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Powers and functions preserving positivity
Powers and sparsity constraints

Classical results and modern motivations
Entrywise powers in fixed dimension

Working example

Definition. A real symmetric matrix A is positive (semidefinite) if all
eigenvalues of A are > 0. (Equivalently, uTAu > 0 for all vectors u.)

Notation. Given N > 1 and I ⊂ R, let PN (I) denote the N ×N positive
(semidefinite) matrices, with entries in I. (Say PN = PN (R).)

Example: Consider the following correlation matrices in P5:

A =


1 0.6 0 0 0

0.6 1 0.5 0 0
0 0.5 1 0.4 0
0 0 0.4 1 0.3
0 0 0 0.3 1

 , B =


1 0.6 0.5 0 0

0.6 1 0.6 0.5 0
0.5 0.6 1 0.6 0.5
0 0.5 0.6 1 0.6
0 0 0.5 0.6 1

 .

(Pattern of zeros according to graphs: tree, banded graph.)

Question: Raise each entry to the αth power for some α > 0.
For which α are the resulting matrices positive?
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Entrywise functions preserving positivity
More generally: For which functions f : I → R is it true that

f [A] := (f(ajk)) ∈ PN for all A ∈ PN (I)?

(Long history!) The Schur Product Theorem [Schur, Crelle 1911] says: if
A,B ∈ PN , then so is A ◦B := (aijbij).

As a consequence, f(x) = xk (k > 0) preserves positivity on PN for all N .

(Pólya–Szegö, 1925): Taking sums and limits, if f(x) =
∑∞
k=0 ckx

k is
convergent and ck > 0, then f [−] preserves positivity.

Question: Anything else? Surprisingly, the answer is no, if we want to preserve
positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (−1, 1) and f : I → R. The following are equivalent:

1 f [A] ∈ PN for all A ∈ PN (I) and all N .

2 f is analytic on I and has nonnegative Taylor coefficients.
In other words, f(x) =

∑∞
k=0 ckx

k on (−1, 1) with all ck > 0.

Question: What about positivity preservers for fixed N? Open for N > 3.
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Modern motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.

Let X1, . . . , Xp be a collection of random variables.

Very large vectors: rare that all Xj depend strongly on each other.

Many variables are (conditionally) independent; not used in prediction.

Covariance matrix Σ captures the linear relationships:

Σ = (σjk)pj,k=1 = (Cov(Xj , Xk))pj,k=1

Important problem: Estimate Σ given data x1, . . . , xn ∈ Rp of (X1, . . . , Xp).

Classical estimator (sample covariance matrix):

S :=
1

n− 1

n∑
j=1

(xj − x)(xj − x)T .

In modern “large p, small n” problems, S is known to be a poor estimator of Σ:
(a) low rank, (b) no graphical structure.
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Covariance estimation: thresholding
Modern approach: Convex optimization: obtain sparse estimate of Σ.

Works well for dimensions up to a few thousands.

Does not scale to modern problems with 100, 000+ variables (disease
detection, climate sciences, finance. . . ).

Alternate approach: Thresholding covariance matrices

True Σ =

(
1 0.2 0
0.2 1 0.5
0 0.5 1

)
S =

(
0.95 0.18 0.02
0.18 0.96 0.47
0.02 0.47 0.98

)

Natural to threshold small entries (thinking the variables are independent):

S̃ =

(
0.95 0.18 0
0.18 0.96 0.47
0 0.47 0.98

)

Significant if p ∼ 100, 000+ and ∼ 1% entries of true Σ are nonzero.

Highly scalable. Analysis on the cone – no optimization.

Question: When does this procedure preserve positivity (psd)?
(Critical for applications, since covariance matrices are psd.)
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Preserving positivity in fixed dimension

Schoenberg, Rudin: functions f [−] preserving positivity on PN for all N .

Preserving positivity for fixed N :

Natural refinement of original problem of Schoenberg.

In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.

Known for N = 2 (Vasudeva, 1979). Open when N > 3.

Question: Given N > 3, find one polynomial f(z) with a negative coefficient,
such that for all N ×N correlation matrices A = (ajk),
f [A] := (f(ajk)) is positive semidefinite.

Open to date. (Necessary conditions: Loewner, Horn, Trans. AMS 1969.)

We answer this affirmatively (with characterizations) in recent work:

[Belton, Guillot, K., Putinar], Adv. Math., 2016
[K., Tao], Amer. J. Math., in press.

Proofs crucially involve Schur polynomials, Schur positivity, . . .
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Known for N = 2 (Vasudeva, 1979). Open when N > 3.

Question: Given N > 3, find one polynomial f(z) with a negative coefficient,
such that for all N ×N correlation matrices A = (ajk),
f [A] := (f(ajk)) is positive semidefinite.

Open to date. (Necessary conditions: Loewner, Horn, Trans. AMS 1969.)

