Entrywise positivity preservers in fixed dimension: I

Apoorva Khare

IISc and APRG (Bangalore, India)

(Joint with Alexander Belton, Dominique Guillot, and Mihai Putinar; and with Terence Tao)

Introduction

Definition. A real symmetric matrix $A_{N \times N}$ is *positive semidefinite* if all eigenvalues of A are ≥ 0 . (Equivalently, $u^T A u \ge 0$ for all $u \in \mathbb{R}^N$.)

Positivity (and preserving it) studied in many settings in the literature.

Introduction

Definition. A real symmetric matrix $A_{N \times N}$ is *positive semidefinite* if all eigenvalues of A are ≥ 0 . (Equivalently, $u^T A u \ge 0$ for all $u \in \mathbb{R}^N$.)

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

- Positive semidefinite matrices (correlation and covariance matrices)
- Positive definite sequences/Toeplitz matrices (measures on S¹)
- Moment sequences/Hankel matrices (measures on \mathbb{R})
- Totally positive matrices and kernels (Pólya frequency functions/sequences)
- Hilbert space kernels
- Positive definite functions on metric spaces, topological (semi)groups

Introduction

Definition. A real symmetric matrix $A_{N \times N}$ is *positive semidefinite* if all eigenvalues of A are ≥ 0 . (Equivalently, $u^T A u \ge 0$ for all $u \in \mathbb{R}^N$.)

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

- Positive semidefinite matrices (correlation and covariance matrices)
- Positive definite sequences/Toeplitz matrices (measures on S¹)
- Moment sequences/Hankel matrices (measures on \mathbb{R})
- Totally positive matrices and kernels (Pólya frequency functions/sequences)
- Hilbert space kernels
- Positive definite functions on metric spaces, topological (semi)groups

Question: Classify the positivity preservers in these settings.

Studied for the better part of a century.

Entrywise functions preserving positivity

Given $N \ge 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f: I \to \mathbb{R}$, when is it true that

 $f[A] := (f(a_{ij})) \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$?

(Long history!)

Entrywise functions preserving positivity

Given $N \ge 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f: I \to \mathbb{R}$, when is it true that

 $f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$

(Long history!) The Hadamard product (or Schur, or entrywise product) of two matrices is given by: $A \circ B = (a_{ij}b_{ij})$.

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If $A, B \in \mathbb{P}_N$, then $A \circ B \in \mathbb{P}_N$.

Entrywise functions preserving positivity

Given $N \ge 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f: I \to \mathbb{R}$, when is it true that

 $f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$

(Long history!) The Hadamard product (or Schur, or entrywise product) of two matrices is given by: $A \circ B = (a_{ij}b_{ij})$.

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If $A, B \in \mathbb{P}_N$, then $A \circ B \in \mathbb{P}_N$.

Pólya-Szegö: As a consequence,

• $f(x) = x^2, x^3, \dots, x^k$ preserves positivity on \mathbb{P}_N for all N, k.

Entrywise functions preserving positivity

Given $N \ge 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f: I \to \mathbb{R}$, when is it true that

 $f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$

(Long history!) The Hadamard product (or Schur, or entrywise product) of two matrices is given by: $A \circ B = (a_{ij}b_{ij})$.

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If $A, B \in \mathbb{P}_N$, then $A \circ B \in \mathbb{P}_N$.

Pólya-Szegö: As a consequence,

- $f(x) = x^2, x^3, \dots, x^k$ preserves positivity on \mathbb{P}_N for all N, k.
- $f(x) = \sum_{k=0}^{l} c_k x^k$ preserves positivity if $c_k \ge 0$.

Entrywise functions preserving positivity

Given $N \ge 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f: I \to \mathbb{R}$, when is it true that

 $f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$

(Long history!) The Hadamard product (or Schur, or entrywise product) of two matrices is given by: $A \circ B = (a_{ij}b_{ij})$.

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If $A, B \in \mathbb{P}_N$, then $A \circ B \in \mathbb{P}_N$.

Pólya-Szegö: As a consequence,

- $f(x) = x^2, x^3, \dots, x^k$ preserves positivity on \mathbb{P}_N for all N, k.
- $f(x) = \sum_{k=0}^{l} c_k x^k$ preserves positivity if $c_k \ge 0$.
- Taking limits: if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \ge 0$, then f[-] preserves positivity.

Entrywise functions preserving positivity

Given $N \ge 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f: I \to \mathbb{R}$, when is it true that

 $f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$

(Long history!) The Hadamard product (or Schur, or entrywise product) of two matrices is given by: $A \circ B = (a_{ij}b_{ij})$.

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If $A, B \in \mathbb{P}_N$, then $A \circ B \in \mathbb{P}_N$.

Pólya-Szegö: As a consequence,

- $f(x) = x^2, x^3, \dots, x^k$ preserves positivity on \mathbb{P}_N for all N, k.
- $f(x) = \sum_{k=0}^{l} c_k x^k$ preserves positivity if $c_k \ge 0$.
- Taking limits: if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \ge 0$, then f[-] preserves positivity.
- Anything else?

Apoorva Khare, IISc Bangalore

Schoenberg and Rudin's theorems One classical and two modern connections

Schoenberg's theorem

Question (Pólya-Szegö, 1925): Anything else?

Schoenberg's theorem

Question (Pólya–Szegö, 1925): Anything else? Remarkably, the answer is **no**, if we want to preserve positivity in *all* dimensions.

Theorem (Schoenberg, Duke Math. J. 1942)

If $f: [-1,1] \to \mathbb{R}$ is continuous, the following are equivalent:

- $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N([-1,1])$ and all N.
- If is analytic on I and has nonnegative Maclaurin coefficients. In other words, f(x) = ∑_{k=0}[∞] c_kx^k on [-1,1] with all c_k ≥ 0.

Schoenberg's theorem

Question (Pólya–Szegö, 1925): Anything else? Remarkably, the answer is **no**, if we want to preserve positivity in *all* dimensions.

Theorem (Schoenberg, Duke Math. J. 1942)

If $f: [-1,1] \to \mathbb{R}$ is continuous, the following are equivalent:

- $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N([-1,1])$ and all N.
- If is analytic on I and has nonnegative Maclaurin coefficients. In other words, f(x) = ∑_{k=0}[∞] c_kx^k on [-1,1] with all c_k ≥ 0.

Schoenberg's theorem is the far harder converse to the result of his advisor (Schur).

Rudin (a) removed the continuity hypothesis, and (b) greatly reduced the test set:

Schoenberg and Rudin's theorems One classical and two modern connections

Toeplitz and Hankel matrices (cont.)

Let $0 < \rho \leqslant \infty$ be a scalar, and set $I = (-\rho, \rho)$.

Theorem (Rudin, Duke Math. J. 1959)

Given a function $f: I \to \mathbb{R}$, the following are equivalent:

 $I f[A] \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I) \text{ and all } N.$

2 f[-] preserves positivity on Toeplitz matrices of all sizes and rank ≤ 3 .

