Entrywise positivity preservers in fixed dimension: I

Apoorva Khare
IISc and APRG (Bangalore, India)

(Joint with Alexander Belton, Dominique Guillot, and Mihai Putinar; and with Terence Tao)

Introduction

Definition. A real symmetric matrix $A_{N \times N}$ is positive semidefinite if all eigenvalues of A are $\geqslant 0$. (Equivalently, $u^{T} A u \geqslant 0$ for all $u \in \mathbb{R}^{N}$.)

Positivity (and preserving it) studied in many settings in the literature.

Introduction

Definition. A real symmetric matrix $A_{N \times N}$ is positive semidefinite if all eigenvalues of A are $\geqslant 0$. (Equivalently, $u^{T} A u \geqslant 0$ for all $u \in \mathbb{R}^{N}$.)

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

- Positive semidefinite matrices (correlation and covariance matrices)
- Positive definite sequences/Toeplitz matrices (measures on S^{1})
- Moment sequences/Hankel matrices (measures on \mathbb{R})
- Totally positive matrices and kernels (Pólya frequency functions/sequences)
- Hilbert space kernels
- Positive definite functions on metric spaces, topological (semi)groups

Introduction

Definition. A real symmetric matrix $A_{N \times N}$ is positive semidefinite if all eigenvalues of A are $\geqslant 0$. (Equivalently, $u^{T} A u \geqslant 0$ for all $u \in \mathbb{R}^{N}$.)

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

- Positive semidefinite matrices (correlation and covariance matrices)
- Positive definite sequences/Toeplitz matrices (measures on S^{1})
- Moment sequences/Hankel matrices (measures on \mathbb{R})
- Totally positive matrices and kernels (Pólya frequency functions/sequences)
- Hilbert space kernels
- Positive definite functions on metric spaces, topological (semi)groups

Question: Classify the positivity preservers in these settings.
Studied for the better part of a century.

Entrywise functions preserving positivity

Given $N \geqslant 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R})$.)

Problem: Given a function $f: I \rightarrow \mathbb{R}$, when is it true that

$$
f[A]:=\left(f\left(a_{i j}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

(Long history!)

Entrywise functions preserving positivity

Given $N \geqslant 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R})$.)

Problem: Given a function $f: I \rightarrow \mathbb{R}$, when is it true that

$$
f[A]:=\left(f\left(a_{i j}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

(Long history!) The Hadamard product (or Schur, or entrywise product) of two matrices is given by: $A \circ B=\left(a_{i j} b_{i j}\right)$.

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If $A, B \in \mathbb{P}_{N}$, then $A \circ B \in \mathbb{P}_{N}$.

Entrywise functions preserving positivity

Given $N \geqslant 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R})$.)

Problem: Given a function $f: I \rightarrow \mathbb{R}$, when is it true that

$$
f[A]:=\left(f\left(a_{i j}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

(Long history!) The Hadamard product (or Schur, or entrywise product) of two matrices is given by: $A \circ B=\left(a_{i j} b_{i j}\right)$.

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If $A, B \in \mathbb{P}_{N}$, then $A \circ B \in \mathbb{P}_{N}$.

Pólya-Szegö: As a consequence,

- $f(x)=x^{2}, x^{3}, \ldots, x^{k}$ preserves positivity on \mathbb{P}_{N} for all N, k.

Entrywise functions preserving positivity

Given $N \geqslant 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R})$.)

Problem: Given a function $f: I \rightarrow \mathbb{R}$, when is it true that

$$
f[A]:=\left(f\left(a_{i j}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

(Long history!) The Hadamard product (or Schur, or entrywise product) of two matrices is given by: $A \circ B=\left(a_{i j} b_{i j}\right)$.

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If $A, B \in \mathbb{P}_{N}$, then $A \circ B \in \mathbb{P}_{N}$.

Pólya-Szegö: As a consequence,

- $f(x)=x^{2}, x^{3}, \ldots, x^{k}$ preserves positivity on \mathbb{P}_{N} for all N, k.
- $f(x)=\sum_{k=0}^{l} c_{k} x^{k}$ preserves positivity if $c_{k} \geqslant 0$.

Entrywise functions preserving positivity

Given $N \geqslant 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R})$.)

Problem: Given a function $f: I \rightarrow \mathbb{R}$, when is it true that

$$
f[A]:=\left(f\left(a_{i j}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

(Long history!) The Hadamard product (or Schur, or entrywise product) of two matrices is given by: $A \circ B=\left(a_{i j} b_{i j}\right)$.

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If $A, B \in \mathbb{P}_{N}$, then $A \circ B \in \mathbb{P}_{N}$.

Pólya-Szegö: As a consequence,

- $f(x)=x^{2}, x^{3}, \ldots, x^{k}$ preserves positivity on \mathbb{P}_{N} for all N, k.
- $f(x)=\sum_{k=0}^{l} c_{k} x^{k}$ preserves positivity if $c_{k} \geqslant 0$.
- Taking limits: if $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ is convergent and $c_{k} \geqslant 0$, then $f[-]$ preserves positivity.

Entrywise functions preserving positivity

Given $N \geqslant 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R})$.)

Problem: Given a function $f: I \rightarrow \mathbb{R}$, when is it true that

$$
f[A]:=\left(f\left(a_{i j}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

(Long history!) The Hadamard product (or Schur, or entrywise product) of two matrices is given by: $A \circ B=\left(a_{i j} b_{i j}\right)$.

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If $A, B \in \mathbb{P}_{N}$, then $A \circ B \in \mathbb{P}_{N}$.

Pólya-Szegö: As a consequence,

- $f(x)=x^{2}, x^{3}, \ldots, x^{k}$ preserves positivity on \mathbb{P}_{N} for all N, k.
- $f(x)=\sum_{k=0}^{l} c_{k} x^{k}$ preserves positivity if $c_{k} \geqslant 0$.
- Taking limits: if $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ is convergent and $c_{k} \geqslant 0$, then $f[-]$ preserves positivity.
- Anything else?

Schoenberg's theorem

Question (Pólya-Szegö, 1925): Anything else?

Schoenberg's theorem

Question (Pólya-Szegö, 1925): Anything else? Remarkably, the answer is no, if we want to preserve positivity in all dimensions.

Theorem (Schoenberg, Duke Math. J. 1942)

If $f:[-1,1] \rightarrow \mathbb{R}$ is continuous, the following are equivalent:
(1) $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}([-1,1])$ and all N.
(2) f is analytic on I and has nonnegative Maclaurin coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on $[-1,1]$ with all $c_{k} \geqslant 0$.

Schoenberg's theorem

Question (Pólya-Szegö, 1925): Anything else? Remarkably, the answer is no, if we want to preserve positivity in all dimensions.

Theorem (Schoenberg, Duke Math. J. 1942)

If $f:[-1,1] \rightarrow \mathbb{R}$ is continuous, the following are equivalent:
(1) $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}([-1,1])$ and all N.
(2) f is analytic on I and has nonnegative Maclaurin coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on $[-1,1]$ with all $c_{k} \geqslant 0$.

Schoenberg's theorem is the far harder converse to the result of his advisor (Schur).

Rudin (a) removed the continuity hypothesis, and (b) greatly reduced the test set:

Toeplitz and Hankel matrices (cont.)

