one matrices in $\mathbb{P}_{c}(\mathbb{R})$; and
(2) $f\left[M+u u^{T}\right] \geqslant f[M]+f\left[u u^{T}\right]$ for all $M \in \mathbb{P}_{d}(\mathbb{R})$ and $u \in \mathbb{R}^{d}$.

Then $f[-]$ preserves positivity on $\mathbb{P}_{G}(\mathbb{R})$.

Functions preserving positivity for chordal graphs

Using the above ideas, we show more strongly, a sufficient condition for general functions preserving positivity on \mathbb{P}_{G} :

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be a chordal graph with a perfect elimination ordering of its vertices $\left\{v_{1}, \ldots, v_{n}\right\}$. For all $1 \leqslant k \leqslant n$, let G_{k} denote the induced subgraph formed by $\left\{v_{1}, \ldots, v_{k}\right\}$. Define

$$
c:=\text { clique number of } G, \quad d:=\max _{k=1, \ldots, n} \operatorname{deg}_{G_{k}}\left(v_{k}\right)
$$

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is any function such that:
(1) $f[-]$ preserves positivity on rank one matrices in $\mathbb{P}_{c}(\mathbb{R})$; and
(2) $f\left[M+u u^{T}\right] \geqslant f[M]+f\left[u u^{T}\right]$ for all $M \in \mathbb{P}_{d}(\mathbb{R})$ and $u \in \mathbb{R}^{d}$.

Then $f[-]$ preserves positivity on $\mathbb{P}_{G}(\mathbb{R})$.

If $d=1$ then $c=2$ and G is a tree, and the converse is also true. [G.-K.-R., Trans. AMS 2016]

Non-chordal graphs

Working examples A, B showed: we improve somewhat on state-of-the-art.

Non-chordal graphs

Working examples A, B showed: we improve somewhat on state-of-the-art. Our results sometimes improve significantly on state-of-the-art:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)
If G is a connected bipartite graph with $n \geqslant 3$ vertices, then $\mathcal{H}_{G}=[1, \infty)$.

$$
\mathbb{P}_{G} \quad \ni \quad\left(\begin{array}{cc}
\operatorname{Id}_{m} & B \\
B^{T} & \operatorname{Id}_{n}
\end{array}\right)
$$

Non-chordal graphs

Working examples A, B showed: we improve somewhat on state-of-the-art. Our results sometimes improve significantly on state-of-the-art:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

If G is a connected bipartite graph with $n \geqslant 3$ vertices, then $\mathcal{H}_{G}=[1, \infty)$.

$$
\mathbb{P}_{G} \quad \ni \quad\left(\begin{array}{cc}
\operatorname{Id}_{m} & B \\
B^{T} & \operatorname{Id}_{n}
\end{array}\right)
$$

Proof uses a completely different approach based on the fact that,

$$
\rho\left(A^{\circ \alpha}\right) \leqslant \rho(A)^{\alpha} \quad \text { for } A \in \mathbb{P}_{n}, \alpha \geqslant 1
$$

where $\rho(M)=$ spectral radius of M.

Non-chordal graphs

Working examples A, B showed: we improve somewhat on state-of-the-art. Our results sometimes improve significantly on state-of-the-art:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

If G is a connected bipartite graph with $n \geqslant 3$ vertices, then $\mathcal{H}_{G}=[1, \infty)$.

$$
\mathbb{P}_{G} \quad \ni \quad\left(\begin{array}{cc}
\operatorname{Id}_{m} & B \\
B^{T} & \operatorname{Id}_{n}
\end{array}\right)
$$

Proof uses a completely different approach based on the fact that,

$$
\rho\left(A^{\circ \alpha}\right) \leqslant \rho(A)^{\alpha} \quad \text { for } A \in \mathbb{P}_{n}, \alpha \geqslant 1,
$$

where $\rho(M)=$ spectral radius of M.

- State-of-the-art: any power $\alpha \geqslant m+n-2$ works.
- Our result: any power $\geqslant 1$ works!

