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Abstract. In this paper we develop a rigorous foundation for the study of integration and measures
on the space G (V ) of all graphs defined on a countable labelled vertex set V . We first study several
interrelated σ-algebras and a large family of probability measures on graph space. We then focus on
a “dyadic” Hamming distance function ‖·‖ψ,2, which was very useful in the study of differentiation

on G (V ). The function ‖·‖ψ,2 is shown to be a Haar measure-preserving bijection from the subset

of infinite graphs to the circle (with the Haar/Lebesgue measure), thereby naturally identifying the
two spaces. As a consequence, we establish a “change of variables” formula that enables the transfer
of the Riemann-Lebesgue theory on R to graph space G (V ). This also complements previous work
in which a theory of Newton-Leibnitz differentiation was transferred from the real line to G (V )
for countable V . Finally, we identify the Pontryagin dual of G (V ), and characterize the positive
definite functions on G (V ).

1. Introduction and main results

The study of very large graphs and their limits has recently been the focus of tremendous
interest, given its importance in a variety of scientific disciplines including probability and statistics,
combinatorics, computer science, machine learning, and network analysis in various applied fields.
In this regard several limiting theories have been developed in the literature. Prominent among
these is the comprehensive theory of graphons, which are limits of (dense) unlabelled graphs (see
[Lo] and the references therein).

In the present paper, we work in the parallel setting of labelled graphs and their limits. Our
motivation comes from the fact that often graphs in real-world situations and observed network
data are labelled, and each vertex has a specific meaning. Similarly in theoretical probability such
as Markov random fields and their applications, nodes in graphs represent variables that are not
exchangeable owing to the dependencies in the underlying model. This provides motivation to
study the space of labelled graphs and their limits.

In [KR1] a framework was introduced in which to study all finite labelled graphs at once; namely,
the space G (V ) of graphs with a fixed countable, labelled vertex set V . The algebraic and topolog-
ical properties of G (V ), as well as continuous functions on G (V ), were studied in [KR1]. Moreover,
a theory of differentiation on graph space was developed in [KR1]; see also [DGKR] for differenti-
ation in the unlabelled setting in graphon space. Note also that the space of graphons is naturally
equipped with a large family of measures that arise from sampling. We now explore the parallel
setting of labelled graph space, with the aim of studying measures on G (V ) and developing a theory
of integration. This is the goal of the present paper.

The space G (V ) is a compact abelian group; hence the associated Haar measure naturally gives
rise to a theory of integration. Our first objective is to identify and study the Haar measure. The
next goal of this work is to explore the connections between Haar integration on graph space and
the Riemann-Lebesgue theory on R. As a consequence of our investigations, we show below that
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integration on G (V ) can be reduced to that on the unit interval. This is akin to [KR1], in which
differentiation on G (V ) was shown to be closely related to the one-variable Newton-Leibnitz theory
on R.

In this section we will state the main results of the paper. We begin by setting some notation.

Definition 1.1. Given a fixed labelled set V , define the corresponding (labelled) graph space G (V )
to be the set of all graphs with vertex set V . In other words, G (V ) = {0, 1}KV = (Z/2Z)KV , where
KV is the complete graph on V . Also define G0(V ) to be the set of all graphs with finitely many
edges, and G1(V ) to be the set of all co-finite graphs – i.e., the complements in KV of finite graphs.

Henceforth every labelled graph with vertex set V will be identified with its edge set, which is a
subset of KV . Note that G (V ) is the set of all functions f : KV → Z/2Z, the discrete field with two
elements. This makes G (V ) a commutative topological Z/2Z-algebra under pointwise addition and
multiplication. In particular, the binary operation G + G′ := G∆G′ makes G (V ) into an abelian
topological group, where ∆ denotes the symmetric difference and the zero element 0 ∈ G (V ) is
given by the empty graph on V . Note also that G (V ) is 2-torsion, i.e., G+G = 0 for all G ∈ G (V ).

We next discuss the topological structure of labelled graph space G (V ) for a countable vertex
set V , as studied in [KR1]. The following family of metrics on G (V ) was crucially used in [KR1]
in developing differential calculus in G (V ), and is also important for the purposes of the present
paper.

Definition 1.2. Suppose V is countable and ψ : KV → N is a fixed bijection. Given a > 1, define
dϕa : G (V )× G (V ) → [0,∞) and ‖·‖ψ,a : G (V ) → [0,∞) via:

dϕa(G,G
′) :=

∑

e∈G∆G′

a−ψ(e), ‖G‖ψ,a := dϕa(0, G). (1.3)

Next, a sequence {Gn : n ∈ N} in G (V ) is said to converge (to G ∈ G (V )) if the indicator sequences
{1e∈Gn : n ∈ N} each converge (to 1e∈G) for each edge e ∈ KV .

The following theorem collects together some of the topological results in [KR1] on labelled graph
space G (V ), which are needed for the purposes of this paper.

Theorem 1.4 ([KR1]). For a fixed labelled set V , the set G (V ) of graphs is a commutative, totally
disconnected, compact Hausdorff topological Z/2Z-algebra.

Now suppose that V is countable and ψ : KV → N is a fixed bijection.