Let $0<\rho \leqslant \infty$ be a scalar, and set $I=(-\rho, \rho)$.
Theorem (Rudin, Duke Math. J. 1959)
Given a function $f: I \rightarrow \mathbb{R}$, the following are equivalent:
(1) $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ and all N.
(2) $f[-]$ preserves positivity on Toeplitz matrices of all sizes and rank $\leqslant 3$.

Toeplitz and Hankel matrices (cont.)

Let $0<\rho \leqslant \infty$ be a scalar, and set $I=(-\rho, \rho)$.

Theorem (Rudin, Duke Math. J. 1959)

Given a function $f: I \rightarrow \mathbb{R}$, the following are equivalent:
(1) $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ and all N.
(2) $f[-]$ preserves positivity on Toeplitz matrices of all sizes and rank $\leqslant 3$.
(3) f is analytic on I and has nonnegative Maclaurin coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on $(-1,1)$ with all $c_{k} \geqslant 0$.

Toeplitz and Hankel matrices (cont.)

Let $0<\rho \leqslant \infty$ be a scalar, and set $I=(-\rho, \rho)$.

Theorem (Rudin, Duke Math. J. 1959)

Given a function $f: I \rightarrow \mathbb{R}$, the following are equivalent:
(1) $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ and all N.
(2) $f[-]$ preserves positivity on Toeplitz matrices of all sizes and rank $\leqslant 3$.
(3) f is analytic on I and has nonnegative Maclaurin coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on $(-1,1)$ with all $c_{k} \geqslant 0$.

Theorem (Belton-Guillot-K.-Putinar, J. Eur. Math. Soc., accepted)

Given a function $f: I \rightarrow \mathbb{R}$, the following are equivalent:
(1) $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ and all N.
(2) $f[-]$ preserves positivity on Hankel matrices of all sizes and rank $\leqslant 3$.
(3) f is analytic on I and has nonnegative Maclaurin coefficients.

Positive semidefinite kernels

- These two results greatly weaken the hypotheses of Schoenberg's theorem - only need to consider positive semidefinite matrices of rank $\leqslant 3$.
- Note, such matrices are precisely the Gram matrices of vectors in a 3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let \mathcal{H} be a real Hilbert space of dimension $\geqslant 3$. If $f[-]$ preserves positivity on all Gram matrices in \mathcal{H}, then f is a power series on \mathbb{R} with non-negative Maclaurin coefficients.

Positive semidefinite kernels

- These two results greatly weaken the hypotheses of Schoenberg's theorem - only need to consider positive semidefinite matrices of rank $\leqslant 3$.
- Note, such matrices are precisely the Gram matrices of vectors in a 3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let \mathcal{H} be a real Hilbert space of dimension $\geqslant 3$. If $f[-]$ preserves positivity on all Gram matrices in \mathcal{H}, then f is a power series on \mathbb{R} with non-negative Maclaurin coefficients.

- But such functions are precisely the positive semidefinite kernels on \mathcal{H} ! (Results of Pinkus et al.) Such kernels are important in modern day machine learning, via RKHS.

Positive semidefinite kernels

- These two results greatly weaken the hypotheses of Schoenberg's theorem - only need to consider positive semidefinite matrices of rank $\leqslant 3$.
- Note, such matrices are precisely the Gram matrices of vectors in a 3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let \mathcal{H} be a real Hilbert space of dimension $\geqslant 3$. If $f[-]$ preserves positivity on all Gram matrices in \mathcal{H}, then f is a power series on \mathbb{R} with non-negative Maclaurin coefficients.

- But such functions are precisely the positive semidefinite kernels on \mathcal{H} ! (Results of Pinkus et al.) Such kernels are important in modern day machine learning, via RKHS.
- Thus, Rudin (1959) classified positive semidefinite kernels on \mathbb{R}^{3}, which is relevant in machine learning. (Now also via our parallel 'Hankel' result.)

Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

- Notice that every sphere S^{r-1} - whence the Hilbert sphere S^{∞} - has a rotation-invariant distance. Namely, the arc-length along a great circle:

$$
d(x, y):=\varangle(x, y)=\arccos \langle x, y\rangle, \quad x, y \in S^{\infty}
$$

Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

- Notice that every sphere S^{r-1} - whence the Hilbert sphere S^{∞} - has a rotation-invariant distance. Namely, the arc-length along a great circle:

$$
d(x, y):=\varangle(x, y)=\arccos \langle x, y\rangle, \quad x, y \in S^{\infty}
$$

- Applying $\cos [-]$ entrywise to any distance matrix on S^{∞} yields:

$$
\cos \left[\left(d\left(x_{i}, x_{j}\right)\right)_{i, j \geqslant 0}\right]=\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j \geqslant 0}
$$

and this is a Gram matrix, so $\cos (\cdot)$ is positive definite on S^{∞}.

Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

- Notice that every sphere S^{r-1} - whence the Hilbert sphere S^{∞} - has a rotation-invariant distance. Namely, the arc-length along a great circle:

$$
d(x, y):=\varangle(x, y)=\arccos \langle x, y\rangle, \quad x, y \in S^{\infty}
$$

- Applying $\cos [-]$ entrywise to any distance matrix on S^{∞} yields:

$$
\cos \left[\left(d\left(x_{i}, x_{j}\right)\right)_{i, j \geqslant 0}\right]=\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j \geqslant 0}
$$

and this is a Gram matrix, so $\cos (\cdot)$ is positive definite on S^{∞}.
Schoenberg then classified all continuous f such that $f \circ \cos (\cdot)$ is p.d.:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose $f:[-1,1] \rightarrow \mathbb{R}$ is continuous, and $r \geqslant 2$. Then $f(\cos \cdot)$ is positive definite on the unit sphere $S^{r-1} \subset \mathbb{R}^{r}$ if and only if

$$
f(\cdot)=\sum_{k \geqslant 0} a_{k} C_{k}^{\left(\frac{r-2}{2}\right)}(\cdot) \quad \text { for some } a_{k} \geqslant 0
$$

where $C_{k}^{(\lambda)}(\cdot)$ are the ultraspherical / Gegenbauer / Chebyshev polynomials.

From spheres to correlation matrices

- Any Gram matrix of vectors $x_{j} \in S^{r-1}$ is the same as a rank $\leqslant r$ correlation matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$, i.e.,

$$
A=\left(\begin{array}{cccc}
1 & & * \\
& 1 & & \\
* & 1 & \\
& & & 1
\end{array}\right)=\left(\begin{array}{ccc}
- & x_{1}^{T} & - \\
- & x_{2}^{T} & - \\
& \vdots & \\
- & x_{n}^{T} & -
\end{array}\right)\left(\begin{array}{ccc}
\mid & \mid & \\
x_{1} & x_{2} & \ldots \\
\mid & x_{n} \\
& \mid & \\
& &
\end{array}\right)=\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j=1}^{n}
$$

From spheres to correlation matrices

- Any Gram matrix of vectors $x_{j} \in S^{r-1}$ is the same as a rank $\leqslant r$ correlation matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$, i.e.,

$$
A=\left(\begin{array}{cccc}
1 & & * & \\
& 1 & & \\
* & 1 & \\
& & & 1
\end{array}\right)=\left(\begin{array}{ccc}
- & x_{1}^{T} & - \\
- & x_{2}^{T} & - \\
& \vdots & \\
- & x_{n}^{T} & -
\end{array}\right)\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \ldots & x_{n} \\
\mid & \mid & & \mid
\end{array}\right)=\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j=1}^{n}
$$