Schoenberg and Rudin's theorems One classical and two modern connections

Toeplitz and Hankel matrices (cont.)

Let $0 < \rho \leqslant \infty$ be a scalar, and set $I = (-\rho, \rho)$.

Theorem (Rudin, Duke Math. J. 1959)

Given a function $f: I \to \mathbb{R}$, the following are equivalent:

 $I f[A] \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I) \text{ and all } N.$

2 f[-] preserves positivity on Toeplitz matrices of all sizes and rank ≤ 3 .

In other words, f(x) = ∑_{k=0}[∞] c_kx^k on (-1,1) with all c_k ≥ 0.

Schoenberg and Rudin's theorems One classical and two modern connections

Toeplitz and Hankel matrices (cont.)

Let $0 < \rho \leqslant \infty$ be a scalar, and set $I = (-\rho, \rho)$.

Theorem (Rudin, Duke Math. J. 1959)

Given a function $f: I \to \mathbb{R}$, the following are equivalent:

2 f[-] preserves positivity on Toeplitz matrices of all sizes and rank ≤ 3 .

 f is analytic on I and has nonnegative Maclaurin coefficients. In other words, f(x) = ∑_{k=0}[∞] c_kx^k on (-1,1) with all c_k ≥ 0.

Theorem (Belton–Guillot–K.–Putinar, J. Eur. Math. Soc., accepted)

Given a function $f: I \to \mathbb{R}$, the following are equivalent:

•
$$f[A] \in \mathbb{P}_N$$
 for all $A \in \mathbb{P}_N(I)$ and all N .

2 f[-] preserves positivity on Hankel matrices of all sizes and rank ≤ 3 .

I is analytic on I and has nonnegative Maclaurin coefficients.

Positive semidefinite kernels

- These two results greatly weaken the hypotheses of Schoenberg's theorem only need to consider positive semidefinite matrices of rank ≤ 3 .
- Note, such matrices are precisely the Gram matrices of vectors in a 3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let \mathcal{H} be a real Hilbert space of dimension ≥ 3 . If f[-] preserves positivity on all Gram matrices in \mathcal{H} , then f is a power series on \mathbb{R} with non-negative Maclaurin coefficients.

Positive semidefinite kernels

- These two results greatly weaken the hypotheses of Schoenberg's theorem only need to consider positive semidefinite matrices of rank ≤ 3 .
- Note, such matrices are precisely the Gram matrices of vectors in a 3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let \mathcal{H} be a real Hilbert space of dimension ≥ 3 . If f[-] preserves positivity on all Gram matrices in \mathcal{H} , then f is a power series on \mathbb{R} with non-negative Maclaurin coefficients.

• But such functions are precisely the *positive semidefinite kernels on* H! (Results of Pinkus et al.) Such kernels are important in modern day machine learning, via RKHS.

Positive semidefinite kernels

- These two results greatly weaken the hypotheses of Schoenberg's theorem only need to consider positive semidefinite matrices of rank ≤ 3 .
- Note, such matrices are precisely the Gram matrices of vectors in a 3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let \mathcal{H} be a real Hilbert space of dimension ≥ 3 . If f[-] preserves positivity on all Gram matrices in \mathcal{H} , then f is a power series on \mathbb{R} with non-negative Maclaurin coefficients.

- But such functions are precisely the *positive semidefinite kernels on* H! (Results of Pinkus et al.) Such kernels are important in modern day machine learning, via RKHS.
- Thus, Rudin (1959) classified positive semidefinite kernels on \mathbb{R}^3 , which is relevant in machine learning. (Now also via our parallel 'Hankel' result.)

Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

Notice that every sphere S^{r−1} – whence the Hilbert sphere S[∞] – has a rotation-invariant distance. Namely, the *arc-length* along a great circle:

 $d(x,y) := \sphericalangle(x,y) = \arccos\langle x,y \rangle, \qquad x,y \in S^{\infty}.$

Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

Notice that every sphere S^{r−1} – whence the Hilbert sphere S[∞] – has a rotation-invariant distance. Namely, the *arc-length* along a great circle:

$$d(x,y) := \sphericalangle(x,y) = \arccos\langle x,y \rangle, \qquad x,y \in S^{\infty}.$$

• Applying $\cos[-]$ entrywise to any distance matrix on S^{∞} yields: $\cos[(d(x_i, x_j))_{i,j \ge 0}] = (\langle x_i, x_j \rangle)_{i,j \ge 0},$

and this is a Gram matrix, so $\cos(\cdot)$ is positive definite on S^{∞} .

Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

Notice that every sphere S^{r−1} – whence the Hilbert sphere S[∞] – has a rotation-invariant distance. Namely, the *arc-length* along a great circle:

$$d(x,y) := \sphericalangle(x,y) = \arccos\langle x,y \rangle, \qquad x,y \in S^{\infty}.$$

• Applying
$$\cos[-]$$
 entrywise to any distance matrix on S^{∞} yields:

$$\cos[(d(x_i, x_j))_{i,j \ge 0}] = (\langle x_i, x_j \rangle)_{i,j \ge 0},$$

and this is a Gram matrix, so $\cos(\cdot)$ is positive definite on S^{∞} .

Schoenberg then classified all continuous f such that $f \circ \cos(\cdot)$ is p.d.:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose $f : [-1,1] \to \mathbb{R}$ is continuous, and $r \ge 2$. Then $f(\cos \cdot)$ is positive definite on the unit sphere $S^{r-1} \subset \mathbb{R}^r$ if and only if

$$f(\cdot) = \sum_{k>0} a_k C_k^{\left(\frac{r-2}{2}\right)}(\cdot) \qquad \text{for some } a_k \ge 0$$

where $C_k^{(\lambda)}(\cdot)$ are the ultraspherical / Gegenbauer / Chebyshev polynomials.

Schoenberg and Rudin's theorems One classical and two modern connections

From spheres to correlation matrices

 Any Gram matrix of vectors x_j ∈ S^{r-1} is the same as a rank ≤ r correlation matrix A = (a_{ij})ⁿ_{i,j=1}, i.e.,

$$\overset{\Bbbk}{A} = \begin{pmatrix} 1 & * \\ 1 & * \\ * & 1 \\ * & 1 \end{pmatrix} = \begin{pmatrix} - & x_1^T & - \\ - & x_2^T & - \\ \vdots \\ - & x_n^T & - \end{pmatrix} \begin{pmatrix} | & | & | \\ x_1 & x_2 & \dots & x_n \\ | & | & - & | \end{pmatrix} = (\langle x_i, x_j \rangle)_{i,j=1}^n.$$