(1) The maps {dϕa : a ≥ 1} are translation-invariant metrics on G (V ), which are all topologi-
cally equivalent and metrize the above notion of graph convergence (i.e., they generate the
product topology on G (V ) = {0, 1}KV ).

(2) The sets G0(V ),G1(V ) are dense in G (V ).
(3) The map 2dϕ3

(0,−) = 2 ‖·‖ψ,3 : G (V ) → [0, 1] is a homeomorphism onto the Cantor set.

Thus G (V ) is a compact metric space.
(4) The map dϕ2

(0,−) = ‖·‖ψ,2 : G (V ) → [0, 1] is a surjection, which is a bijection outside

G0(V ). For every finite nonempty graph G, there exists a unique co-finite graph G′ such
that ‖G‖ψ,2 = ‖G′‖ψ,2.

We now present the main results in this paper. Since G (V ) is a compact abelian group, it is
natural to seek out its associated Haar measure. We identify this measure in our first main result.
We also show that the Haar measure is intimately connected to the distinguished metric ‖·‖ψ,2
(for any ψ) that was used in [KR1] to develop a differential calculus on G (V ). More precisely, the
following holds.
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Theorem A. Fix a countably infinite set V . The Haar measure µHaar on G (V ) is the unique
probability measure µ1/2 induced from the Bernoulli(12)-measure on each factor {0, 1} of G (V ).
Now given any bijection ψ : KV → N, the Haar measure of any open or closed ‖·‖ψ,2-ball (in G (V ))

of radius ǫ ∈ [0, 1] is ǫ.

Note here that the Borel σ-algebra BG (V ) of G (V ), as well as the Haar measure µ1/2, do not
depend on the choice of labelling ψ : KV → N.

It is natural to ask if the measure space G (V ) with its Borel σ-algebra, can be modelled by a
more familiar probability space. (This is akin to Theorem 1.4, which provided familiar topological
models for graph space.) Note moreover that the last assertion in Theorem A has an obvious
analogue for the usual Lebesgue measure, which is in fact the Haar measure on the real line. It
is now natural to ask if the two Haar measures are related. The following result answers both of
these questions, and shows how to transfer integration from G (V ) to R.

Theorem B. Fix a bijection ψ : KV → N.

(1) The map ‖·‖ψ,2 : G (V ) → [0, 1] – or to the circle S1 = R/Z – is a measurable, Haar measure-

preserving map that is a bijection outside the countable (measure zero) sets G0(V ),G1(V ).
(2) Suppose f : [0, 1] → [−∞,∞] is Lebesgue integrable. Then,

EµHaar
[f(‖·‖ψ,2)] =

∫ 1

0
f(x) dx.

Conversely, for all integrable g : G (V ) → [−∞,∞], we have

EµHaar
[g] =

∫ 1

0
g((‖·‖ψ,2)−1(x)) dx.

Thus, Haar integration can be carried out on labelled graph space by transferring the classical
Lebesgue theory from the unit interval (or the circle) to G (V ).

The remaining sections are devoted to proving the above results. We add moreover that addi-
tional results concerning Fourier analysis, the Pontryagin dual, and positive definite functions for
G (V ) are shown in Section 3.2 below.

2. Measures on graph space

In this section we develop the necessary tools required to show Theorem A. We begin by studying
several σ-algebras on graph space and showing how they are related. We then study probability
measures on G (V ) and prove Theorem A.

2.1. σ-algebras on graph space. We begin with an arbitrary (fixed) labelled index set V of
vertices. Let V (e) denote the vertices attached to an edge e ∈ KV ; then G (V ) = ×e∈KV P(KV (e))
is the Cartesian product of power sets, and each set is a σ-algebra of size 2. Define the product
σ-algebra Σmeas on G (V ) to be the σ-algebra generated by the cylinder sets

Se0 := ×e 6=e0{∅, {e}} × {e0}, e0 ∈ KV . (2.1)

We now define several other σ-algebras on G (V ), as well as a closely related family of sets.

Definition 2.2. Given disjoint subsets I0, I1 ⊂ KV , define

E (I0, I1) := {G ∈ G (V ) : I1 ⊂ G, I0 ⊂ KV \G}. (2.3)

Now define the following σ-algebras on G (V ):

• BG (V ) is the Borel σ-algebra, generated by all open sets.
• Σ0 is the σ-algebra generated by all compact sets.
• ΣE is the σ-algebra generated by all sets E (I0, I1) for disjoint I0, I1 ⊂ KV .
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• ΣE ,0 is the σ-algebra generated by all E (I0, I1) for finite (or countable) disjoint I0, I1 ⊂ KV .

Consider the case when V , and hence KV , is countable. In this case, as shown in [KR1], the
product topology on the compact space G (V ) can be metrized; this yields another candidate σ-
algebra, as described presently. The main result of this subsection relates all of the above σ-algebras.

Theorem 2.4. Suppose V is countable, and d is a metric on G (V ) that metrizes the product
topology. Define Σd,ball to be the σ-algebra generated by the open (or closed) d-balls in G (V ). Then,

Σmeas = ΣE ,0 = ΣE = Σd,ball = BG (V ) = Σ0.

In order to prove Theorem 2.4, some preliminary results are needed. The first result collects
some basic facts about the sets E (I0, I1).