- So,
$f(\cos \cdot)$ positive definite on $S^{r-1} \Longleftrightarrow\left(f\left(\cos d\left(x_{i}, x_{j}\right)\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n}$
$\Longleftrightarrow \quad\left(f\left(\left\langle x_{i}, x_{j}\right\rangle\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n}$
$\Longleftrightarrow \quad\left(f\left(a_{i j}\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n} \forall n \geqslant 1$,

From spheres to correlation matrices

- Any Gram matrix of vectors $x_{j} \in S^{r-1}$ is the same as a rank $\leqslant r$ correlation matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$, i.e.,

$$
A=\left(\begin{array}{cccc}
1 & & * & \\
& 1 & & \\
* & 1 & \\
& & & 1
\end{array}\right)=\left(\begin{array}{ccc}
- & x_{1}^{T} & - \\
- & x_{2}^{T} & - \\
& \vdots & \\
- & x_{n}^{T} & -
\end{array}\right)\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \ldots & x_{n} \\
\mid & \mid & & \mid
\end{array}\right)=\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j=1}^{n}
$$

- So,
$f(\cos \cdot)$ positive definite on $S^{r-1} \Longleftrightarrow\left(f\left(\cos d\left(x_{i}, x_{j}\right)\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n}$
$\Longleftrightarrow \quad\left(f\left(\left\langle x_{i}, x_{j}\right\rangle\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n}$
$\Longleftrightarrow \quad\left(f\left(a_{i j}\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n} \forall n \geqslant 1$,
i.e., f preserves positivity on correlation matrices of rank $\leqslant r$.

From spheres to correlation matrices

- Any Gram matrix of vectors $x_{j} \in S^{r-1}$ is the same as a rank $\leqslant r$ correlation matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$, i.e.,

$$
A=\left(\begin{array}{cccc}
1 & & * & \\
& 1 & & \\
* & 1 & \\
& & & 1
\end{array}\right)=\left(\begin{array}{ccc}
- & x_{1}^{T} & - \\
- & x_{2}^{T} & - \\
& \vdots & \\
- & x_{n}^{T} & -
\end{array}\right)\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \ldots & x_{n} \\
\mid & \mid & & \mid
\end{array}\right)=\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j=1}^{n}
$$

- So,
$f(\cos \cdot)$ positive definite on $S^{r-1} \Longleftrightarrow\left(f\left(\cos d\left(x_{i}, x_{j}\right)\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n}$
$\Longleftrightarrow \quad\left(f\left(\left\langle x_{i}, x_{j}\right\rangle\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n}$
$\Longleftrightarrow \quad\left(f\left(a_{i j}\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n} \forall n \geqslant 1$,
i.e., f preserves positivity on correlation matrices of rank $\leqslant r$.
- If instead $r=\infty$, such a result would classify the entrywise positivity preservers on all correlation matrices.

From spheres to correlation matrices

- Any Gram matrix of vectors $x_{j} \in S^{r-1}$ is the same as a rank $\leqslant r$ correlation matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$, i.e.,

$$
A=\left(\begin{array}{cccc}
1 & & * & \\
& 1 & & \\
* & 1 & \\
& & & 1
\end{array}\right)=\left(\begin{array}{ccc}
- & x_{1}^{T} & - \\
- & x_{2}^{T} & - \\
& \vdots & \\
- & x_{n}^{T} & -
\end{array}\right)\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \ldots & x_{n} \\
\mid & \mid & & \mid
\end{array}\right)=\left(\left\langle x_{i}, x_{j}\right\rangle\right)_{i, j=1}^{n}
$$

- So,
$f(\cos \cdot)$ positive definite on $S^{r-1} \Longleftrightarrow\left(f\left(\cos d\left(x_{i}, x_{j}\right)\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n}$
$\Longleftrightarrow \quad\left(f\left(\left\langle x_{i}, x_{j}\right\rangle\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n}$
$\Longleftrightarrow \quad\left(f\left(a_{i j}\right)\right)_{i, j=1}^{n} \in \mathbb{P}_{n} \forall n \geqslant 1$,
i.e., f preserves positivity on correlation matrices of rank $\leqslant r$.
- If instead $r=\infty$, such a result would classify the entrywise positivity preservers on all correlation matrices. Interestingly, 70 years later the subject has acquired renewed interest because of its immediate impact in high-dimensional covariance estimation, in several applied fields.

Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from S^{r-1} to S^{∞} :
Theorem (Schoenberg, Duke Math. J. 1942)
Suppose $f:[-1,1] \rightarrow \mathbb{R}$ is continuous. Then $f(\cos \cdot)$ is positive definite on the Hilbert sphere $S^{\infty} \subset \mathbb{R}^{\infty}=\ell^{2}$ if and only if

$$
f(\cos \theta)=\sum_{k \geqslant 0} c_{k} \cos ^{k} \theta
$$

where $c_{k} \geqslant 0 \forall k$ are such that $\sum_{k} c_{k}<\infty$.

Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from S^{r-1} to S^{∞} :

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose $f:[-1,1] \rightarrow \mathbb{R}$ is continuous. Then $f(\cos \cdot)$ is positive definite on the Hilbert sphere $S^{\infty} \subset \mathbb{R}^{\infty}=\ell^{2}$ if and only if

$$
f(\cos \theta)=\sum_{k \geqslant 0} c_{k} \cos ^{k} \theta
$$

where $c_{k} \geqslant 0 \forall k$ are such that $\sum_{k} c_{k}<\infty$.
(By the Schur product theorem, $\cos ^{k} \theta$ is positive definite on S^{∞}.)
Freeing this result from the sphere context, one obtains Schoenberg's theorem on entrywise positivity preservers.

Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from S^{r-1} to S^{∞} :

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose $f:[-1,1] \rightarrow \mathbb{R}$ is continuous. Then $f(\cos \cdot)$ is positive definite on the Hilbert sphere $S^{\infty} \subset \mathbb{R}^{\infty}=\ell^{2}$ if and only if

$$
f(\cos \theta)=\sum_{k \geqslant 0} c_{k} \cos ^{k} \theta
$$

where $c_{k} \geqslant 0 \forall k$ are such that $\sum_{k} c_{k}<\infty$.
(By the Schur product theorem, $\cos ^{k} \theta$ is positive definite on S^{∞}.)
Freeing this result from the sphere context, one obtains Schoenberg's theorem on entrywise positivity preservers.

For more information: A panorama of positivity - arXiv, Dec. 2018. (Survey, 80+ pp., by A. Belton, D. Guillot, A.K., and M. Putinar.)

Classical origins and modern motivations
Polynomial preservers in fixed dimension

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

$$
\Sigma=\left(\sigma_{i j}\right)_{i, j=1}^{p}, \quad \sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left[X_{i} X_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]
$$

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

$$
\Sigma=\left(\sigma_{i j}\right)_{i, j=1}^{p}, \quad \sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left[X_{i} X_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]
$$

- Important question: Estimate Σ from data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$.