Schoenberg and Rudin's theorems One classical and two modern connections

From spheres to correlation matrices

 Any Gram matrix of vectors x_j ∈ S^{r-1} is the same as a rank ≤ r correlation matrix A = (a_{ij})ⁿ_{i,j=1}, i.e.,

$$\overset{\Bbbk}{A} = \begin{pmatrix} 1 & * \\ 1 & \\ * & 1 \\ * & 1 \end{pmatrix} = \begin{pmatrix} - & x_1^T & - \\ - & x_2^T & - \\ \vdots & \\ - & x_n^T & - \end{pmatrix} \begin{pmatrix} | & | & | \\ x_1 & x_2 & \dots & x_n \\ | & | & | \end{pmatrix} = (\langle x_i, x_j \rangle)_{i,j=1}^n.$$

• So,

 $f(\cos \cdot)$ positive definite on S^{r-1}

Schoenberg and Rudin's theorems One classical and two modern connections

From spheres to correlation matrices

 Any Gram matrix of vectors x_j ∈ S^{r-1} is the same as a rank ≤ r correlation matrix A = (a_{ij})ⁿ_{i,j=1}, i.e.,

$$\overset{\Bbbk}{A} = \begin{pmatrix} 1 & * \\ 1 & \\ * & 1 \\ * & 1 \end{pmatrix} = \begin{pmatrix} - & x_1^T & - \\ - & x_2^T & - \\ \vdots & \\ - & x_n^T & - \end{pmatrix} \begin{pmatrix} | & | & | \\ x_1 & x_2 & \dots & x_n \\ | & | & | \end{pmatrix} = (\langle x_i, x_j \rangle)_{i,j=1}^n.$$

• So,

 $\begin{aligned} f(\cos \cdot) \text{ positive definite on } S^{r-1} & \iff & (f(\cos d(x_i, x_j)))_{i,j=1}^n \in \mathbb{P}_n \\ & \iff & (f(\langle x_i, x_j \rangle))_{i,j=1}^n \in \mathbb{P}_n \\ & \iff & (f(a_{ij}))_{i,j=1}^n \in \mathbb{P}_n \ \forall n \ge 1, \end{aligned}$

i.e., f preserves positivity on correlation matrices of rank $\leq r$.

Schoenberg and Rudin's theorems One classical and two modern connections

From spheres to correlation matrices

 Any Gram matrix of vectors x_j ∈ S^{r-1} is the same as a rank ≤ r correlation matrix A = (a_{ij})ⁿ_{i,j=1}, i.e.,

$$\overset{\Bbbk}{A} = \begin{pmatrix} 1 & * \\ 1 & \\ * & 1 \\ * & 1 \end{pmatrix} = \begin{pmatrix} - & x_1^T & - \\ - & x_2^T & - \\ \vdots & \\ - & x_n^T & - \end{pmatrix} \begin{pmatrix} | & | & | \\ x_1 & x_2 & \dots & x_n \\ | & | & | \end{pmatrix} = (\langle x_i, x_j \rangle)_{i,j=1}^n.$$

So,

$$\begin{aligned} f(\cos \cdot) \text{ positive definite on } S^{r-1} & \iff \quad (f(\cos d(x_i, x_j)))_{i,j=1}^n \in \mathbb{P}_n \\ & \iff \quad (f(\langle x_i, x_j \rangle))_{i,j=1}^n \in \mathbb{P}_n \\ & \iff \quad (f(a_{ij}))_{i,j=1}^n \in \mathbb{P}_n \; \forall n \ge 1, \end{aligned}$$

i.e., f preserves positivity on correlation matrices of rank $\leq r$.

• If instead $r = \infty$, such a result would classify the entrywise positivity preservers on all correlation matrices.

Schoenberg and Rudin's theorems One classical and two modern connections

From spheres to correlation matrices

 Any Gram matrix of vectors x_j ∈ S^{r-1} is the same as a rank ≤ r correlation matrix A = (a_{ij})ⁿ_{i,j=1}, i.e.,

$$\overset{\textcircled{}}{A} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & \\ & & & \\ & & & 1 \end{pmatrix} = \begin{pmatrix} - & x_1^T & - \\ - & x_2^T & - \\ & \vdots & \\ - & x_n^T & - \end{pmatrix} \begin{pmatrix} | & | & | & | \\ x_1 & x_2 & \dots & x_n \\ | & | & & | \end{pmatrix} = (\langle x_i, x_j \rangle)_{i,j=1}^n.$$

So,

$$f(\cos \cdot) \text{ positive definite on } S^{r-1} \iff (f(\cos d(x_i, x_j)))_{i,j=1}^n \in \mathbb{P}_n$$
$$\iff (f(\langle x_i, x_j \rangle))_{i,j=1}^n \in \mathbb{P}_n$$
$$\iff (f(a_{ij}))_{i,j=1}^n \in \mathbb{P}_n \forall n \ge 1,$$

i.e., f preserves positivity on correlation matrices of rank $\leq r$.

 If instead r = ∞, such a result would classify the entrywise positivity preservers on all correlation matrices. Interestingly, 70 years later the subject has acquired renewed interest because of its immediate impact in high-dimensional covariance estimation, in several applied fields.

Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from S^{r-1} to $S^\infty\colon$

Theorem (Schoenberg, *Duke Math. J.* 1942)

Suppose $f: [-1,1] \to \mathbb{R}$ is continuous. Then $f(\cos \cdot)$ is positive definite on the Hilbert sphere $S^{\infty} \subset \mathbb{R}^{\infty} = \ell^2$ if and only if

$$f(\cos\theta) = \sum_{k \ge 0} c_k \cos^k \theta,$$

where $c_k \ge 0 \ \forall k$ are such that $\sum_k c_k < \infty$.

Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from S^{r-1} to $S^\infty\colon$

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose $f: [-1,1] \to \mathbb{R}$ is continuous. Then $f(\cos \cdot)$ is positive definite on the Hilbert sphere $S^{\infty} \subset \mathbb{R}^{\infty} = \ell^2$ if and only if

$$f(\cos\theta) = \sum_{k \ge 0} c_k \cos^k \theta,$$

where $c_k \ge 0 \ \forall k$ are such that $\sum_k c_k < \infty$.

(By the Schur product theorem, $\cos^k \theta$ is positive definite on S^{∞} .)

Freeing this result from the sphere context, one obtains Schoenberg's theorem on entrywise positivity preservers.

Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from S^{r-1} to $S^\infty\colon$

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose $f: [-1,1] \to \mathbb{R}$ is continuous. Then $f(\cos \cdot)$ is positive definite on the Hilbert sphere $S^{\infty} \subset \mathbb{R}^{\infty} = \ell^2$ if and only if

$$f(\cos\theta) = \sum_{k \ge 0} c_k \cos^k \theta,$$

where $c_k \ge 0 \ \forall k$ are such that $\sum_k c_k < \infty$.

(By the Schur product theorem, $\cos^k \theta$ is positive definite on S^{∞} .)

Freeing this result from the sphere context, one obtains Schoenberg's theorem on entrywise positivity preservers.

For more information: A panorama of positivity – arXiv, Dec. 2018. (Survey, 80+ pp., by A. Belton, D. Guillot, A.K., and M. Putinar.)