We answer this affirmatively (with characterizations) in recent work:

[Belton, Guillot, K., Putinar], Adv. Math., 2016
[K., Tao], Amer. J. Math., in press.

Proofs crucially involve Schur polynomials, Schur positivity, . . .
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Preserving positivity in fixed dimension: refinements
Question: Which entrywise maps f [−] preserve positivity on PN for fixed N?

We revisit this problem with modern applications in mind.
Applications motivate many new exciting problems.

1 Imposing rank constraints: Rank corresponds to (known) sample size.
[Guillot, K., Rajaratnam], Trans. AMS 2017.

2 Imposing sparsity constraints: Sparsity pattern arises from
domain-specific knowledge, e.g., underlying graphical model.
[Guillot, K., Rajaratnam], Trans. AMS 2016.

3 Focus on distinguished families to get insights into general case.
Well-studied family in theory and applications:
power functions xα where α > 0.
(Applications use functions such as hard- and soft- thresholding, and
powers, to regularize covariance matrices.)

Question: Which power functions applied entrywise preserve positivity on
PN for fixed N? (Subject of this talk.)
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Powers preserving positivity

Theorem (FitzGerald and Horn, J. Math. Anal. Appl. 1977)

Let N > 2. Then:

1 f(x) = xα preserves positivity on PN ((0,∞)) if α > N − 2.

2 If α < N − 2 is not an integer, there is a matrix A = (ajk) ∈ PN ((0,∞))
such that A◦α := (aαjk) 6∈ PN .

In other words, f(x) = xα preserves positivity on PN ((0,∞)) if and only if
α ∈ N ∪ [N − 2,∞).

Critical exponent:
N − 2 = smallest α0 such that α > α0 preserves positivity.

So for A =


1 0.6 0 0 0

0.6 1 0.5 0 0
0 0.5 1 0.4 0
0 0 0.4 1 0.3
0 0 0 0.3 1

 , all powers α ∈ N ∪ [3,∞) work.

Can we do better?
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FitzGerald and Horn’s result (Sketch of proof)
The proof of FitzGerald and Horn’s result is easy, but ingenious.

Proved by induction on N . Clear for N = 2. Now suppose it holds for N − 1.

Fix α > N − 2, and consider A ∈ PN ([0,∞)).

If aNN = 0, done by induction.

Suppose aNN 6= 0. Write A =

(
B ξ
ξT aNN

)
, ζ :=

1√
aNN

(
ξ

aNN

)
.

Note: A− ζζT is psd, with last row and column zero.

By elementary calculus, for any x, y > 0,

xα − yα = α

∫ 1

0

(x− y)(λx+ (1− λ)y)α−1 dλ.

Therefore, the following holds (entry by entry):

A◦α − (ζζT )◦α = α

∫ 1

0

(A− ζζT ) ◦ (λA+ (1− λ)ζζT )◦(α−1) dλ.

The right-hand side is positive semidefinite by induction,
hence so is the left-hand side. Thus A◦α ∈ PN .
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Preserving positivity according to trees, chordal graphs
Non-chordal graphs; future work

Matrices with structures of zeros: the cone PG

Refine the FitzGerald–Horn problem for matrices with zeros.

A graph G = (V,E) is a set of vertices V and edges E ⊂ V × V :

Given a graph G = (V,E) with V = {1, . . . , n}, define
PG := {A ∈ Pn : ajk = 0 if (j, k) 6∈ E and j 6= k}.

Note: ajk can be zero if (j, k) ∈ E.

Example: 
∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ 0 ∗ ∗
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Preserving positivity according to trees, chordal graphs
Non-chordal graphs; future work

A first example: trees
Problem 1: Compute the set of powers preserving positivity for G:

HG := {α > 0 : A◦α ∈ PG for all A ∈ PG([0,∞))}
CE(G) := smallest α0 s.t. xα preserves positivity on PG, ∀α > α0.

Problem 2: How does the structure of G relate to the set of powers preserving
positivity? (FitzGerald–Horn studied the case G = Kn.)

Definition: A tree is a connected graph containing no cycles.

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Let T be a tree with at least 3 vertices. Then HT = [1,∞).
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Functions preserving positivity for trees

More generally, classify all functions preserving positivity for trees:

Theorem (Guillot, K., Rajaratnam, Trans. AMS 2016)

Suppose I = [0, R) and f : I → [0,∞) with f(0) = 0. Let T be any collection
of trees, at least one with > 3 vertices, and let A3 denote the path graph on 3
vertices. Then the following are equivalent:

1 f [A] ∈ PT for all trees T ∈ T and all matrices A ∈ PT (I);

2 f [A] ∈ PA3 for every A ∈ PA3(I);

3 The function f satisfies: f(
√
xy)2 6 f(x)f(y), ∀x, y ∈ I

and is superadditive on I, i.e.,
f(x+ y) > f(x) + f(y), ∀x, y, x+ y ∈ I.