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

$$
\Sigma=\left(\sigma_{i j}\right)_{i, j=1}^{p}, \quad \sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left[X_{i} X_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]
$$

- Important question: Estimate Σ from data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$.
- In modern-day settings (small samples, ultra-high dimension), covariance estimation can be very challenging.
- Classical estimators (e.g. sample covariance matrix (MLE)):

$$
S=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(x_{j}-\bar{x}\right)^{T}
$$

perform poorly, are singular/ill-conditioned, etc.

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

$$
\Sigma=\left(\sigma_{i j}\right)_{i, j=1}^{p}, \quad \sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left[X_{i} X_{j}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]
$$

- Important question: Estimate Σ from data $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$.
- In modern-day settings (small samples, ultra-high dimension), covariance estimation can be very challenging.
- Classical estimators (e.g. sample covariance matrix (MLE)):

$$
S=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(x_{j}-\bar{x}\right)^{T}
$$

perform poorly, are singular/ill-conditioned, etc.

- Require some form of regularization - and resulting matrix has to be positive semidefinite (in the parameter space) for applications.

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics. Let X_{1}, \ldots, X_{p} be a collection of random variables.

- Very large vectors: rare that all X_{j} depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.
Let X_{1}, \ldots, X_{p} be a collection of random variables.

- Very large vectors: rare that all X_{j} depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.
- Leverage the independence/conditional independence structure to reduce dimension - translates to zeros in covariance/inverse covariance matrix.

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.
Let X_{1}, \ldots, X_{p} be a collection of random variables.

- Very large vectors: rare that all X_{j} depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.
- Leverage the independence/conditional independence structure to reduce dimension - translates to zeros in covariance/inverse covariance matrix.
- Modern approach: Compressed sensing methods (Daubechies, Donoho, Candes, Tao, ...) use convex optimization to obtain a sparse estimate of Σ (e.g., ℓ^{1}-penalized likelihood methods).
- State-of-the-art for ~ 20 years.

Works well for dimensions of a few thousands.

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.
Let X_{1}, \ldots, X_{p} be a collection of random variables.

- Very large vectors: rare that all X_{j} depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.
- Leverage the independence/conditional independence structure to reduce dimension - translates to zeros in covariance/inverse covariance matrix.
- Modern approach: Compressed sensing methods (Daubechies, Donoho, Candes, Tao, ...) use convex optimization to obtain a sparse estimate of Σ (e.g., ℓ^{1}-penalized likelihood methods).
- State-of-the-art for ~ 20 years.

Works well for dimensions of a few thousands.

- Not scalable to modern-day problems with $100,000+$ variables (disease detection, climate sciences, finance...).

Thresholding and regularization

Thresholding covariance/correlation matrices

$$
\text { True } \Sigma=\left(\begin{array}{ccc}
1 & 0.2 & 0 \\
0.2 & 1 & 0.5 \\
0 & 0.5 & 1
\end{array}\right), \quad S=\left(\begin{array}{ccc}
0.95 & 0.18 & 0.02 \\
0.18 & 0.96 & 0.47 \\
0.02 & 0.47 & 0.98
\end{array}\right)
$$

Thresholding and regularization

Thresholding covariance/correlation matrices

$$
\text { True } \Sigma=\left(\begin{array}{ccc}
1 & 0.2 & 0 \\
0.2 & 1 & 0.5 \\
0 & 0.5 & 1
\end{array}\right), \quad S=\left(\begin{array}{ccc}
0.95 & 0.18 & 0.02 \\
0.18 & 0.96 & 0.47 \\
0.02 & 0.47 & 0.98
\end{array}\right)
$$

Natural to threshold small entries (thinking the variables are independent):

$$
\tilde{S}=\left(\begin{array}{ccc}
0.95 & 0.18 & \mathbf{0} \\
0.18 & 0.96 & 0.47 \\
\mathbf{0} & 0.47 & 0.98
\end{array}\right)
$$

Thresholding and regularization

Thresholding covariance/correlation matrices

$$
\text { True } \Sigma=\left(\begin{array}{ccc}
1 & 0.2 & 0 \\
0.2 & 1 & 0.5 \\
0 & 0.5 & 1
\end{array}\right), \quad S=\left(\begin{array}{ccc}
0.95 & 0.18 & 0.02 \\
0.18 & 0.96 & 0.47 \\
0.02 & 0.47 & 0.98
\end{array}\right)
$$

Natural to threshold small entries (thinking the variables are independent):

$$
\tilde{S}=\left(\begin{array}{ccc}
0.95 & 0.18 & \mathbf{0} \\
0.18 & 0.96 & 0.47 \\
\mathbf{0} & 0.47 & 0.98
\end{array}\right)
$$

Can be significant if $p=100,000$ and only, say, $\sim 1 \%$ of the entries of the true Σ are nonzero.

Entrywise functions - regularization

More generally, we could apply a function $f: \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S - regularization:

Entrywise functions - regularization

More generally, we could apply a function $f: \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S - regularization:

$$
\widehat{\Sigma}=f[S]:=\left(\begin{array}{cccc}
f\left(\sigma_{11}\right) & f\left(\sigma_{12}\right) & \cdots & f\left(\sigma_{1 N}\right) \\
f\left(\sigma_{21}\right) & f\left(\sigma_{22}\right) & \cdots & f\left(\sigma_{2 N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(\sigma_{N 1}\right) & f\left(\sigma_{N 2}\right) & \cdots & f\left(\sigma_{N N}\right)
\end{array}\right)
$$

(Example on previous slide is $f_{\epsilon}(x)=x \cdot \mathbf{1}_{|x|>\epsilon}$ for some $\epsilon>0$.)

Entrywise functions - regularization

More generally, we could apply a function $f: \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S - regularization:

$$
\widehat{\Sigma}=f[S]:=\left(\begin{array}{cccc}
f\left(\sigma_{11}\right) & f\left(\sigma_{12}\right) & \cdots & f\left(\sigma_{1 N}\right) \\
f\left(\sigma_{21}\right) & f\left(\sigma_{22}\right) & \cdots & f\left(\sigma_{2 N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(\sigma_{N 1}\right) & f\left(\sigma_{N 2}\right) & \cdots & f\left(\sigma_{N N}\right)
\end{array}\right)
$$

(Example on previous slide is $f_{\epsilon}(x)=x \cdot \mathbf{1}_{|x|>\epsilon}$ for some $\epsilon>0$.)

- Highly scalable. Analysis on the cone - no optimization.

Entrywise functions - regularization

More generally, we could apply a function $f: \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S - regularization:

$$
\widehat{\Sigma}=f[S]:=\left(\begin{array}{cccc}
f\left(\sigma_{11}\right) & f\left(\sigma_{12}\right) & \cdots & f\left(\sigma_{1 N}\right) \\
f\left(\sigma_{21}\right) & f\left(\sigma_{22}\right) & \cdots & f\left(\sigma_{2 N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(\sigma_{N 1}\right) & f\left(\sigma_{N 2}\right) & \cdots & f\left(\sigma_{N N}\right)
\end{array}\right)
$$

(Example on previous slide is $f_{\epsilon}(x)=x \cdot \mathbf{1}_{|x|>\epsilon}$ for some $\epsilon>0$.)