Schoenberg and Rudin's theorems One classical and two modern connections

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

$$\Sigma = (\sigma_{ij})_{i,j=1}^p, \qquad \sigma_{ij} = \operatorname{Cov}(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j].$$

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

 $\Sigma = (\sigma_{ij})_{i,j=1}^p, \qquad \sigma_{ij} = \operatorname{Cov}(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j].$

• Important question: Estimate Σ from data $x_1, \ldots, x_n \in \mathbb{R}^p$.

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

$$\Sigma = (\sigma_{ij})_{i,j=1}^p, \qquad \sigma_{ij} = \operatorname{Cov}(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j].$$

- Important question: Estimate Σ from data $x_1, \ldots, x_n \in \mathbb{R}^p$.
- In modern-day settings (small samples, ultra-high dimension), covariance estimation can be very challenging.
- Classical estimators (e.g. sample covariance matrix (MLE)):

$$S = \frac{1}{n} \sum_{j=1}^{n} (x_j - \overline{x}) (x_j - \overline{x})^T$$

perform poorly, are singular/ill-conditioned, etc.

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

$$\Sigma = (\sigma_{ij})_{i,j=1}^p, \qquad \sigma_{ij} = \operatorname{Cov}(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j].$$

- Important question: Estimate Σ from data $x_1, \ldots, x_n \in \mathbb{R}^p$.
- In modern-day settings (small samples, ultra-high dimension), covariance estimation can be very challenging.
- Classical estimators (e.g. sample covariance matrix (MLE)):

$$S = \frac{1}{n} \sum_{j=1}^{n} (x_j - \overline{x}) (x_j - \overline{x})^T$$

perform poorly, are singular/ill-conditioned, etc.

• Require some form of *regularization* – and resulting matrix has to be positive semidefinite (in the parameter space) for applications.

Apoorva Khare, IISc Bangalore

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics. Let X_1, \ldots, X_p be a collection of random variables.

- Very large vectors: rare that all X_j depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics. Let X_1, \ldots, X_p be a collection of random variables.

- Very large vectors: rare that all X_j depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.
- Leverage the independence/conditional independence structure to reduce dimension – translates to zeros in covariance/inverse covariance matrix.

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.

Let X_1, \ldots, X_p be a collection of random variables.

- Very large vectors: rare that all X_j depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.
- Leverage the independence/conditional independence structure to reduce dimension translates to zeros in covariance/inverse covariance matrix.
- Modern approach: Compressed sensing methods (Daubechies, Donoho, Candes, Tao, ...) use convex optimization to obtain a sparse estimate of Σ (e.g., ℓ^1 -penalized likelihood methods).
- State-of-the-art for ~ 20 years.

Works well for dimensions of a few thousands.

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.

Let X_1, \ldots, X_p be a collection of random variables.

- Very large vectors: rare that all X_j depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.
- Leverage the independence/conditional independence structure to reduce dimension translates to zeros in covariance/inverse covariance matrix.
- Modern approach: Compressed sensing methods (Daubechies, Donoho, Candes, Tao, ...) use convex optimization to obtain a sparse estimate of Σ (e.g., ℓ^1 -penalized likelihood methods).
- State-of-the-art for ~ 20 years.

Works well for dimensions of a few thousands.

• Not scalable to modern-day problems with 100,000+ variables (disease detection, climate sciences, finance...).

Schoenberg and Rudin's theorems One classical and two modern connections

Thresholding and regularization

Thresholding covariance/correlation matrices

True
$$\Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix}$$
, $S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.47 \\ 0.02 & 0.47 & 0.98 \end{pmatrix}$

Schoenberg and Rudin's theorems One classical and two modern connections

Thresholding and regularization

Thresholding covariance/correlation matrices

True
$$\Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix}$$
, $S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.47 \\ 0.02 & 0.47 & 0.98 \end{pmatrix}$

Natural to threshold small entries (thinking the variables are independent):

$$\tilde{S} = \begin{pmatrix} 0.95 & 0.18 & \mathbf{0} \\ 0.18 & 0.96 & 0.47 \\ \mathbf{0} & 0.47 & 0.98 \end{pmatrix}$$

Thresholding and regularization

Thresholding covariance/correlation matrices

True
$$\Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix}$$
, $S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.47 \\ 0.02 & 0.47 & 0.98 \end{pmatrix}$

Natural to threshold small entries (thinking the variables are independent):

$$\tilde{S} = \begin{pmatrix} 0.95 & 0.18 & \mathbf{0} \\ 0.18 & 0.96 & 0.47 \\ \mathbf{0} & 0.47 & 0.98 \end{pmatrix}$$

Can be significant if p=100,000 and only, say, $\sim 1\%$ of the entries of the true Σ are nonzero.

Schoenberg and Rudin's theorems One classical and two modern connections

Entrywise functions – regularization

More generally, we could apply a function $f : \mathbb{R} \to \mathbb{R}$ to the elements of the matrix S – *regularization*:

More generally, we could apply a function $f : \mathbb{R} \to \mathbb{R}$ to the elements of the matrix S – *regularization*:

$$\widehat{\Sigma} = f[S] := \begin{pmatrix} f(\sigma_{11}) & f(\sigma_{12}) & \dots & f(\sigma_{1N}) \\ f(\sigma_{21}) & f(\sigma_{22}) & \dots & f(\sigma_{2N}) \\ \vdots & \vdots & \ddots & \vdots \\ f(\sigma_{N1}) & f(\sigma_{N2}) & \dots & f(\sigma_{NN}) \end{pmatrix}$$

(Example on previous slide is $f_{\epsilon}(x) = x \cdot \mathbf{1}_{|x| > \epsilon}$ for some $\epsilon > 0$.)

More generally, we could apply a function $f : \mathbb{R} \to \mathbb{R}$ to the elements of the matrix S – *regularization*:

$$\widehat{\Sigma} = f[S] := \begin{pmatrix} f(\sigma_{11}) & f(\sigma_{12}) & \dots & f(\sigma_{1N}) \\ f(\sigma_{21}) & f(\sigma_{22}) & \dots & f(\sigma_{2N}) \\ \vdots & \vdots & \ddots & \vdots \\ f(\sigma_{N1}) & f(\sigma_{N2}) & \dots & f(\sigma_{NN}) \end{pmatrix}$$

(Example on previous slide is $f_{\epsilon}(x) = x \cdot \mathbf{1}_{|x| > \epsilon}$ for some $\epsilon > 0$.)

• Highly scalable. Analysis on the cone - no optimization.

More generally, we could apply a function $f : \mathbb{R} \to \mathbb{R}$ to the elements of the matrix S – *regularization*:

$$\widehat{\Sigma} = f[S] := \begin{pmatrix} f(\sigma_{11}) & f(\sigma_{12}) & \dots & f(\sigma_{1N}) \\ f(\sigma_{21}) & f(\sigma_{22}) & \dots & f(\sigma_{2N}) \\ \vdots & \vdots & \ddots & \vdots \\ f(\sigma_{N1}) & f(\sigma_{N2}) & \dots & f(\sigma_{NN}) \end{pmatrix}$$

(Example on previous slide is $f_{\epsilon}(x) = x \cdot \mathbf{1}_{|x| > \epsilon}$ for some $\epsilon > 0$.)