First known characterization for non-complete graphs.

Characterization does not depend on the family T .
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Functions preserving positivity for trees (cont.)

(1) =⇒ (2). Immediate.

(2) =⇒ (3). Suppose f [−] : PA3 → PA3 .
Then f [−] : P2 → P2, proving the first condition in (3),

and det f [M ] > 0 for M =

x x 0
x x+ y y
0 y y

 , proving f(x+ y) > f(x) + f(y).

(3) =⇒ (1).
The proof uses induction on n, and Schur complements:
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Functions preserving positivity for trees (cont.)

(3) =⇒ (1). Suppose f satisfies (3) and preserves PG for a tree on n− 1
vertices. Let G′ = G ∪ {(n− 1, n)}.

Then for M ∈ PG′([0, R)),

M =

(
A ben−1

beTn−1 c

)
,

with Schur complement SM := A− (b2/c)En−1,n−1 ∈ PG([0, R)).

Want to prove: Sf [M ] is positive semidefinite.

Now Sf [M ] = f [SM ] + dEn−1,n−1, where

d = f(an−1,n−1)− f(b)2/f(c)− f(an−1,n−1 − b2/c)
> f(an−1,n−1)− f(b2/c)− f(an−1,n−1 − b2/c)
> 0.
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General graphs

CE(T ) = 1 for all trees T, and CE(Kn) = n− 2.

What is CE(G) in general?

Some preliminary observations:

1 If G has n vertices then α > n− 2 preserves positivity.

2 If G contains Km as an induced subgraph, then α < m− 2 does not
preserve positivity (α 6∈ N).

Consequence: m− 2 6 CE(G) 6 n− 2.

Question: Is the critical exponent of G equal to the clique number minus 2?

Answer: No. Counterexample: G = K
(1)
4 (K4 minus a chord).

Clearly, the maximal clique is K3. However,
we can show that H

K
(1)
4

= {1} ∪ [2,∞).
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Chordal graphs

Trees are graphs with no cycles of length n > 3.

Definition: A graph is chordal if it does not contain an induced cycle of
length n > 4.

Chordal Not Chordal

Names: Triangulated, decomposable, rigid circuit graphs. . .

Examples: Trees, complete graphs, triangulation of any graph, Apollonian
graphs, band graphs, split graphs, etc.

Occur in many applications: positive definite completion problems,
maximum likelihood estimation in graphical models, Gaussian elimination,
etc.
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Chordal graphs

Theorem

The following are equivalent:

1 G is chordal (i.e., every cycle of length 4 or more has a chord);

2 G can be obtained by pasting complete graphs along complete subgraphs.

Example:
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Powers preserving positivity for chordal graphs

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be any chordal graph with at least 2 vertices and let r = mG be the
largest integer such that either Kr or K(1)

r is an induced subgraph of G. Then

HG = N ∪ [mG − 2,∞).

In particular, CE(G) = mG − 2.

mG is a novel graph invariant emerging out of positivity.

Example 1. Band graphs with bandwidth d: CE(G) = min(d, n− 2).

So for B =


1 0.6 0.5 0 0

0.6 1 0.6 0.5 0
0.5 0.6 1 0.6 0.5
0 0.5 0.6 1 0.6
0 0 0.5 0.6 1

 , all powers > 2 = d work.

Apoorva Khare, IISc and APRG, Bangalore 18 / 26
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Critical exponents of well-known chordal graphs
Example 2: Complete graph Kr or almost complete graph K(1)

r :
CE(G) = r − 2.

Example 3: Trees: CE(G) = 1.
(So for the working example A, all powers > 1 work.)

Example 4: A split graph is a graph that can be partitioned as a clique C and
an independent set (no adjacent vertices) V \ C.

Source: Wikipedia.

As a consequence of the theorem, for every split graph G,
CE(G) = max(|C| − 2,max deg(V \ C)).

Example 5: Apollonian graphs are obtained
by recursively subdividing triangles.
I.e., maximal planar graphs.
CE(G) = min(3, |V | − 2).

Source: Wikipedia.
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Powers preserving positivity for chordal graphs

Some key ideas for the proof:

1 Matrix decompositions: If (A,S,B) is a decomposition of G, every
M ∈ PG decomposes as M = M1 +M2 with M1 ∈ PA∪S and
M2 ∈ PB∪S :MAA MAS 0

MT
AS MSS MSB

0 MT
SB MBB

 =

MAA MAS 0
MT
AS MT

ASM
−1
AAMAS 0

0 0 0

+

0 0 0
0 MSS −MT

ASM
−1
AAMAS MSB

0 MT
SB MBB

 .

2 Loewner super-additive functions on Pn or on rank one matrices:

f [A+B]− (f [A] + f [B]) ∈ Pn ∀A,B.