- Highly scalable. Analysis on the cone - no optimization.
- Regularized matrix $f[S]$ further used in applications, where (estimates of) Σ required in procedures such as PCA, CCA, MANOVA, etc.

Entrywise functions - regularization

More generally, we could apply a function $f: \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S - regularization:

$$
\widehat{\Sigma}=f[S]:=\left(\begin{array}{cccc}
f\left(\sigma_{11}\right) & f\left(\sigma_{12}\right) & \cdots & f\left(\sigma_{1 N}\right) \\
f\left(\sigma_{21}\right) & f\left(\sigma_{22}\right) & \cdots & f\left(\sigma_{2 N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(\sigma_{N 1}\right) & f\left(\sigma_{N 2}\right) & \cdots & f\left(\sigma_{N N}\right)
\end{array}\right)
$$

(Example on previous slide is $f_{\epsilon}(x)=x \cdot \mathbf{1}_{|x|>\epsilon}$ for some $\epsilon>0$.)

- Highly scalable. Analysis on the cone - no optimization.
- Regularized matrix $f[S]$ further used in applications, where (estimates of) Σ required in procedures such as PCA, CCA, MANOVA, etc.
- Question: When does this procedure preserve positive (semi)definiteness? Critical for applications since $\Sigma \in \mathbb{P}_{N}$.

Entrywise functions - regularization

More generally, we could apply a function $f: \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S - regularization:

$$
\widehat{\Sigma}=f[S]:=\left(\begin{array}{cccc}
f\left(\sigma_{11}\right) & f\left(\sigma_{12}\right) & \cdots & f\left(\sigma_{1 N}\right) \\
f\left(\sigma_{21}\right) & f\left(\sigma_{22}\right) & \cdots & f\left(\sigma_{2 N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(\sigma_{N 1}\right) & f\left(\sigma_{N 2}\right) & \cdots & f\left(\sigma_{N N}\right)
\end{array}\right)
$$

(Example on previous slide is $f_{\epsilon}(x)=x \cdot \mathbf{1}_{|x|>\epsilon}$ for some $\epsilon>0$.)

- Highly scalable. Analysis on the cone - no optimization.
- Regularized matrix $f[S]$ further used in applications, where (estimates of) Σ required in procedures such as PCA, CCA, MANOVA, etc.
- Question: When does this procedure preserve positive (semi)definiteness? Critical for applications since $\Sigma \in \mathbb{P}_{N}$.

Problem: For what functions $f: \mathbb{R} \rightarrow \mathbb{R}$, does $f[-]$ preserve \mathbb{P}_{N} ?

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of all dimensions: $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}$ and all N.

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of all dimensions: $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}$ and all N.

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of all dimensions: $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}$ and all N.

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of all dimensions: $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}$ and all N.

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, IJPAM 1979):

$$
f \text { is nondecreasing and } f(x) f(y) \geqslant f(\sqrt{x y})^{2} \text { on }(0, \infty)
$$

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of all dimensions: $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}$ and all N.

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, IJPAM 1979):

$$
f \text { is nondecreasing and } f(x) f(y) \geqslant f(\sqrt{x y})^{2} \text { on }(0, \infty) .
$$

- Open for $N \geqslant 3$.

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_{N} with $N \geqslant 3$.

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_{N} with $N \geqslant 3$. (Was not known since Schoenberg's Duke 1942 paper.)

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_{N} with $N \geqslant 3$. (Was not known since Schoenberg's Duke 1942 paper.)

Fixed $N \geqslant 3$ and general $f \rightsquigarrow$ only known necessary condition, by Loewner:
Theorem (Horn-Loewner, Guillot-K.-Rajaratnam, Trans. AMS 1969, 2017)
Fix $I=(0, \infty)$ and $f: I \rightarrow \mathbb{R}$. Suppose $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ Hankel of rank $\leqslant 2$, with N fixed.

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_{N} with $N \geqslant 3$. (Was not known since Schoenberg's Duke 1942 paper.)

Fixed $N \geqslant 3$ and general $f \rightsquigarrow$ only known necessary condition, by Loewner:

Theorem (Horn-Loewner, Guillot-K.-Rajaratnam, Trans. AMS 1969, 2017)

Fix $I=(0, \infty)$ and $f: I \rightarrow \mathbb{R}$. Suppose $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ Hankel of rank $\leqslant 2$, with N fixed. Then $f \in C^{N-3}(I)$ and

$$
f, f^{\prime}, f^{\prime \prime}, \cdots, f^{(N-3)} \geqslant 0 \text { on } I .
$$

If $f \in C^{N-1}(I)$ then $f^{(N-2)}, f^{(N-1)} \geqslant 0$ on I.

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_{N} with $N \geqslant 3$. (Was not known since Schoenberg's Duke 1942 paper.)

Fixed $N \geqslant 3$ and general $f \rightsquigarrow$ only known necessary condition, by Loewner:
Theorem (Horn-Loewner, Guillot-K.-Rajaratnam, Trans. AMS 1969, 2017)
Fix $I=(0, \infty)$ and $f: I \rightarrow \mathbb{R}$. Suppose $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ Hankel of rank $\leqslant 2$, with N fixed. Then $f \in C^{N-3}(I)$ and

$$
f, f^{\prime}, f^{\prime \prime}, \cdots, f^{(N-3)} \geqslant 0 \text { on } I .
$$

If $f \in C^{N-1}(I)$ then $f^{(N-2)}, f^{(N-1)} \geqslant 0$ on I.

- Implies Schoenberg-Rudin result for matrices with positive entries.
- Loewner had initially summarized these computations in a letter to Josephine Mitchell (Penn. State University) on October 24, 1967:

Loewner's computations

 defined in sominteral $(a, b), a \geq 0$ and consider all real by memetic metrics $\left(a_{y}\right)>0$ of order x mill elements $a_{y y} \in(c, 6)$. Which properties must for fo re incerder (hies the vatioicer $\left(f\left(a_{i j}\right)\right)>0$. 1 found as recency conditions. $f(1)+3, f(t)$ that if is $(m-1)$ times differculiable the following coudilicus are
nocenary
(C) $f(t) \geq 0, f^{\prime}(t) \geq 0, \ldots f^{(n-1)}(t) \geq 0$

The function $t \rho(\rho>1)$ do ut odis fy there conditions for
allg>iof $x>3$.
The/rroof \therefore obtained by considering wativices of the

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose $c_{0}, c_{1}, c_{2} \neq 0$ are real, $M \geqslant 3$, and

$$
c_{0}+c_{1} x+c_{2} x^{2}+c_{M} x^{M}
$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_{0}, c_{1}, c_{2}>0$.

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose $c_{0}, c_{1}, c_{2} \neq 0$ are real, $M \geqslant 3$, and

$$
c_{0}+c_{1} x+c_{2} x^{2}+c_{M} x^{M}
$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_{0}, c_{1}, c_{2}>0$. Can c_{M} be negative? (Not known.)

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose $c_{0}, c_{1}, c_{2} \neq 0$ are real, $M \geqslant 3$, and

$$
c_{0}+c_{1} x+c_{2} x^{2}+c_{M} x^{M}
$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_{0}, c_{1}, c_{2}>0$. Can c_{M} be negative? (Not known.)