- Highly scalable. Analysis on the cone no optimization.
- Regularized matrix f[S] further used in applications, where (estimates of) Σ required in procedures such as PCA, CCA, MANOVA, etc.

More generally, we could apply a function $f : \mathbb{R} \to \mathbb{R}$ to the elements of the matrix S – *regularization*:

$$\widehat{\Sigma} = f[S] := \begin{pmatrix} f(\sigma_{11}) & f(\sigma_{12}) & \dots & f(\sigma_{1N}) \\ f(\sigma_{21}) & f(\sigma_{22}) & \dots & f(\sigma_{2N}) \\ \vdots & \vdots & \ddots & \vdots \\ f(\sigma_{N1}) & f(\sigma_{N2}) & \dots & f(\sigma_{NN}) \end{pmatrix}$$

(Example on previous slide is $f_{\epsilon}(x) = x \cdot \mathbf{1}_{|x| > \epsilon}$ for some $\epsilon > 0$.)

- Highly scalable. Analysis on the cone no optimization.
- Regularized matrix f[S] further used in applications, where (estimates of) Σ required in procedures such as PCA, CCA, MANOVA, etc.
- Question: When does this procedure preserve positive (semi)definiteness? Critical for applications since $\Sigma \in \mathbb{P}_N$.

More generally, we could apply a function $f : \mathbb{R} \to \mathbb{R}$ to the elements of the matrix S – *regularization*:

$$\widehat{\Sigma} = f[S] := \begin{pmatrix} f(\sigma_{11}) & f(\sigma_{12}) & \dots & f(\sigma_{1N}) \\ f(\sigma_{21}) & f(\sigma_{22}) & \dots & f(\sigma_{2N}) \\ \vdots & \vdots & \ddots & \vdots \\ f(\sigma_{N1}) & f(\sigma_{N2}) & \dots & f(\sigma_{NN}) \end{pmatrix}$$

(Example on previous slide is $f_{\epsilon}(x) = x \cdot \mathbf{1}_{|x| > \epsilon}$ for some $\epsilon > 0$.)

- Highly scalable. Analysis on the cone no optimization.
- Regularized matrix f[S] further used in applications, where (estimates of) Σ required in procedures such as PCA, CCA, MANOVA, etc.
- Question: When does this procedure preserve positive (semi)definiteness? Critical for applications since $\Sigma \in \mathbb{P}_N$.

Problem: For what functions $f : \mathbb{R} \to \mathbb{R}$, does f[-] preserve \mathbb{P}_N ?

Apoorva Khare, IISc Bangalore

General and polynomial preservers The main result + proof, via Schur polynomials

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of all dimensions: $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$ and all N.

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of *all* dimensions: $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$ and **all** N.

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of *all* dimensions: $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$ and **all** N.

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of *all* dimensions: $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$ and **all** N.

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, *IJPAM* 1979):

f is nondecreasing and $f(x)f(y) \ge f(\sqrt{xy})^2$ on $(0,\infty)$.

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of *all* dimensions: $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$ and **all** N.

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, *IJPAM* 1979):

f is nondecreasing and $f(x)f(y) \ge f(\sqrt{xy})^2$ on $(0,\infty)$.

• Open for $N \ge 3$.

Apoorva Khare, IISc Bangalore

General and polynomial preservers The main result + proof, via Schur polynomials

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_N with $N \ge 3$.

General and polynomial preservers The main result + proof, via Schur polynomials

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_N with $N \ge 3$. (Was not known since Schoenberg's *Duke* 1942 paper.)

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_N with $N \ge 3$. (Was not known since Schoenberg's *Duke* 1942 paper.)

Fixed $N \geqslant 3$ and general $f \rightsquigarrow$ only known necessary condition, by Loewner:

Theorem (Horn-Loewner, Guillot-K.-Rajaratnam, Trans. AMS 1969, 2017)

Fix $I = (0, \infty)$ and $f : I \to \mathbb{R}$. Suppose $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$ Hankel of rank ≤ 2 , with N fixed.

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_N with $N \ge 3$. (Was not known since Schoenberg's *Duke* 1942 paper.)

Fixed $N \geqslant 3$ and general $f \rightsquigarrow$ only known necessary condition, by Loewner:

Theorem (Horn–Loewner, Guillot–K.–Rajaratnam, Trans. AMS 1969, 2017) Fix $I = (0, \infty)$ and $f : I \to \mathbb{R}$. Suppose $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$ Hankel of rank ≤ 2 , with N fixed. Then $f \in C^{N-3}(I)$ and $f, f', f'', \cdots, f^{(N-3)} \ge 0$ on I. If $f \in C^{N-1}(I)$ then $f^{(N-2)}, f^{(N-1)} \ge 0$ on I.

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_N with $N \ge 3$. (Was not known since Schoenberg's *Duke* 1942 paper.)

Fixed $N \geqslant 3$ and general $f \rightsquigarrow$ only known necessary condition, by Loewner:

Theorem (Horn–Loewner, Guillot–K.–Rajaratnam, Trans. AMS 1969, 2017) Fix $I = (0, \infty)$ and $f : I \to \mathbb{R}$. Suppose $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$ Hankel of rank ≤ 2 , with N fixed. Then $f \in C^{N-3}(I)$ and $f, f', f'', \cdots, f^{(N-3)} \ge 0$ on I. If $f \in C^{N-1}(I)$ then $f^{(N-2)}, f^{(N-1)} \ge 0$ on I.

- Implies Schoenberg-Rudin result for matrices with positive entries.
- Loewner had initially summarized these computations in a letter to Josephine Mitchell (Penn. State University) on October 24, 1967:

General and polynomial preservers The main result + proof, via Schur polynomials

Loewner's computations

when I got interested in the following question : Let ofthe be a function defined in som interval (a, 6), a 20 and consider all real og museture matrice (og) > 0 of order a will elements ag a (g a). Wheel. properties must for have incarder that the matrices (f(ag)) >0 I found as necessary conditions. flores, file, that if is mistimes differentiable the following conditions are necencer (C) \$1+) 20, \$1+) 20, -- \$1+1+) =0 The functions to (971) do not sale of these counditions for all 97 if n73. The proof is obtained by considering resolutions of the form any = a iffer a with a king a go and the ar articleary form (flag) > Observed formal for and the formation of the formation Then (flag) > Observed formal to determine the (flag) 20 The first they term in the Taylor expansion of Alco) at was is flas flas - flas . (TT (a, ag)) and hence f(a) f(a) - f(a) = 0, from which one easily derives that (C) manthold.

Apoorva Khare, IISc Bangalore

Consequence: Suppose $c_0, c_1, c_2 \neq 0$ are real, $M \ge 3$, and

$$c_0 + c_1 x + c_2 x^2 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_1, c_2 > 0$.