Lemma 2.5. Suppose V is arbitrary and I0, I1, J0, J1 ⊂ KV are all disjoint.

(1) Then one has:

E (I0 ∪ J0, I1 ∪ J1) = E (I0, J0) ∩ E (I1, J1). (2.6)

In particular, E (−,−) is inclusion-reversing in each argument.
(2) Given S ⊂ G (V ) ∋ G, define S +G := {G′ +G : G′ ∈ S}. Then,

E (I0, I1) = E (I0 ∪ I1, ∅) + I1, (2.7)

where for every I ⊂ KV , E (I, ∅) is an ideal of (the Z/2Z-algebra) G (V ).
(3) Given any G ∈ G (V ),

E (I0, I1) +G = E

(

(I0 \G)
∐

(I1 ∩G), (I1 \G)
∐

(I0 ∩G)
)

. (2.8)

(4) Given disjoint sets I0, I1 ⊂ KV , the set E (I0, I1) is closed in KV . It is open if and only if
I0
∐

I1 is finite.

Proof. All but the last part are easy to prove using the definitions. For the last part, note that for
finite disjoint I0, I1 ⊂ KV , E (I0, I1) is closed as well as open in G (V ). Hence E (I0, I1) ⊂ G (V ) is
closed for all disjoint I0, I1 ⊂ KV , by using Equation (2.6). Finally, suppose that I0 ∪ I1 is infinite;
the goal is now to prove that its complement in (Z/2Z)KV is not closed in the product topology.
To do so, it suffices to produce a sequence Gn /∈ E (I0, I1), that converges to a graph G0 ∈ E (I0, I1).
Thus, fix a countable subset {in : n ∈ N} ⊂ I0∪I1, and define Gn := I1∆{in}, G0 := I1 ∈ E (I0, I1).
It is easy to check that Gn → G0 in G (V ), and that this sequence satisfies the desired properties. �

In order to state and prove the next result, the following notation is required.

Definition 2.9. Suppose V is countable. Fix a bijection ψ : KV → N and define En(ψ) := {e ∈
KV : ψ(e) ≤ n}. Given a > 1, ǫ ≥ 0, and G ∈ G (V ), define B(G, ǫ, ‖·‖ψ,a) to be the open ball in

(G (V ), dϕa) with center G and radius ǫ, and B(G, ǫ, ‖·‖ψ,2) to be its closure in (G (V ), dϕa).

The last preliminary result shows that the sets E (I0, I1) lie in the Borel σ-algebra for finite I0, I1.

Proposition 2.10. Suppose V is countable. Fix a bijection ψ : KV → N, and given disjoint subsets
I0, I1 ⊂ N, define E (I0, I1) := E (ψ−1(I0), ψ

−1(I1)).

(1) If I0
∐

I1 = {1, . . . , n} for some n, then

E (I0, I1) = B(ψ−1(I1), 2
−n, ‖·‖ψ,2)

∐

{KV \ ψ−1(I0)}

= B(ψ−1(I1), 2
−n, ‖·‖ψ,2)

⋃

B(KV \ ψ−1(I0), 2
−n, ‖·‖ψ,2)

= B(ψ−1(I1), 2
−n−1, ‖·‖ψ,2)

⋃

B(KV \ ψ−1(I0), 2
−n−1, ‖·‖ψ,2).
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(2) For all finite disjoint I0, I1, E (I0, I1) is a finite union of open balls, as well as closed balls.
Alternatively, it can be partitioned into finitely many open balls and a finite set.

Proof.

(1) For the first equality, it is clear that the left-hand side is contained in the right. To show
the reverse inclusion, if G is in the right-hand side, then G∆ψ−1(I1) cannot intersect En(ψ)
(which was defined in Definition 2.9), so it must be disjoint from ψ−1(I0), and must contain
ψ−1(I1). The second equality is now easy to show, and one inclusion in the third equality
as well. For the converse, if G ∈ E (I0, I1), then either ψ−1(n+1) ∈ G – whence G is in the
second closed ball – otherwise G is in the first closed ball.

(2) Suppose max(I0
∐

I1) = n, and {1, . . . , n} \ (I0 ∪ I1) = {m1 < · · · < ml}. Then:
E (I0, I1) =

∐

J0⊂{m1,...,ml}

E (I0 ∪ J0, I1 ∪ {m1, . . . ,ml} \ J0).

The result now follows from the previous part.

�

Finally, we use the above results to prove the main result in this subsection.

Proof of Theorem 2.4. It is clear by Definition 1.2 that every G ∈ G (V ) is the limit of a sequence
Gn of finite graphs: set Gn := G ∩ En(ψ). Now BG (V ) ⊂ Σd,ball; the reverse inclusion is obvious.
Also note that the σ-algebras generated by the open and closed d-balls are both equal.

We now claim that some of the inclusion relations hold among the σ-algebras defined above, for
arbitrary vertex sets V . Namely, we claim for all sets V :

Σmeas = ΣE ,0 ⊂ ΣE ⊂ BG (V ) = Σ0. (2.11)

To show Equation (2.11), note that since G (V ) is a compact Hausdorff topological space by
Theorem 1.4, hence K ⊂ G (V ) is compact if and only if G (V ) \ K is open. This proves that
BG (V ) = Σ0. Also note that ΣE ,0 is generated by all sets E (I0, I1), where we may assume I0, I1 to
be either finite or countable – that both of these choices yield equivalent σ-algebras follows from
repeated applications of Equation (2.6). Next, note that Si0 = E (∅, {i0}) for all i0 ∈ I. Hence if
I0, I1 are finite disjoint subsets of KV , then

E (I0, I1) =
⋂

i∈I0

(G (V ) \ Si) ∩
⋂

i∈I1

Si.