General case: Let $M \geqslant N \in \mathbb{N}$ and $c_{0}, \ldots, c_{N-1} \neq 0$. Suppose $f(x)=\sum_{j=0}^{N-1} c_{j} x^{j}+c_{M} x^{M}$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{0}, \ldots, c_{N-1}>0$. Can $c_{M}<0$?

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose $c_{0}, c_{1}, c_{2} \neq 0$ are real, $M \geqslant 3$, and

$$
c_{0}+c_{1} x+c_{2} x^{2}+c_{M} x^{M}
$$

entrywise preserves positivity on 3×3 correlation matrices.
Then $c_{0}, c_{1}, c_{2}>0$. Can c_{M} be negative? (Not known.)
General case:
Let $M \geqslant N \in \mathbb{N}$ and $c_{0}, \ldots, c_{N-1} \neq 0$. Suppose $f(x)=\sum_{j=0}^{N-1} c_{j} x^{j}+c_{M} x^{M}$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{0}, \ldots, c_{N-1}>0$. Can $c_{M}<0$?

Reformulation: Multiplying by $t=\left|c_{M}\right|^{-1}$, does

$$
p_{t}(x):=t \sum_{j=0}^{N-1} c_{j} x^{j}-x^{M}
$$

entrywise preserve positivity on $\mathbb{P}_{N}((0, \rho))$ for any $t>0$?

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose $c_{0}, c_{1}, c_{2} \neq 0$ are real, $M \geqslant 3$, and

$$
c_{0}+c_{1} x+c_{2} x^{2}+c_{M} x^{M}
$$

entrywise preserves positivity on 3×3 correlation matrices.
Then $c_{0}, c_{1}, c_{2}>0$. Can c_{M} be negative? (Not known.)
General case:
Let $M \geqslant N \in \mathbb{N}$ and $c_{0}, \ldots, c_{N-1} \neq 0$. Suppose $f(x)=\sum_{j=0}^{N-1} c_{j} x^{j}+c_{M} x^{M}$
preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{0}, \ldots, c_{N-1}>0$. Can $c_{M}<0$?
Reformulation: Multiplying by $t=\left|c_{M}\right|^{-1}$, does

$$
p_{t}(x):=t \sum_{j=0}^{N-1} c_{j} x^{j}-x^{M}
$$

entrywise preserve positivity on $\mathbb{P}_{N}((0, \rho))$ for any $t>0$? No example known.

Main result

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)
Fix integers $M \geqslant N \geqslant 1$, and real scalars $\rho>0$ and c_{0}, \ldots, c_{N-1}. For $t>0$, define $p_{t}(z):=t \sum_{j=0}^{N-1} c_{j} z^{j}-z^{M}$.

Main result

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Fix integers $M \geqslant N \geqslant 1$, and real scalars $\rho>0$ and c_{0}, \ldots, c_{N-1}.
For $t>0$, define $p_{t}(z):=t \sum_{j=0}^{N-1} c_{j} z^{j}-z^{M}$.
Then the following are equivalent.
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}(\bar{D}(0, \rho))$.
(2) All coefficients $c_{j}>0$, and

$$
t \geqslant \mathcal{K}_{\rho, M}:=\sum_{j=0}^{N-1}\binom{M}{j}^{2}\binom{M-j-1}{N-j-1}^{2} \frac{\rho^{M-j}}{c_{j}}
$$

Main result

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Fix integers $M \geqslant N \geqslant 1$, and real scalars $\rho>0$ and c_{0}, \ldots, c_{N-1}.
For $t>0$, define $p_{t}(z):=t \sum_{j=0}^{N-1} c_{j} z^{j}-z^{M}$.
Then the following are equivalent.
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}(\bar{D}(0, \rho))$.
(2) All coefficients $c_{j}>0$, and

$$
t \geqslant \mathcal{K}_{\rho, M}:=\sum_{j=0}^{N-1}\binom{M}{j}^{2}\binom{M-j-1}{N-j-1}^{2} \frac{\rho^{M-j}}{c_{j}}
$$

(3) $p_{t}[-]$ preserves positivity on Hankel rank-one matrices in $\mathbb{P}_{N}((0, \rho))$.

Consequences

(1) Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_{N} but not for \mathbb{P}_{N+1}. ("The Loewner-Horn theorem is sharp.")

Consequences

(1) Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_{N} but not for \mathbb{P}_{N+1}. ("The Loewner-Horn theorem is sharp.")
(2) Complete characterization of polynomials of degree $\leqslant N$, which preserve positivity on \mathbb{P}_{N}.

Consequences

(1) Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_{N} but not for \mathbb{P}_{N+1}. ("The Loewner-Horn theorem is sharp.")
(2) Complete characterization of polynomials of degree $\leqslant N$, which preserve positivity on \mathbb{P}_{N}.
(3) Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.

Consequences

(1) Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_{N} but not for \mathbb{P}_{N+1}. ("The Loewner-Horn theorem is sharp.")
(2) Complete characterization of polynomials of degree $\leqslant N$, which preserve positivity on \mathbb{P}_{N}.
(3) Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.
(4) More generally, the theorem provides a characterization of polynomials $p_{t}[-]: \mathbb{P}_{N}(K) \rightarrow \mathbb{P}_{N}$ for any

$$
(0, \rho) \subset K \subset \bar{D}(0, \rho)
$$

Consequences

(1) Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_{N} but not for \mathbb{P}_{N+1}. ("The Loewner-Horn theorem is sharp.")
(2) Complete characterization of polynomials of degree $\leqslant N$, which preserve positivity on \mathbb{P}_{N}.
(3) Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.
(4) More generally, the theorem provides a characterization of polynomials $p_{t}[-]: \mathbb{P}_{N}(K) \rightarrow \mathbb{P}_{N}$ for any

$$
(0, \rho) \subset K \subset \bar{D}(0, \rho)
$$

(5) Corollary: By the Schur product theorem, functions of the form $t\left(c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}\right)-x^{M}$ can be preservers on $\mathbb{P}_{3}((0, \rho))$ for $c_{j}>0$, $M>4$, and large $t \gg 0$.

Sketch of the proof

Theorem (Belton, Guillot, K., Putinar, 2016)
Let $M \geqslant N \geqslant 1$ and $\rho, t, c_{0}, \ldots, c_{N-1}>0$. If $p_{t}(z):=t \sum_{j<N} c_{j} z^{j}-z^{M}$, TFAE:
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}(\bar{D}(0, \rho))$.
(2) $t \geqslant \mathcal{K}_{\rho, M}$.
(3) $p_{t}[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_{N}((0, \rho))$.

Sketch of the proof

Theorem (Belton, Guillot, K., Putinar, 2016)
Let $M \geqslant N \geqslant 1$ and $\rho, t, c_{0}, \ldots, c_{N-1}>0$. If $p_{t}(z):=t \sum_{j<N} c_{j} z^{j}-z^{M}$, TFAE:
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}(\bar{D}(0, \rho))$.
(2) $t \geqslant \mathcal{K}_{\rho, M}$.
(3) $p_{t}[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_{N}((0, \rho))$.
$(1) \Longrightarrow$ (3): Immediate.