Consequence: Suppose $c_0, c_1, c_2 \neq 0$ are real, $M \ge 3$, and

$$c_0 + c_1 x + c_2 x^2 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_1, c_2 > 0$. Can c_M be negative? (Not known.)

Consequence: Suppose $c_0, c_1, c_2 \neq 0$ are real, $M \ge 3$, and

$$c_0 + c_1 x + c_2 x^2 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_1, c_2 > 0$. Can c_M be negative? (Not known.)

General case:

Let $M \ge N \in \mathbb{N}$ and $c_0, \ldots, c_{N-1} \ne 0$. Suppose $f(x) = \sum_{j=0}^{N-1} c_j x^j + c_M x^M$ preserves positivity on $\mathbb{P}_N((0, \rho))$. Then $c_0, \ldots, c_{N-1} > 0$. Can $c_M < 0$?

Consequence: Suppose $c_0, c_1, c_2 \neq 0$ are real, $M \ge 3$, and

$$c_0 + c_1 x + c_2 x^2 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_1, c_2 > 0$. Can c_M be negative? (Not known.)

General case:

Let
$$M \ge N \in \mathbb{N}$$
 and $c_0, \ldots, c_{N-1} \ne 0$. Suppose $f(x) = \sum_{j=0}^{N-1} c_j x^j + c_M x^M$
preserves positivity on $\mathbb{P}_N((0, \rho))$. Then $c_0, \ldots, c_{N-1} > 0$. Can $c_M < 0$?

<u>*Reformulation:*</u> Multiplying by $t = |c_M|^{-1}$, does

$$p_t(x) := t \sum_{j=0}^{N-1} c_j x^j - x^M$$

entrywise preserve positivity on $\mathbb{P}_N((0,\rho))$ for any t > 0?

Apoorva Khare, IISc Bangalore

Consequence: Suppose $c_0, c_1, c_2 \neq 0$ are real, $M \ge 3$, and

$$c_0 + c_1 x + c_2 x^2 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_1, c_2 > 0$. Can c_M be negative? (Not known.)

General case:

Let
$$M \ge N \in \mathbb{N}$$
 and $c_0, \ldots, c_{N-1} \ne 0$. Suppose $f(x) = \sum_{j=0}^{N-1} c_j x^j + c_M x^M$
preserves positivity on $\mathbb{P}_N((0, \rho))$. Then $c_0, \ldots, c_{N-1} > 0$. Can $c_M < 0$?

<u>*Reformulation:*</u> Multiplying by $t = |c_M|^{-1}$, does

$$p_t(x) := t \sum_{j=0}^{N-1} c_j x^j - x^M$$

entrywise preserve positivity on $\mathbb{P}_N((0,\rho))$ for any t > 0? No example known.

Apoorva Khare, IISc Bangalore

Main result

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Fix integers $M \ge N \ge 1$, and real scalars $\rho > 0$ and c_0, \ldots, c_{N-1} . For t > 0, define $p_t(z) := t \sum_{i=0}^{N-1} c_j z^j - z^M$.

Main result

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Fix integers $M \ge N \ge 1$, and real scalars $\rho > 0$ and c_0, \ldots, c_{N-1} . For t > 0, define $p_t(z) := t \sum_{j=0}^{N-1} c_j z^j - z^M$.

Then the following are equivalent.

- $p_t[-]$ preserves positivity on $\mathbb{P}_N(\overline{D}(0,\rho))$.
- 2 All coefficients $c_j > 0$, and

$$t \ge \mathcal{K}_{\rho,M} := \sum_{j=0}^{N-1} {\binom{M}{j}}^2 {\binom{M-j-1}{N-j-1}}^2 \frac{\rho^{M-j}}{c_j}.$$

Main result

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Fix integers $M \ge N \ge 1$, and real scalars $\rho > 0$ and c_0, \ldots, c_{N-1} . For t > 0, define $p_t(z) := t \sum_{i=0}^{N-1} c_j z^i - z^M$.

Then the following are equivalent.

)
$$p_t[-]$$
 preserves positivity on $\mathbb{P}_N(\overline{D}(0, \rho))$.

2 All coefficients $c_j > 0$, and

$$t \ge \mathcal{K}_{\rho,M} := \sum_{j=0}^{N-1} {\binom{M}{j}}^2 {\binom{M-j-1}{N-j-1}}^2 \frac{\rho^{M-j}}{c_j}.$$

3 $p_t[-]$ preserves positivity on Hankel rank-one matrices in $\mathbb{P}_N((0, \rho))$.

 Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for P_N but not for P_{N+1}. ("The Loewner–Horn theorem is sharp.")

- Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for P_N but not for P_{N+1}. ("The Loewner–Horn theorem is sharp.")
- **2** Complete characterization of polynomials of degree $\leq N$, which preserve positivity on \mathbb{P}_N .

- Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for P_N but not for P_{N+1}. ("The Loewner–Horn theorem is sharp.")
- ② Complete characterization of polynomials of degree ≤ N, which preserve positivity on P_N.
- Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.

- Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for P_N but not for P_{N+1}. ("The Loewner–Horn theorem is sharp.")
- **2** Complete characterization of polynomials of degree $\leq N$, which preserve positivity on \mathbb{P}_N .
- Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.
- Once generally, the theorem provides a characterization of polynomials p_t[-]: P_N(K) → P_N for any (0, ρ) ⊂ K ⊂ D(0, ρ).

- Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for P_N but not for P_{N+1}. ("The Loewner–Horn theorem is sharp.")
- **2** Complete characterization of polynomials of degree $\leq N$, which preserve positivity on \mathbb{P}_N .
- Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.
- More generally, the theorem provides a characterization of polynomials $p_t[-]: \mathbb{P}_N(K) \to \mathbb{P}_N$ for any $(0, \rho) \subset K \subset \overline{D}(0, \rho).$
- So Corollary: By the Schur product theorem, functions of the form $t(c_2x^2 + c_3x^3 + c_4x^4) x^M$ can be preservers on $\mathbb{P}_3((0, \rho))$ for $c_j > 0$, M > 4, and large $t \gg 0$.

Apoorva Khare, IISc Bangalore

Theorem (Belton, Guillot, K., Putinar, 2016)

Let $M \ge N \ge 1$ and $\rho, t, c_0, \ldots, c_{N-1} > 0$. If $p_t(z) := t \sum_{j \le N} c_j z^j - z^M$, TFAE:

1
$$p_t[-]$$
 preserves positivity on $\mathbb{P}_N(\overline{D}(0,\rho))$.

 $2 t \geq \mathcal{K}_{\rho,M}.$

3 $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0,\rho))$.

Theorem (Belton, Guillot, K., Putinar, 2016)

Let $M \ge N \ge 1$ and $\rho, t, c_0, \ldots, c_{N-1} > 0$. If $p_t(z) := t \sum_{j \le N} c_j z^j - z^M$, TFAE:

1
$$p_t[-]$$
 preserves positivity on $\mathbb{P}_N(\overline{D}(0,\rho))$.