This proves that Σmeas = ΣE ,0. Next, that ΣE ,0 ⊂ ΣE is obvious. Finally, ΣE ⊂ BG (V ) by Lemma
2.5, since the sets E (I0, I1) are closed for disjoint I0, I1 ⊂ KV .

Given Equation (2.11), it remains to prove that every open set U ⊂ G (V ) is in ΣE . First, fix
any G ∈ U that is not cofinite, i.e., G /∈ G1(V ). Since U is open, B(G, ǫ, ‖·‖ψ,2) ⊂ U for some

ǫ > 0. Choose N > 0 such that 2−N < ǫ, and fix n > N such that ψ−1(n) /∈ G (since G /∈ G1(V )).
Define the finite graph G0 = En−1(ψ) ∩ G ∈ G0(V ). Then since n /∈ ψ(G) and G /∈ G1(V ), hence
‖G−G0‖ψ,2 < 2−n < 2−N < ǫ. Thus, 2−n ≤ 2−N−1 < ǫ/2.

Now use the first part of Proposition 2.10 with I1 := {ψ(G0)} ⊂ {1, . . . , n − 1}. It follows that
B(G0, 2

−n, ‖·‖ψ,2) ∈ ΣE . Moreover, 2−n < ǫ/2, so

G ∈ B(G0, 2
−n, ‖·‖ψ,2) ⊂ B(G0, ǫ/2, ‖·‖ψ,2) ⊂ B(G, ǫ, ‖·‖ψ,2) ⊂ U .

But now we are done: U is the union of the countable set U ∩ G1(V ), and for each G ∈ U \ G1(V ),
the open ball B(G0, 2

−n, ‖·‖ψ,2) as above. Since each of these sets is in ΣE , and there are only

countably many such sets (since they are in bijection with a subset of G0(V ) × N), hence U is a
countable union of elements of ΣE . Thus, U ∈ ΣE , whence BG (V ) ⊂ ΣE , as desired. �
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2.2. Haar measure. We now define and study a large family of measures µP on the space G (V ),
eventually focussing on the Haar measure and the proof of the first main result, Theorem A. Given
any labelled set V and any function P : KV → [0, 1], the map µP,e assigning P (e) to {e} and
1 − P (e) to ∅ is a Bernoulli probability measure on the Bernoulli space KV (e). Now recall the
σ-algebra Σmeas (2.1), and define the product measure µP on finite intersections of these sets via:
µP (Se1 ∩ · · · ∩ Sen) :=

∏n
i=1 P (ei) for distinct ei ∈ KV . One can ask if this information is sufficient

to determine µP on (G (V ),Σmeas). To answer this question, recall the following results.

Proposition 2.12 ([JP, Theorem 6.1 and Corollary 6.1]). Suppose a σ-algebra (Ω,A ) is generated
by a subset C ⊂ A that is closed under finite intersections.

(1) Two probability measures on A are equal if and only if they agree on C.
(2) Suppose C is an algebra, and µ′ : C → [0, 1] is a probability measure (satisfying countable

additivity as well as that µ′(Ω) = 1). Then µ′ extends uniquely to a measure on all of A .

The proof uses the Monotone Class Theorem [JP, Theorem 6.2]. In particular, the result affirma-
tively answers the above question. Thus µP satisfies the following properties when V is countable:

• µP is determined uniquely by its restriction to finite intersections of the sets Se0 . In par-
ticular, µP is a probability measure on G (V ), and one writes: µP :=

∏

e∈KV
µP,e.

• For all disjoint I0, I1, the sets E (I0, I1) and all Borel sets are µP -measurable.
• In particular, every locally constant function on G (V ) \ C (where C is a countable set) is
µP -measurable for all P : KV → [0, 1].

Remark 2.13. A special case is the measure µp for p ∈ [0, 1], given by P (e) = p ∀e. This is
precisely the Erdös-Rényi model for G (V ). When V is countable, this construction generalizes
the analysis in [Cam], where G (V ) is identified (via a bijection ψ : KV → N) with 2N = {0, 1}N,
the space of binary sequences, as well as with [0, 1] via the binary expansion of any real number
x ∈ [0, 1]. Note that this map is precisely the function ‖·‖ψ,2. Cameron [Cam] also informally

writes down a measure on G (V ) as being induced from countably many independent tosses of a
fair coin; this is precisely the Erdös-Rényi measure µ1/2 above.

We now outline the contents in the remainder of the paper. The immediate task is to prove
the first main result in the paper (Theorem A) using the above preliminary results. Following the
proof, in Section 2.3 we compute expectations of several real-valued functions on graph space with
respect to the Erdös-Rényi measures µp, as an illustration of how to work with these measures.
Having computed the Haar-expectations of specific functions, we then prove the other main result,
Theorem B (in the following section); this result deals with transporting the Haar-expectation of
arbitrary functions between graph space and the real line. The paper concludes with a study of
Fourier analysis on G (V ).