Loewner super-additive powers (under rank constraints) classified in
[Guillot, K., Rajaratnam], J. Math. Anal. Appl., 2015.

3 Induction and properties of chordal graphs (decomposition, ordering of
cliques, etc.).

Apoorva Khare, IISc and APRG, Bangalore 20 / 26
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Functions preserving positivity for chordal graphs

Using the above ideas, we show more strongly, a sufficient condition for
general functions preserving positivity on PG:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Let G be a chordal graph with a perfect elimination ordering of its vertices
{v1, . . . , vn}. For all 1 6 k 6 n, let Gk denote the induced subgraph formed by
{v1, . . . , vk}.

Define
c := clique number of G, d := max

k=1,...,n
degGk

(vk).

Suppose f : R→ R is any function such that:

1 f [−] preserves positivity on rank one matrices in Pc(R); and

2 f [M + uuT ] > f [M ] + f [uuT ] for all M ∈ Pd(R) and u ∈ Rd.
Then f [−] preserves positivity on PG(R).

If d = 1 then c = 2 and G is a tree, and the converse is also true.
[G.-K.-R., Trans. AMS 2016]
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Non-chordal graphs
Working examples A,B showed: we improve somewhat on state-of-the-art.

Our results sometimes improve significantly on state-of-the-art:

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

If G is a connected bipartite graph with n > 3 vertices, then HG = [1,∞).

PG 3
(

Idm B
BT Idn

)
.

Proof uses a completely different approach based on the fact that,

ρ(A◦α) 6 ρ(A)α for A ∈ Pn, α > 1,

where ρ(M) = spectral radius of M .

State-of-the-art: any power α > m+ n− 2 works.
Our result: any power > 1 works! Thus, small powers may be safely used
to regularize “dense” covariance/correlation matrices.

Not chordal, yet: 1 is the biggest r − 2 such that Kr or K(1)
r ⊂ G.

Apoorva Khare, IISc and APRG, Bangalore 22 / 26
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Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all n > 3, HCn = [1,∞).

Remark: 1 is the biggest r − 2 such that Kr or K(1)
r ⊂ Cn.

Question: For any graph G, is HG = N ∪ [mG − 2,∞), where r = mG is the
biggest integer such that Kr or K(1)

r ⊂ G?

Coalescences: The coalescence of two graphs G1, G2 is any graph obtained
from G1

⊔
G2 by identifying a vertex from both of them.

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

Suppose G1, . . . , Gk are connected graphs with at least one edge each. Let G
denote any coalescence of the Gi.
Then xα preserves positivity on PG if and only if α > 1 and xα preserves
positivity on all PGi . In particular,

CE(G) = max(1, CE(G1), . . . , CE(Gk)).

Apoorva Khare, IISc and APRG, Bangalore 23 / 26
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Non-chordal graphs (cont.)

Theorem (Guillot, K., Rajaratnam, J. Combin. Theory Ser. A 2016)

For all n > 3, HCn = [1,∞).

Remark: 1 is the biggest r − 2 such that Kr or K(1)
r ⊂ Cn.

Question: For any graph G, is HG = N ∪ [mG − 2,∞), where r = mG is the
biggest integer such that Kr or K(1)

r ⊂ G?

Coalescences: The coalescence of two graphs G1, G2 is any graph obtained
from G1

⊔
G2 by identifying a vertex from both of them.
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Matrices containing negative entries
So far, we only considered matrices with nonnegative entries, and powers xα.

However, we are often forced to work with ‘powers of negative numbers’
(even for PG([0,∞))), as Schur complements can contain negative entries.

Even and odd extensions of the power functions:

φα(x) := |x|α, ψα(x) := sgn(x)|x|α, ∀ x ∈ R \ {0},

and φα(0) = ψα(0) := 0. Also define:

HψG := {α ∈ R : ψα[A] ∈ PG for all A ∈ PG(R)},

HφG := {α ∈ R : φα[A] ∈ PG for all A ∈ PG(R)}.

Our main result about chordal graphs extends to HψG and HφG:

HψG = (−1 + 2N) ∪ [r − 2,∞),

HφG = 2N ∪ [r − 2,∞) (e.g., G = Kr).

We have HψCn
= [1,∞). However, HφC4

= [2,∞).
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Open problems

1 Does the same combinatorial rule for chordal/cycle graphs, also work for
PG for all G? Namely, for all G, is HG = HψG = N ∪ [mG − 2,∞), where
r = mG is the biggest integer such that Kr or K(1)

r ⊂ G?

2 For which graphs G is CEψ(G) 6= CEφ(G)?

3 The critical exponent of a graph always appears to be an integer. Can this
be proved directly (without computing the critical exponent explicitly)?

4 Connections to other (purely combinatorial) graph invariants?

1
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