- $t \geqslant \mathcal{K}_{\rho,M}.$
- **3** $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0,\rho))$.

(1)
$$\implies$$
 (3): Immediate.

Theorem (Belton, Guillot, K., Putinar, 2016)

Let $M \ge N \ge 1$ and $\rho, t, c_0, \dots, c_{N-1} > 0$. If $p_t(z) := t \sum_{j \le N} c_j z^j - z^M$, TFAE:

- **1** $p_t[-]$ preserves positivity on $\mathbb{P}_N(\overline{D}(0,\rho))$.
- $t \geqslant \mathcal{K}_{\rho,M}.$
- **3** $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0, \rho))$.

(1)
$$\implies$$
 (3): Immediate.

(3) \implies (2): How does the constant $\mathcal{K}_{\rho,M}$ appear from rank-one matrices?

Theorem (Belton, Guillot, K., Putinar, 2016)

Let $M \ge N \ge 1$ and $\rho, t, c_0, \ldots, c_{N-1} > 0$. If $p_t(z) := t \sum_{j < N} c_j z^j - z^M$, TFAE:

- **1** $p_t[-]$ preserves positivity on $\mathbb{P}_N(\overline{D}(0,\rho))$.
- $2 t \geq \mathcal{K}_{\rho,M}.$

3 $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0,\rho))$.

(1)
$$\implies$$
 (3): Immediate.

(3) \implies (2): How does the constant $\mathcal{K}_{\rho,M}$ appear from rank-one matrices? Study the determinants of linear pencils

$$\det p_t[A] = \det \left(t(c_0 \mathbf{1}_{N \times N} + c_1 A + \dots + c_{N-1} A^{\circ (N-1)}) - A^{\circ M} \right)$$

for rank-one matrices $A = \mathbf{u}\mathbf{v}^T$.

Apoorva Khare, IISc Bangalore

General and polynomial preservers The main result + proof, via Schur polynomials

Schur polynomials

Given an increasing N-tuple of integers $0 \leq n_0 < \cdots < n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1,\ldots,u_N) := \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$.

General and polynomial preservers The main result + proof, via Schur polynomials

Schur polynomials

Given an increasing N-tuple of integers $0 \leq n_0 < \cdots < n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1,\ldots,u_N) := \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$V((u_1, \dots, u_N)) := \det(u_i^{j-1}) = \prod_{1 \le i < j \le N} (u_j - u_i).$$

Schur polynomials

Given an increasing N-tuple of integers $0 \leq n_0 < \cdots < n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1,\ldots,u_N) := \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$V((u_1, \dots, u_N)) := \det(u_i^{j-1}) = \prod_{1 \le i < j \le N} (u_j - u_i).$$

- Basis of homogeneous symmetric polynomials in u_1, \ldots, u_N .
- Characters of irreducible polynomial representations of $GL_N(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.

Schur polynomials

Given an increasing N-tuple of integers $0 \leq n_0 < \cdots < n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1,\ldots,u_N) := \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$V((u_1,\ldots,u_N)) := \det(u_i^{j-1}) = \prod_{1 \leq i < j \leq N} (u_j - u_i).$$

- Basis of homogeneous symmetric polynomials in u_1, \ldots, u_N .
- Characters of irreducible polynomial representations of $GL_N(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.
- Weyl Character (Dimension) Formula in Type A:

$$s_{\mathbf{n}}(1,\ldots,1) = \prod_{1 \leq i < j \leq N} \frac{n_j - n_i}{j-i} = \frac{V(\mathbf{n})}{V((0,1,\ldots,N-1))}$$

Apoorva Khare, IISc Bangalore

General and polynomial preservers The main result + proof, via Schur polynomials

Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi–Trudi type identity for p_t .

Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi–Trudi type identity for p_t .

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Let $M \ge N \ge 1$ be integers, and $c_0, \ldots, c_{N-1} \in \mathbb{F}^{\times}$ be non-zero scalars in any field \mathbb{F} . Define the polynomial

$$p_t(z) := t(c_0 + \dots + c_{N-1}z^{N-1}) - z^M,$$

and the hook partition

$$\mu(M, N, j) := (0, 1, \dots, j - 1; j + 1, \dots, N - 1; M)$$

Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi–Trudi type identity for p_t .

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Let $M \ge N \ge 1$ be integers, and $c_0, \ldots, c_{N-1} \in \mathbb{F}^{\times}$ be non-zero scalars in any field \mathbb{F} . Define the polynomial

$$p_t(z) := t(c_0 + \dots + c_{N-1}z^{N-1}) - z^M,$$

and the hook partition

$$\mu(M, N, j) := (0, 1, \dots, j - 1; j + 1, \dots, N - 1; M)$$

The following identity holds for all $\mathbf{u}, \mathbf{v} \in \mathbb{F}^N$:

det
$$p_t[\mathbf{u}\mathbf{v}^T] =$$

 $t^{N-1}V(\mathbf{u})V(\mathbf{v})\prod_{j=0}^{N-1}c_j \times \Big(t - \sum_{j=0}^{N-1}\frac{s_{\mu(M,N,j)}(\mathbf{u})s_{\mu(M,N,j)}(\mathbf{v})}{c_j}\Big).$

General and polynomial preservers The main result + proof, via Schur polynomials

The negative threshold

Proof of (3) \implies (2).

• If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})^N$, and $t, c_0, \ldots, c_{N-1} > 0$, then

General and polynomial preservers The main result + proof, via Schur polynomials

The negative threshold

Proof of (3) \implies (2).

• If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})^N$, and $t, c_0, \dots, c_{N-1} > 0$, then

$$0 \quad \leqslant \quad \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1}V(\mathbf{u})^2 c_0 \cdots c_{N-1}} \quad = \quad t \quad - \quad \sum_{j=0}^{N-1} \frac{s_{\mu(M,N,j)}(\mathbf{u})^2}{c_j}.$$

The negative threshold

Proof of (3) \implies (2).

• If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})^N$, and $t, c_0, \dots, c_{N-1} > 0$, then

$$0 \quad \leqslant \quad \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1}V(\mathbf{u})^2 c_0 \cdots c_{N-1}} \quad = \quad t \quad - \quad \sum_{j=0}^{N-1} \frac{s_{\mu(M,N,j)}(\mathbf{u})^2}{c_j}.$$

• Every Schur polynomial is a *sum* of monomials. So, $s_{\mu(M,N,j)}(\mathbf{u})$ is maximized on $[0,\sqrt{\rho}]^N$ at $\mathbf{u} = (\sqrt{\rho}, \dots, \sqrt{\rho})^T$, whence

The negative threshold

Proof of (3) \implies (2).