Proof of Theorem A. We make the following claim:

For any V (and up to scaling), when restricted to Σmeas = ΣE ,0, the Haar measure necessarily
equals µP with P (e) = 1/2 for all e ∈ KV . In other words, µHaar ≡ µ1/2 on Σmeas.

That µHaar exists and is the unique translation-invariant probability measure on G (V ) follows by
a classical result of Weil [We] (also proved by Cartan), since G (V ) is a compact topological group.
Now suppose I ⊂ KV is finite. Then for all partitions I = I0

∐

I1, one computes using Equation
(2.7):

µHaar(E (I0, I1)) = µHaar(E (I0, I1) + I1) = µHaar(E (I, ∅)),
by translation-invariance. Now since G (V ) =

∐

I0⊂I

E (I0, I \ I0), hence

µHaar(E (I0, I1)) = 2−|I| = µ1/2(E (I0, I1)). (2.14)
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Note that the sets E (I0, I1) generate ΣE ,0. Hence µHaar ≡ µ1/2 on ΣE ,0 by Proposition 2.12, since
the collection of sets E (I0, I1) (for finite disjoint I0, I1 ⊂ KV ) is closed under finite intersections by
Equation (2.6).

We now prove the main theorem using the claim. Note that computing µHaar on Σmeas uniquely
determines the Haar measure when V is countable, since ΣE ,0 = BG (V ) when V is countable (by
Theorem 2.4). Thus µHaar ≡ µ1/2.

Next, we assert that the Haar measure of a ‖·‖ψ,2-ball of radius ǫ ∈ [0, 1] is ǫ. The assertion

is clear for ǫ = 0 (i.e. for the empty set) and ǫ = 1 (which yields the entire space G (V ) except
one point), since points must have Haar measure zero or else µHaar(G (V )) = ∞. Now assume
ǫ ∈ (0, 1) and G = 0 (by the translation-invariance of µ1/2). It is enough to prove the assertion

for ǫ of the form 2−n1 + 2−n2 + · · · + 2−nk with n1 < n2 < · · · < nk ∈ N, because then given any
ǫ > 0, approximate it from below by a nondecreasing sequence ǫn → ǫ− (and from above by a
nonincreasing sequence ǫ′n → ǫ+), with each ǫn, ǫ

′
n a finite sum of the above form. (For instance,

take ǫn to be the truncated binary expansions of ǫ.) Then,

µ1/2(B(0, ǫ, ‖·‖ψ,2)) ≥ µ1/2

(

∞
⋃

n=1

B(0, ǫn, ‖·‖ψ,2)
)

= lim
n→∞

µ1/2(B(0, ǫn, ‖·‖ψ,2))

= lim
n→∞

ǫn = ǫ,

and similarly, µ1/2(B(0, ǫ, ‖·‖ψ,2)) ≤ limn→∞ ǫ′n = ǫ.

Thus it remains to prove the assertion for ǫ = 2−n1 + 2−n2 + · · · + 2−nk ; we do so by induction
on k ≥ 0. For k = 0 the result was proved earlier in this proof; from this the result follows
for k = 1 by using Proposition 2.10 and Equation (2.14). Now given the result for k − 1 ≥
0, set ǫ′ =

∑

0<i<k 2
−ni and ǫ = ǫ′ + 2−nk . The graphs in B(0, ǫ, ‖·‖ψ,2) have possible ‖·‖ψ,2-

values in [0, ǫ) = [0, ǫ′)
∐{ǫ′}∐(ǫ′, ǫ). Using that the binary expansion is a bijection from [0, 1] to

binary sequences (except on a countable set described in Theorem 1.4), one notes that the graphs
corresponding to the first two sets of ‖·‖ψ,2-values above are, respectively, Sǫ′ := B(0, ǫ′, ‖·‖ψ,2)
and the doubleton set S′ := {Tk−1, Tk−2

∐{nk−1 + 1, nk−1 + 2, . . . }}, where Tk := {n1, . . . , nk} for
all k. Moreover, if ‖G‖ψ,2 ∈ (ǫ′, ǫ) for some G ∈ G (V ), then it is not too hard to show (again using

binary expansions, via Theorem 1.4) that from among the integers 1, . . . , nk, the only ones in ψ(G)
are precisely n1, . . . , nk−1. Thus, the graphs whose ‖·‖ψ,2-values lie in (ǫ′, ǫ) form the set

S′′ := E ({1, . . . , nk} \ Tk−1, Tk−1) \ {{n1, . . . , nk−1, nk + 1, nk + 2, . . . }}.
Since points have zero measure, µ1/2(S

′′) = 2−nk by Equation (2.14). Hence:

µ1/2(B(0, ǫ, ‖·‖ψ,2)) = µ1/2

(

Sǫ′
∐

S′
∐

S′′
)

= ǫ′ + 0 + 2−nk = ǫ,

where the penultimate equality follows from the induction hypothesis and previous results. This
completes the proof for open balls, by induction.