Non-chordal graphs

Working examples A, B showed: we improve somewhat on state-of-the-art. Our results sometimes improve significantly on state-of-the-art:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

If G is a connected bipartite graph with $n \geqslant 3$ vertices, then $\mathcal{H}_{G}=[1, \infty)$.

$$
\mathbb{P}_{G} \quad \ni \quad\left(\begin{array}{cc}
\operatorname{Id}_{m} & B \\
B^{T} & \operatorname{Id}_{n}
\end{array}\right)
$$

Proof uses a completely different approach based on the fact that,

$$
\rho\left(A^{\circ \alpha}\right) \leqslant \rho(A)^{\alpha} \quad \text { for } A \in \mathbb{P}_{n}, \alpha \geqslant 1,
$$

where $\rho(M)=$ spectral radius of M.

- State-of-the-art: any power $\alpha \geqslant m+n-2$ works.
- Our result: any power $\geqslant 1$ works! Thus, small powers may be safely used to regularize "dense" covariance/correlation matrices.

Non-chordal graphs

Working examples A, B showed: we improve somewhat on state-of-the-art. Our results sometimes improve significantly on state-of-the-art:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

If G is a connected bipartite graph with $n \geqslant 3$ vertices, then $\mathcal{H}_{G}=[1, \infty)$.

$$
\mathbb{P}_{G} \quad \ni \quad\left(\begin{array}{cc}
\operatorname{Id}_{m} & B \\
B^{T} & \operatorname{Id}_{n}
\end{array}\right)
$$

Proof uses a completely different approach based on the fact that,

$$
\rho\left(A^{\circ \alpha}\right) \leqslant \rho(A)^{\alpha} \quad \text { for } A \in \mathbb{P}_{n}, \alpha \geqslant 1
$$

where $\rho(M)=$ spectral radius of M.

- State-of-the-art: any power $\alpha \geqslant m+n-2$ works.
- Our result: any power $\geqslant 1$ works! Thus, small powers may be safely used to regularize "dense" covariance/correlation matrices.
- Not chordal, yet: 1 is the biggest $r-2$ such that K_{r} or $K_{r}^{(1)} \subset G$.

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all $n \geqslant 3, \mathcal{H}_{C_{n}}=[1, \infty)$.

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)
For all $n \geqslant 3, \mathcal{H}_{C_{n}}=[1, \infty)$.
Remark: 1 is the biggest $r-2$ such that K_{r} or $K_{r}^{(1)} \subset C_{n}$.

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all $n \geqslant 3, \mathcal{H}_{C_{n}}=[1, \infty)$.
Remark: 1 is the biggest $r-2$ such that K_{r} or $K_{r}^{(1)} \subset C_{n}$.
Question: For any graph G, is $\mathcal{H}_{G}=\mathbb{N} \cup\left[m_{G}-2, \infty\right)$, where $r=m_{G}$ is the biggest integer such that K_{r} or $K_{r}^{(1)} \subset G$?

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all $n \geqslant 3, \mathcal{H}_{C_{n}}=[1, \infty)$.
Remark: 1 is the biggest $r-2$ such that K_{r} or $K_{r}^{(1)} \subset C_{n}$.
Question: For any graph G, is $\mathcal{H}_{G}=\mathbb{N} \cup\left[m_{G}-2, \infty\right)$, where $r=m_{G}$ is the biggest integer such that K_{r} or $K_{r}^{(1)} \subset G$?

Coalescences: The coalescence of two graphs G_{1}, G_{2} is any graph obtained from $G_{1} \bigsqcup G_{2}$ by identifying a vertex from both of them.

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all $n \geqslant 3, \mathcal{H}_{C_{n}}=[1, \infty)$.
Remark: 1 is the biggest $r-2$ such that K_{r} or $K_{r}^{(1)} \subset C_{n}$.
Question: For any graph G, is $\mathcal{H}_{G}=\mathbb{N} \cup\left[m_{G}-2, \infty\right)$, where $r=m_{G}$ is the biggest integer such that K_{r} or $K_{r}^{(1)} \subset G$?

Coalescences: The coalescence of two graphs G_{1}, G_{2} is any graph obtained from $G_{1} \bigsqcup G_{2}$ by identifying a vertex from both of them.

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Suppose G_{1}, \ldots, G_{k} are connected graphs with at least one edge each. Let G denote any coalescence of the G_{i}.
Then x^{α} preserves positivity on \mathbb{P}_{G} if and only if $\alpha \geqslant 1$ and x^{α} preserves positivity on all $\mathbb{P}_{G_{i}}$.

Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all $n \geqslant 3, \mathcal{H}_{C_{n}}=[1, \infty)$.
Remark: 1 is the biggest $r-2$ such that K_{r} or $K_{r}^{(1)} \subset C_{n}$.
Question: For any graph G, is $\mathcal{H}_{G}=\mathbb{N} \cup\left[m_{G}-2, \infty\right)$, where $r=m_{G}$ is the biggest integer such that K_{r} or $K_{r}^{(1)} \subset G$?

Coalescences: The coalescence of two graphs G_{1}, G_{2} is any graph obtained from $G_{1} \bigsqcup G_{2}$ by identifying a vertex from both of them.

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Suppose G_{1}, \ldots, G_{k} are connected graphs with at least one edge each. Let G denote any coalescence of the G_{i}.
Then x^{α} preserves positivity on \mathbb{P}_{G} if and only if $\alpha \geqslant 1$ and x^{α} preserves positivity on all $\mathbb{P}_{G_{i}}$. In particular,

$$
C E(G)=\max \left(1, C E\left(G_{1}\right), \ldots, C E\left(G_{k}\right)\right)
$$

Matrices containing negative entries

So far, we only considered matrices with nonnegative entries, and powers x^{α}.

Matrices containing negative entries

So far, we only considered matrices with nonnegative entries, and powers x^{α}. However, we are often forced to work with 'powers of negative numbers' (even for $\mathbb{P}_{G}([0, \infty))$), as Schur complements can contain negative entries.

Matrices containing negative entries

So far, we only considered matrices with nonnegative entries, and powers x^{α}. However, we are often forced to work with 'powers of negative numbers' (even for $\mathbb{P}_{G}([0, \infty))$), as Schur complements can contain negative entries.

Even and odd extensions of the power functions:

$$
\phi_{\alpha}(x):=|x|^{\alpha}, \quad \psi_{\alpha}(x):=\operatorname{sgn}(x)|x|^{\alpha}, \quad \forall x \in \mathbb{R} \backslash\{0\}
$$

and $\phi_{\alpha}(0)=\psi_{\alpha}(0):=0$.

Matrices containing negative entries

So far, we only considered matrices with nonnegative entries, and powers x^{α}. However, we are often forced to work with 'powers of negative numbers' (even for $\mathbb{P}_{G}([0, \infty))$), as Schur complements can contain negative entries.

Even and odd extensions of the power functions:

$$
\phi_{\alpha}(x):=|x|^{\alpha}, \quad \psi_{\alpha}(x):=\operatorname{sgn}(x)|x|^{\alpha}, \quad \forall x \in \mathbb{R} \backslash\{0\}
$$

and $\phi_{\alpha}(0)=\psi_{\alpha}(0):=0$. Also define:

$$
\begin{aligned}
& \mathcal{H}_{G}^{\psi}:=\left\{\alpha \in \mathbb{R}: \psi_{\alpha}[A] \in \mathbb{P}_{G} \text { for all } A \in \mathbb{P}_{G}(\mathbb{R})\right\} \\
& \mathcal{H}_{G}^{\phi}:=\left\{\alpha \in \mathbb{R}: \phi_{\alpha}[A] \in \mathbb{P}_{G} \text { for all } A \in \mathbb{P}_{G}(\mathbb{R})\right\}
\end{aligned}
$$

Matrices containing negative entries

So far, we only considered matrices with nonnegative entries, and powers x^{α}.
However, we are often forced to work with 'powers of negative numbers' (even for $\mathbb{P}_{G}([0, \infty))$), as Schur complements can contain negative entries.

Even and odd extensions of the power functions:

$$
\phi_{\alpha}(x):=|x|^{\alpha}, \quad \psi_{\alpha}(x):=\operatorname{sgn}(x)|x|^{\alpha}, \quad \forall x \in \mathbb{R} \backslash\{0\}
$$

and $\phi_{\alpha}(0)=\psi_{\alpha}(0):=0$. Also define:

$$
\begin{aligned}
& \mathcal{H}_{G}^{\psi}:=\left\{\alpha \in \mathbb{R}: \psi_{\alpha}[A] \in \mathbb{P}_{G} \text { for all } A \in \mathbb{P}_{G}(\mathbb{R})\right\} \\
& \mathcal{H}_{G}^{\phi}:=\left\{\alpha \in \mathbb{R}: \phi_{\alpha}[A] \in \mathbb{P}_{G} \text { for all } A \in \mathbb{P}_{G}(\mathbb{R})\right\}
\end{aligned}
$$