• If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})^N$, and $t, c_0, \dots, c_{N-1} > 0$, then

$$0 \quad \leqslant \quad \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1}V(\mathbf{u})^2 c_0 \cdots c_{N-1}} \quad = \quad t \quad - \quad \sum_{j=0}^{N-1} \frac{s_{\mu(M,N,j)}(\mathbf{u})^2}{c_j}.$$

• Every Schur polynomial is a *sum* of monomials. So, $s_{\mu(M,N,j)}(\mathbf{u})$ is maximized on $[0,\sqrt{\rho}]^N$ at $\mathbf{u} = (\sqrt{\rho}, \dots, \sqrt{\rho})^T$, whence

$$t \ge \sum_{j=0}^{N-1} \frac{s_{\mu(M,N,j)}(\sqrt{\rho},\dots,\sqrt{\rho})^2}{c_j} = \sum_{j=0}^{N-1} \binom{M}{j}^2 \binom{M-j-1}{N-j-1}^2 \frac{\rho^{M-j}}{c_j},$$

and this is precisely $\mathcal{K}_{\rho,M}$ by the Weyl Dimension Formula.

General and polynomial preservers The main result + proof, via Schur polynomials

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \ge 4$, and

$$c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_2, c_3 > 0$.

General and polynomial preservers The main result + proof, via Schur polynomials

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \ge 4$, and

$$c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_2, c_3 > 0$. Can c_M be negative? (Not known.)

General and polynomial preservers The main result + proof, via Schur polynomials

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \ge 4$, and

$$c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_2, c_3 > 0$. Can c_M be negative? (Not known.)

<u>General case:</u> Fix integers $N \ge 3$ and $0 \le n_0 < \cdots < n_{N-1} < M$, not all n_j consecutive.

General and polynomial preservers The main result + proof, via Schur polynomials

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \ge 4$, and

$$c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_2, c_3 > 0$. Can c_M be negative? (Not known.)

General case:

Fix integers $N \ge 3$ and $0 \le n_0 < \cdots < n_{N-1} < M$, not all n_j consecutive. Also fix real scalars $\rho > 0$ and $c_{n_0}, \ldots, c_{n_{N-1}} \ne 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0,\rho))$. Then $c_{n_j} > 0$ for all j.

General and polynomial preservers The main result + proof, via Schur polynomials

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \ge 4$, and

$$c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_2, c_3 > 0$. Can c_M be negative? (Not known.)

General case:

Fix integers $N \ge 3$ and $0 \le n_0 < \cdots < n_{N-1} < M$, not all n_j consecutive. Also fix real scalars $\rho > 0$ and $c_{n_0}, \ldots, c_{n_{N-1}} \ne 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0,\rho))$. Then $c_{n_j} > 0$ for all j.

Can c_M be negative? How about a sharp bound, as above? (More generally, which coefficients in a polynomial preserver can be negative?)

General and polynomial preservers The main result + proof, via Schur polynomials

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_e, c_{\pi} \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$. Then $c_0, c_e, c_\pi > 0$.

General and polynomial preservers The main result + proof, via Schur polynomials

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_e, c_\pi \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$. Then $c_0, c_e, c_\pi > 0$. Can c_M be negative? (Not known.)

General and polynomial preservers The main result + proof, via Schur polynomials

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_e, c_\pi \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$. Then $c_0, c_e, c_\pi > 0$. Can c_M be negative? (Not known.)

General case:

Fix an integer $N \ge 3$ and real powers $0 \le n_0 < \cdots < n_{N-1} < M$.

General and polynomial preservers The main result + proof, via Schur polynomials

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_e, c_\pi \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$. Then $c_0, c_e, c_\pi > 0$. Can c_M be negative? (Not known.)

General case:

Fix an integer $N \ge 3$ and real powers $0 \le n_0 < \cdots < n_{N-1} < M$. Also fix positive real scalars $\rho, c_{n_0}, \ldots, c_{n_{N-1}} > 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0,\rho))$. Then $c_{n_j} > 0$ for all j.

General and polynomial preservers The main result + proof, via Schur polynomials

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_e, c_{\pi} \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$. Then $c_0, c_e, c_\pi > 0$. Can c_M be negative? (Not known.)

General case:

Fix an integer $N \ge 3$ and real powers $0 \le n_0 < \cdots < n_{N-1} < M$. Also fix positive real scalars $\rho, c_{n_0}, \ldots, c_{n_{N-1}} > 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0,\rho))$. Then $c_{n_j} > 0$ for all j.

Can c_M be negative? How about a sharp bound, as above? (More generally, which coefficients in such a preserver can be negative?)

Outstanding questions: 3. Unbounded domains

Consequence of Loewner's necessary condition: Let $N \in \mathbb{N}$ and $c_0, \ldots, c_{2N} \neq 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_j x^j + c_N x^N + \sum_{j=N+1}^{2N} c_j x^j$$

entrywise preserves positivity on $\mathbb{P}_N((0,\infty))$. Then:

- By considering f(x), we obtain $c_0, \ldots, c_{N-1} > 0$.
- By considering $f(1/x)x^{2N}$, we obtain: $c_{N+1}, \ldots, c_{2N} > 0$.

Outstanding questions: 3. Unbounded domains

Consequence of Loewner's necessary condition:

Let $N \in \mathbb{N}$ and $c_0, \ldots, c_{2N} \neq 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_j x^j + c_N x^N + \sum_{j=N+1}^{2N} c_j x^j$$

entrywise preserves positivity on $\mathbb{P}_N((0,\infty))$. Then:

- By considering f(x), we obtain $c_0, \ldots, c_{N-1} > 0$.
- By considering $f(1/x)x^{2N}$, we obtain: $c_{N+1}, \ldots, c_{2N} > 0$.

Can c_N be negative?

(More generally, which coefficients in a polynomial preserver can be negative?)

Outstanding questions: 3. Unbounded domains

Consequence of Loewner's necessary condition:

Let $N \in \mathbb{N}$ and $c_0, \ldots, c_{2N} \neq 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_j x^j + c_N x^N + \sum_{j=N+1}^{2N} c_j x^j$$

entrywise preserves positivity on $\mathbb{P}_N((0,\infty))$. Then:

- By considering f(x), we obtain $c_0, \ldots, c_{N-1} > 0$.
- By considering $f(1/x)x^{2N}$, we obtain: $c_{N+1}, \ldots, c_{2N} > 0$.

Can c_N be negative?

(More generally, which coefficients in a polynomial preserver can be negative?)

• The same question, for sums of real powers.

27 / 27

Selected publications

- A. Belton, D. Guillot, A. Khare, and M. Putinar:
- [1] Matrix positivity preservers in fixed dimension. I, Advances in Math., 2016.
- [2] *Moment-sequence transforms*, J. Eur. Math. Soc., accepted.
- [3] A panorama of positivity (survey), Shimorin volume + Ransford-60 proc.
- [4] On the sign patterns of entrywise positivity preservers in fixed dimension, (With T. Tao) Amer. J. Math., in press.
- [5] Matrix analysis and preservers of (total) positivity, 2020+, Lecture notes (website); forthcoming book – Cambridge Press + TRIM.

Apoorva Khare, IISc Bangalore