For the closed ball B := B(G, ǫ, ‖·‖ψ,2), if ǫ = 1 then µ1/2(B) = µ1/2(G (V )) = 1, while if ǫ < 1,

B(G, ǫ, ‖·‖ψ,2) ⊂ B(G, ǫ, ‖·‖ψ,2) =
⋂

n∈N

B(G, ǫ+ n−1, ‖·‖ψ,2).

Thus the result for closed balls follows from the result for open balls, since we have:

ǫ ≤ µ1/2(B(G, ǫ, ‖·‖ψ,2)) ≤ inf
(1−ǫ)−1≤n∈N

ǫ+ n−1 = ǫ.

�
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2.3. Examples: computing expectations. We now work out some examples of computing ex-
pectations with respect to the probability measures on G (V ) that were introduced in Section 2.2.
In the following results, V is assumed to be countable.

Proposition 2.15. Fix P : KV → [0, 1] and a bijection ψ : KV → N. Then every countable set

has µP -measure zero if and only if
∏

e∈KV

max(P (e), 1− P (e)) = 0. In particular, this holds if there

exists ǫ > 0 such that the set {e ∈ KV : P (e) ∈ (ǫ, 1− ǫ)} is infinite (e.g., if µP ≡ µp for p ∈ (0, 1)).

Proof. Given G ∈ G (V ) and n ∈ N, first define

pn(G) :=
∏

e∈En(ψ)∩G

P (e)
∏

e∈En(ψ)\G

(1− P (e)), πn :=
∏

e∈En(ψ)

max(P (e), 1− P (e)).

Note that both pn(G) and πn are non-increasing nonnegative sequences, with p0(G) = π0 = 1. In
particular, they are both convergent. Moreover, note that

{G} =
⋂

n∈N

E ({1, . . . , n} \G,G ∩ {1, . . . , n}) ∀G ∈ G (V ).

Now since µP (E (I0, I1)) =
∏

i∈I0

(1 − P (ψ−1(i)))
∏

i∈I1

P (ψ−1(i)) for finite disjoint subsets I0, I1 ⊂ N,

we compute:

0 ≤ µP (G) = lim
n→∞

µP (E ({1, . . . , n} \G,G ∩ {1, . . . , n})) = lim
n→∞

pn(G)

≤ lim
n→∞

πn = µP (GP ),

where GP (or its set of edges) equals {e ∈ KV : P (e) ≥ 1/2}. Thus, every countable set has
µP -measure zero, if and only if µP (G) = 0 ∀G, if and only if µP (GP ) = 0.

Finally, for the second sub-part, we simply note that infinitely many of the terms in the product
are less than ǫ < 1, so µP (GP ) = 0. �

In order to state the next result, first recall some notation from [KR1].

Definition 2.16 ([KR1]). Let V be a countable labelled set.

(1) Define ℓ1+(KV ) :=
{

ϕ : KV → (0,∞)
∣

∣

∑

e∈KV

ϕ(e) <∞
}

.

(2) Also define ℓ∞+ (KV ) to be the set of functions ζ : KV → (0,∞) such that ζ(KV ) has precisely
one accumulation point: 0 (and ∞ is not an accumulation point, i.e., ζ is bounded).

(3) Further define ℓ1×(KV ) := {φ : KV → (1,∞),
∏

e∈KV
φ(e) <∞}.

(4) Given 0 6= G ∈ G (V ), ϕ ∈ ℓ1+(KV ), ζ ∈ ℓ∞+ (KV ), and φ ∈ ℓ1×(KV ), define:

‖G‖1ϕ :=
∑

e∈G

ϕ(e), ‖G‖∞ζ := max{ζ(e) : e ∈ G}, ‖0‖1ϕ = ‖0‖∞ζ = ‖0‖×φ := 0,

and ‖G‖×φ :=
(
∏

e∈G φ(e)− 1
)1/n

, with the smallest n ∈ N such that 2n ≥ 1 +
∏

e∈KV
φ(e).

It was shown in [KR1] that the maps ‖.‖1ϕ , ‖.‖∞ζ induce topologically equivalent translation-

invariant metrics on graph space G (V ), which metrize its product topology. One can similarly
show the following fact.

Lemma 2.17. For all φ ∈ ℓ1×(KV ), the maps ‖.‖×φ induce topologically equivalent translation-

invariant metrics on G (V ), which metrize its product topology.
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The following result provides examples of computing the expectations of the aforementioned func-
tions (and others) with respect to the Erdös-Rényi type product measures µp defined in Section
2.2.

Proposition 2.18. For all p ∈ (0, 1), the expectation Eµp is a linear functional on the space of
measurable functions h : (G (V ),BG (V )) → R.

(1) Given k > 0 and a graph G ∈ G (V ) with at least k edges, labelled by ψ(G) = {n1 < n2 <
· · · < nk < · · · } ⊂ N, define the kth minimum edge number of G to be Ψk(G) := nk. Then
Eµp [Ψk] = k/p.

(2) Given ζ ∈ ℓ∞+ (KV ), choose any bijection ψζ : KV → N as in Lemma 2.19 (below). Then
for all f : im(ζ) → R,

Eµp [f(‖.‖∞ζ )] =
∑

n∈N

p(1− p)n−1f(ζ(ψ−1
ζ (n))).