Sketch of the proof

Theorem (Belton, Guillot, K., Putinar, 2016)
Let $M \geqslant N \geqslant 1$ and $\rho, t, c_{0}, \ldots, c_{N-1}>0$. If $p_{t}(z):=t \sum_{j<N} c_{j} z^{j}-z^{M}$, TFAE:
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}(\bar{D}(0, \rho))$.
(2) $t \geqslant \mathcal{K}_{\rho, M}$.
(3) $p_{t}[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_{N}((0, \rho))$.
$(1) \Longrightarrow$ (3): Immediate.
(3) \Longrightarrow (2): How does the constant $\mathcal{K}_{\rho, M}$ appear from rank-one matrices?

Sketch of the proof

Theorem (Belton, Guillot, K., Putinar, 2016)
Let $M \geqslant N \geqslant 1$ and $\rho, t, c_{0}, \ldots, c_{N-1}>0$. If $p_{t}(z):=t \sum_{j<N} c_{j} z^{j}-z^{M}$, TFAE:
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}(\bar{D}(0, \rho))$.
(2) $t \geqslant \mathcal{K}_{\rho, M}$.
(3) $p_{t}[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_{N}((0, \rho))$.
$(1) \Longrightarrow$ (3): Immediate.
(3) \Longrightarrow (2): How does the constant $\mathcal{K}_{\rho, M}$ appear from rank-one matrices?

Study the determinants of linear pencils

$$
\operatorname{det} p_{t}[A]=\operatorname{det}\left(t\left(c_{0} \mathbf{1}_{N \times N}+c_{1} A+\cdots+c_{N-1} A^{\circ(N-1)}\right)-A^{\circ M}\right)
$$

for rank-one matrices $A=\mathbf{u v}^{T}$.

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{0}<\cdots<n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$.

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{0}<\cdots<n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{j-1}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{j}-u_{i}\right)
$$

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{0}<\cdots<n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{j-1}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{j}-u_{i}\right)
$$

- Basis of homogeneous symmetric polynomials in u_{1}, \ldots, u_{N}.
- Characters of irreducible polynomial representations of $G L_{N}(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{0}<\cdots<n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{j-1}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{j}-u_{i}\right)
$$

- Basis of homogeneous symmetric polynomials in u_{1}, \ldots, u_{N}.
- Characters of irreducible polynomial representations of $G L_{N}(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.
- Weyl Character (Dimension) Formula in Type A:

$$
s_{\mathbf{n}}(1, \ldots, 1)=\prod_{1 \leqslant i<j \leqslant N} \frac{n_{j}-n_{i}}{j-i}=\frac{V(\mathbf{n})}{V((0,1, \ldots, N-1))}
$$

Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi-Trudi type identity for p_{t}.

Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi-Trudi type identity for p_{t}.

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Let $M \geqslant N \geqslant 1$ be integers, and $c_{0}, \ldots, c_{N-1} \in \mathbb{F}^{\times}$be non-zero scalars in any field \mathbb{F}. Define the polynomial

$$
p_{t}(z):=t\left(c_{0}+\cdots+c_{N-1} z^{N-1}\right)-z^{M}
$$

and the hook partition

$$
\mu(M, N, j):=(0,1, \ldots, j-1 ; \quad j+1, \ldots, N-1 ; \quad M)
$$

Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi-Trudi type identity for p_{t}.

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Let $M \geqslant N \geqslant 1$ be integers, and $c_{0}, \ldots, c_{N-1} \in \mathbb{F}^{\times}$be non-zero scalars in any field \mathbb{F}. Define the polynomial

$$
p_{t}(z):=t\left(c_{0}+\cdots+c_{N-1} z^{N-1}\right)-z^{M}
$$

and the hook partition

$$
\mu(M, N, j):=(0,1, \ldots, j-1 ; \quad j+1, \ldots, N-1 ; \quad M)
$$

The following identity holds for all $\mathbf{u}, \mathbf{v} \in \mathbb{F}^{N}$:

$$
\begin{aligned}
& \operatorname{det} p_{t}\left[\mathbf{u v}^{T}\right]= \\
& \qquad t^{N-1} V(\mathbf{u}) V(\mathbf{v}) \prod_{j=0}^{N-1} c_{j} \times\left(t-\sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\mathbf{u}) s_{\mu(M, N, j)}(\mathbf{v})}{c_{j}}\right)
\end{aligned}
$$

The negative threshold

Proof of (3) \Longrightarrow (2).

- If $p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right] \in \mathbb{P}_{N}$ for all $\mathbf{u} \in(0, \sqrt{\rho})^{N}$, and $t, c_{0}, \ldots, c_{N-1}>0$, then

The negative threshold

Proof of (3) \Longrightarrow (2).

- If $p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right] \in \mathbb{P}_{N}$ for all $\mathbf{u} \in(0, \sqrt{\rho})^{N}$, and $t, c_{0}, \ldots, c_{N-1}>0$, then

$$
0 \leqslant \frac{\operatorname{det} p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right]}{t^{N-1} V(\mathbf{u})^{2} c_{0} \cdots c_{N-1}}=t-\sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\mathbf{u})^{2}}{c_{j}}
$$

The negative threshold

Proof of (3) \Longrightarrow (2).

- If $p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right] \in \mathbb{P}_{N}$ for all $\mathbf{u} \in(0, \sqrt{\rho})^{N}$, and $t, c_{0}, \ldots, c_{N-1}>0$, then

$$
0 \leqslant \frac{\operatorname{det} p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right]}{t^{N-1} V(\mathbf{u})^{2} c_{0} \cdots c_{N-1}}=t-\sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\mathbf{u})^{2}}{c_{j}}
$$

- Every Schur polynomial is a sum of monomials. So, $s_{\mu(M, N, j)}(\mathbf{u})$ is maximized on $[0, \sqrt{\rho}]^{N}$ at $\mathbf{u}=(\sqrt{\rho}, \ldots, \sqrt{\rho})^{T}$, whence

The negative threshold

Proof of (3) \Longrightarrow (2).

- If $p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right] \in \mathbb{P}_{N}$ for all $\mathbf{u} \in(0, \sqrt{\rho})^{N}$, and $t, c_{0}, \ldots, c_{N-1}>0$, then

$$
0 \leqslant \frac{\operatorname{det} p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right]}{t^{N-1} V(\mathbf{u})^{2} c_{0} \cdots c_{N-1}}=t-\sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\mathbf{u})^{2}}{c_{j}}
$$

- Every Schur polynomial is a sum of monomials. So, $s_{\mu(M, N, j)}(\mathbf{u})$ is maximized on $[0, \sqrt{\rho}]^{N}$ at $\mathbf{u}=(\sqrt{\rho}, \ldots, \sqrt{\rho})^{T}$, whence

$$
t \geqslant \sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\sqrt{\rho}, \ldots, \sqrt{\rho})^{2}}{c_{j}}=\sum_{j=0}^{N-1}\binom{M}{j}^{2}\binom{M-j-1}{N-j-1}^{2} \frac{\rho^{M-j}}{c_{j}}
$$

and this is precisely $\mathcal{K}_{\rho, M}$ by the Weyl Dimension Formula.

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies: Suppose $c_{0}, c_{2}, c_{3} \neq 0$ are real, $M \geqslant 4$, and

$$
c_{0}+c_{2} x^{2}+c_{3} x^{3}+c_{M} x^{M}
$$

entrywise preserves positivity on 3×3 correlation matrices.
Then $c_{0}, c_{2}, c_{3}>0$.