- Our main result about chordal graphs extends to \mathcal{H}_{G}^{ψ} and \mathcal{H}_{G}^{ϕ} :

$$
\begin{aligned}
& \mathcal{H}_{G}^{\psi}=(-1+2 \mathbb{N}) \cup[r-2, \infty), \\
& \left.\mathcal{H}_{G}^{\phi}=2 \mathbb{N} \cup[r-2, \infty) \quad \text { (e.g., } G=K_{r}\right)
\end{aligned}
$$

Matrices containing negative entries

So far, we only considered matrices with nonnegative entries, and powers x^{α}.
However, we are often forced to work with 'powers of negative numbers' (even for $\mathbb{P}_{G}([0, \infty))$), as Schur complements can contain negative entries.

Even and odd extensions of the power functions:

$$
\phi_{\alpha}(x):=|x|^{\alpha}, \quad \psi_{\alpha}(x):=\operatorname{sgn}(x)|x|^{\alpha}, \quad \forall x \in \mathbb{R} \backslash\{0\}
$$

and $\phi_{\alpha}(0)=\psi_{\alpha}(0):=0$. Also define:

$$
\begin{aligned}
& \mathcal{H}_{G}^{\psi}:=\left\{\alpha \in \mathbb{R}: \psi_{\alpha}[A] \in \mathbb{P}_{G} \text { for all } A \in \mathbb{P}_{G}(\mathbb{R})\right\} \\
& \mathcal{H}_{G}^{\phi}:=\left\{\alpha \in \mathbb{R}: \phi_{\alpha}[A] \in \mathbb{P}_{G} \text { for all } A \in \mathbb{P}_{G}(\mathbb{R})\right\}
\end{aligned}
$$

- Our main result about chordal graphs extends to \mathcal{H}_{G}^{ψ} and \mathcal{H}_{G}^{ϕ} :

$$
\begin{aligned}
& \mathcal{H}_{G}^{\psi}=(-1+2 \mathbb{N}) \cup[r-2, \infty), \\
& \left.\mathcal{H}_{G}^{\phi}=2 \mathbb{N} \cup[r-2, \infty) \quad \text { (e.g., } G=K_{r}\right)
\end{aligned}
$$

- We have $\mathcal{H}_{C_{n}}^{\psi}=[1, \infty)$. However, $\mathcal{H}_{C_{4}}^{\phi}=[2, \infty)$.

Open problems

(1) Does the same combinatorial rule for chordal/cycle graphs, also work for \mathbb{P}_{G} for all G ? Namely, for all G, is $\mathcal{H}_{G}=\mathcal{H}_{G}^{\psi}=\mathbb{N} \cup\left[m_{G}-2, \infty\right)$, where $r=m_{G}$ is the biggest integer such that K_{r} or $K_{r}^{(1)} \subset G$?
(2) For which graphs G is $C E^{\psi}(G) \neq C E^{\phi}(G)$?

Open problems

(1) Does the same combinatorial rule for chordal/cycle graphs, also work for \mathbb{P}_{G} for all G ? Namely, for all G, is $\mathcal{H}_{G}=\mathcal{H}_{G}^{\psi}=\mathbb{N} \cup\left[m_{G}-2, \infty\right)$, where $r=m_{G}$ is the biggest integer such that K_{r} or $K_{r}^{(1)} \subset G$?
(2) For which graphs G is $C E^{\psi}(G) \neq C E^{\phi}(G)$?
(3) The critical exponent of a graph always appears to be an integer. Can this be proved directly (without computing the critical exponent explicitly)?
(4) Connections to other (purely combinatorial) graph invariants?

International Linear Algebra Society

References

[1] Critical exponents of graphs,
J. Combin. Theory Ser. A, 2016. (With D. Guillot and B. Rajaratnam.) (Extended abstract in FPSAC 2017.)
[2] Preserving positivity for matrices with sparsity constraints, Transactions of the AMS, 2016. (With D. Guillot and B. Rajaratnam.)
[3] On the sign patterns of entrywise positivity preservers in fixed dimension. Amer. J. Math., in press. (With T. Tao.) (Extended abstract in FPSAC 2018.)
[4] Matrix positivity preservers in fixed dimension. I, Advances in Math., 2016. (With A. Belton, D. Guillot, and M. Putinar.) (Extended abstract in FPSAC 2016.)
[5] Matrix analysis and preservers of (total) positivity, Lecture notes (website); forthcoming book - Cambridge Press + TRIM.