(3) For all ϕ ∈ ℓ1+(KV ) and G ∈ G (V ), ‖G‖1ϕ =
∑

e∈KV
ϕ(e)1G∈E (∅,ψ(e)). Moreover,

Eµp [‖.‖1ϕ] = p ‖KV ‖1ϕ , Eµp [(‖.‖1ϕ)2] = p(1− p)‖KV ‖1ϕ2 + p2(‖KV ‖1ϕ)2.
(4) If ‖KV ‖×φ ≤ n

√
2n − 2 for some φ ∈ ℓ1× and n > 0, then

Eµp [(‖.‖×φ )n] = −1 +
∏

e∈KV

(1− p+ pφ(e)) ≤ (‖KV ‖×φ )n.

In particular, if X : G (V ) → R denotes the random variable X(G) := ‖G‖1ϕ, then X has µp-

mean p ‖KV ‖1ϕ, and variance p(1 − p)‖KV ‖1ϕ2 . More generally, one can imitate the proof below

to show that for all n ∈ N, Eµp [(‖.‖1ϕ)n] = Eµp [X
n] equals some “homogeneous” polynomial in

{‖KV ‖1ϕr = ‖KV ‖rϕ : 0 ≤ r ≤ n}, with coefficients that are polynomials in p. (Here, “homogeneous”

means that every monomial has the same total degree, with ‖KV ‖1ϕr having degree r.)
Also note that some of these results can be shown more generally for all µP (with P : KV → [0, 1]

as in Section 2.2). For example, if ‖KV ‖×φ ≤ n
√
2n − 2, then

EµP [‖.‖1ϕ] =
∑

e∈KV

P (e)ϕ(e), EµP [(‖.‖×φ )n] = −1 +
∏

e∈KV

(1− P (e) + P (e)φ(e)).

The following observation will be used to prove Proposition 2.18.

Lemma 2.19. For all ζ ∈ ℓ∞+ (KV ), there exists a bijection ψ = ψζ : KV → N, such that
ζ(ψ−1(1)) ≥ ζ(ψ−1(2)) ≥ · · · .
For instance if ζ(e) = ‖e‖ψ,a for fixed a > 1 and all e ∈ KV , then ζ(ψ

−1(n)) = a−n, so ψζ = ψ.

Proof. Since the only accumulation point of the image set ζ(KV ) is 0, it follows that for every
e ∈ KV , there are only finitely many values above ζ(e) – and they can all be totally ordered. In
other words, every subset of ζ(KV ) has a maximum element. Thus, define β : N → KV inductively:
β(1) is any element of arg max

e∈KV
ζ(e), and given β(1), . . . , β(k − 1), define β(k) to be any element

of the set argmax
e∈Sk

ζ(e), where Sk := KV \ {β(1), . . . , β(k − 1)}. It is clear that this inductively

covers all e ∈ KV , by the previous paragraph. Hence β : N → KV is a bijection such that
ζ(β(1)) ≥ ζ(β(2)) ≥ · · · . Now define ψ = ψζ := β−1. �
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Proof of Proposition 2.18.

(1) Note that Ψk is defined at all but countably many graphs in G (V ). Moreover, the kth
minimum edge of G ∈ G (V ) is n if and only if n ≥ k and ψ(G) ∩ {1, . . . , n − 1} has size
exactly k−1. This means that G ∈ E ({1, . . . , n−1}\S, S∐{n}), where S ⊂ {1, . . . , n−1}
has size precisely k−1. Now there are precisely

(

n−1
k−1

)

such sets S, and by Proposition 2.15,

each corresponding set E ({1, . . . , n− 1} \ S, S∐{n}) has measure (1− p)n−kpk. Hence we
exclude the countable (measure zero) set of graphs with fewer than k edges, and compute:

Eµp [Ψk] =
∞
∑

n=k

n ·
(

n− 1

k − 1

)

pk(1− p)n−k = kpk
∞
∑

n=k

(

n

k

)

(1− p)n−k.

On the other hand, the Binomial Formula easily yields:

p−(k+1) =
∞
∑

l=0

(−(k + 1)

l

)

(−(1− p))l

=
∞
∑

l=0

(−1)l
(

(k + 1) + l − 1

l

)

(−(1− p))l =
∞
∑

l=0

(

k + l

k

)

(1− p)l.

Setting l = n− k, the expected value above equals kpk · p−(k+1) = k/p.
(2) Note that ζ(ψ−1

ζ (1)) ≥ ζ(ψ−1
ζ (2)) ≥ · · · by choice of ψζ . It is clear that ‖G‖∞ζ = ζ(ψ−1

ζ (n))

if G ∈ Eζ({1, . . . , n− 1}, {n}), with Eζ denoting the E -set corresponding to ψζ . Since these
sets partition G (V ) \ {0}, use Theorem A to compute:

Eµp [f(‖.‖∞ζ )] =
∑

n∈N

f(ζ(ψ−1
ζ (n)))µp(Eζ({1, . . . , n− 1}, {n}))

=
∑

n∈N

p(1− p)n−1f(ζ(ψ−1
ζ (n))).

(3) Define fN (G) :=
∑N

n=1 ϕ(ψ
−1(n))1G∈E (∅,{n}). Thus, {fN} is a nondecreasing sequence of

[0,∞) valued µ-measurable functions on G (V ). It is not hard to show that their pointwise
limit at any G ∈ G (V ) is

∑

n∈N

ϕ(ψ−1(n))1G∈E (∅,{n}) =
∑

e∈KV

ϕ(e)1G∈E (∅,{ψ(e)}) ≤
∑

e∈KV

ϕ(e) = ‖KV ‖1ϕ <∞.