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies: Suppose $c_{0}, c_{2}, c_{3} \neq 0$ are real, $M \geqslant 4$, and

$$
c_{0}+c_{2} x^{2}+c_{3} x^{3}+c_{M} x^{M}
$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_{0}, c_{2}, c_{3}>0$. Can c_{M} be negative? (Not known.)

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies: Suppose $c_{0}, c_{2}, c_{3} \neq 0$ are real, $M \geqslant 4$, and

$$
c_{0}+c_{2} x^{2}+c_{3} x^{3}+c_{M} x^{M}
$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_{0}, c_{2}, c_{3}>0$. Can c_{M} be negative? (Not known.)

General case:
Fix integers $N \geqslant 3$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, not all n_{j} consecutive.

Outstanding questions: 1 . More general polynomials

Analogue of Loewner's necessary condition implies: Suppose $c_{0}, c_{2}, c_{3} \neq 0$ are real, $M \geqslant 4$, and

$$
c_{0}+c_{2} x^{2}+c_{3} x^{3}+c_{M} x^{M}
$$

entrywise preserves positivity on 3×3 correlation matrices.
Then $c_{0}, c_{2}, c_{3}>0$. Can c_{M} be negative? (Not known.)
General case:
Fix integers $N \geqslant 3$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, not all n_{j} consecutive. Also fix real scalars $\rho>0$ and $c_{n_{0}}, \ldots, c_{n_{N-1}} \neq 0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{n_{j}}>0$ for all j.

Outstanding questions: 1 . More general polynomials

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{2}, c_{3} \neq 0$ are real, $M \geqslant 4$, and

$$
c_{0}+c_{2} x^{2}+c_{3} x^{3}+c_{M} x^{M}
$$

entrywise preserves positivity on 3×3 correlation matrices.
Then $c_{0}, c_{2}, c_{3}>0$. Can c_{M} be negative? (Not known.)
General case:
Fix integers $N \geqslant 3$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, not all n_{j} consecutive.
Also fix real scalars $\rho>0$ and $c_{n_{0}}, \ldots, c_{n_{N-1}} \neq 0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{n_{j}}>0$ for all j.
Can c_{M} be negative? How about a sharp bound, as above?
(More generally, which coefficients in a polynomial preserver can be negative?)

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies: Suppose $c_{0}, c_{e}, c_{\pi} \neq 0$ are real, $M \in(\pi, \infty)$, and

$$
c_{0}+c_{e} x^{e}+c_{\pi} x^{\pi}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{3}((0, \rho))$.
Then $c_{0}, c_{e}, c_{\pi}>0$.

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies: Suppose $c_{0}, c_{e}, c_{\pi} \neq 0$ are real, $M \in(\pi, \infty)$, and

$$
c_{0}+c_{e} x^{e}+c_{\pi} x^{\pi}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{3}((0, \rho))$.
Then $c_{0}, c_{e}, c_{\pi}>0$. Can c_{M} be negative? (Not known.)

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{e}, c_{\pi} \neq 0$ are real, $M \in(\pi, \infty)$, and

$$
c_{0}+c_{e} x^{e}+c_{\pi} x^{\pi}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{3}((0, \rho))$.
Then $c_{0}, c_{e}, c_{\pi}>0$. Can c_{M} be negative? (Not known.)
General case:
Fix an integer $N \geqslant 3$ and real powers $0 \leqslant n_{0}<\cdots<n_{N-1}<M$.

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{e}, c_{\pi} \neq 0$ are real, $M \in(\pi, \infty)$, and

$$
c_{0}+c_{e} x^{e}+c_{\pi} x^{\pi}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{3}((0, \rho))$.
Then $c_{0}, c_{e}, c_{\pi}>0$. Can c_{M} be negative? (Not known.)
General case:
Fix an integer $N \geqslant 3$ and real powers $0 \leqslant n_{0}<\cdots<n_{N-1}<M$.
Also fix positive real scalars $\rho, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{n_{j}}>0$ for all j.

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{e}, c_{\pi} \neq 0$ are real, $M \in(\pi, \infty)$, and

$$
c_{0}+c_{e} x^{e}+c_{\pi} x^{\pi}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{3}((0, \rho))$.
Then $c_{0}, c_{e}, c_{\pi}>0$. Can c_{M} be negative? (Not known.)
General case:
Fix an integer $N \geqslant 3$ and real powers $0 \leqslant n_{0}<\cdots<n_{N-1}<M$.
Also fix positive real scalars $\rho, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{n_{j}}>0$ for all j.
Can c_{M} be negative? How about a sharp bound, as above? (More generally, which coefficients in such a preserver can be negative?)

Outstanding questions: 3. Unbounded domains

Consequence of Loewner's necessary condition:
Let $N \in \mathbb{N}$ and $c_{0}, \ldots, c_{2 N} \neq 0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{j} x^{j}+c_{N} x^{N}+\sum_{j=N+1}^{2 N} c_{j} x^{j}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \infty))$. Then:

- By considering $f(x)$, we obtain $c_{0}, \ldots, c_{N-1}>0$.
- By considering $f(1 / x) x^{2 N}$, we obtain: $c_{N+1}, \ldots, c_{2 N}>0$.

Outstanding questions: 3. Unbounded domains

Consequence of Loewner's necessary condition:
Let $N \in \mathbb{N}$ and $c_{0}, \ldots, c_{2 N} \neq 0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{j} x^{j}+c_{N} x^{N}+\sum_{j=N+1}^{2 N} c_{j} x^{j}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \infty))$. Then:

- By considering $f(x)$, we obtain $c_{0}, \ldots, c_{N-1}>0$.
- By considering $f(1 / x) x^{2 N}$, we obtain: $c_{N+1}, \ldots, c_{2 N}>0$.

Can c_{N} be negative?

(More generally, which coefficients in a polynomial preserver can be negative?)

Outstanding questions: 3. Unbounded domains

Consequence of Loewner's necessary condition:
Let $N \in \mathbb{N}$ and $c_{0}, \ldots, c_{2 N} \neq 0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{j} x^{j}+c_{N} x^{N}+\sum_{j=N+1}^{2 N} c_{j} x^{j}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \infty))$. Then:

- By considering $f(x)$, we obtain $c_{0}, \ldots, c_{N-1}>0$.
- By considering $f(1 / x) x^{2 N}$, we obtain: $c_{N+1}, \ldots, c_{2 N}>0$.

Can c_{N} be negative?

(More generally, which coefficients in a polynomial preserver can be negative?)

- The same question, for sums of real powers.

Selected publications

A. Belton, D. Guillot, A. Khare, and M. Putinar:
[1] Matrix positivity preservers in fixed dimension. I, Advances in Math., 2016.
[2] Moment-sequence transforms, J. Eur. Math. Soc., accepted.
[3] A panorama of positivity (survey), Shimorin volume + Ransford- 60 proc.
[4] On the sign patterns of entrywise positivity preservers in fixed dimension, (With T. Tao) Amer. J. Math., in press.
[5] Matrix analysis and preservers of (total) positivity, 2020+, Lecture notes (website); forthcoming book - Cambridge Press + TRIM.