Moreover, in computing ‖G‖1ϕ, ϕ(e) is a summand if and only if e ∈ G, i.e., G ∈ E (∅, {ψ(e)}).
This proves the first statement. Now use Proposition 2.15 and the Monotone Convergence
Theorem to compute:

Eµp [‖G‖1ϕ] = lim
N→∞

Eµp [fN ] = lim
N→∞

N
∑

n=1

ϕ(ψ−1(n))µp(E (∅, {n}))

=
∞
∑

n=1

ϕ(ψ−1(n)) · p = p ‖KV ‖1ϕ ,
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which proves the first part of the second statement. For the second part, note that
(‖G‖1ϕ)2 = limN→∞ f2N . Now write out the summand:

f2N (G) =
N
∑

n=1

ϕ(ψ−1(n))21G∈E (∅,{n})

+ 2

N
∑

n=1

n−1
∑

m=1

ϕ(ψ−1(m))ϕ(ψ−1(n))1G∈E (∅,{m})1G∈E (∅,{n}).

Taking expectations yields:

Eµp [f
2
N (G)] = p

N
∑

n=1

ϕ(ψ−1(n))2 + 2p2
N
∑

n=1

n−1
∑

m=1

ϕ(ψ−1(m))ϕ(ψ−1(n))

= p(1− p)
N
∑

n=1

ϕ(ψ−1(n))2 +

(

p
N
∑

n=1

ϕ(ψ−1(n))

)2

.

From above computations, the second term is just Eµp [fN ]
2, which converges to (p ‖KV ‖1ϕ)2

by the first part. Hence as above, using Proposition 2.15 and the Monotone Convergence
Theorem, Eµp [(‖G‖1ϕ)2] equals lim

N→∞
Eµp [f

2
N (G)] = p(1− p)‖KV ‖1ϕ2 + p2(‖KV ‖1ϕ)2.

(4) This is similar to the previous part: define

fN (G) :=

N
∏

n=1

(

1 + (φ(ψ−1(n))− 1)1G∈E (∅,{n})

)

.

Once again, 0 ≤ fN (G) ≤ fN+1(G) ≤ ∏

e∈KV
φ(e) < ∞ for all G, so we can apply the

Monotone Convergence Theorem. Moreover, the pointwise limit of the fN is precisely
1+(‖.‖×φ )n, and one easily checks that the expectation of any product of k distinct indicators

as above is pk. This proves that Eµp [1 + (‖.‖×φ )n] = lim
N→∞

N
∏

n=1

(1 + p(φ(ψ−1(n)) − 1)), and

the result follows.

�

3. Haar integration and Fourier analysis

We now study graph space G (V ) in further detail. Recall that G (V ) is a compact topological
group; these are objects for which a comprehensive theory of analysis and probability has been
systematically developed in the literature – see e.g. [Gre, Pa, Ru]. In this section we further
explore two aspects of the theory: first, we find a more familiar model for graph space as a compact
group with Haar measure. Second, we study Fourier analysis on G (V ). This includes classifying
the Pontryagin dual, as well as all positive definite functions on G (V ).

3.1. Haar integration on graph space. In this part we study the relationship between the Haar
measure on G (V ) and the Lebesgue measure on R. As seen above, the Haar measure of an ǫ-ball is
ǫ. This property also holds (up to scaling by 2) for the usual Lebesgue measure µR on the real line.
Thus, it is natural to ask if the two measure spaces (G (V ), µHaar = µ1/2), and (R, µR) – or more

precisely, the circle group S1 with its Haar measure – are related. If so, how does one account for
the “Jacobian” in transforming Haar integration from G (V ) into the usual Lebesgue theory on R?
These questions are the focus of the next main result in the paper.
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Proof of Theorem B. Note that ‖·‖ψ,2 is a continuous map : G (V ) → R, hence (Borel) measurable
with respect to the respective Borel σ-algebras. Thus, consider two measures on the Borel σ-algebra
BG (V ), given by A 7→ µ1/2(A) and A 7→ µR(‖A‖ψ,2). The latter is indeed a measure that satisfies

countable additivity because ‖·‖ψ,2 is a bijection except on a countable set, and countable sets have
measure zero in either measure.

We now claim that the measures µ1/2 and µR ◦‖·‖ψ,2 on (G (V ),BG (V )) agree on all sets E (I0, I1)
for finite disjoint I0, I1 ⊂ N. If this holds, then since these sets are closed under finite intersections,
Proposition 2.12 implies that these measures are identical (using Theorem 2.4). This proves the
first assertion.

To prove the claim, recall from [Cam] that ([0, 1], µR) is equivalent – via binary expansion – to the
countable sequences of independent tosses of a fair coin. Moreover, countable sets have probability
zero in all cases, and the set E (I0, I1) corresponds precisely to all sequences where the ith coin toss
is a tail if i ∈ I0, and a head if i ∈ I1. In turn, these correspond to the set of all x ∈ [0, 1] whose ith
digit in the binary expansion is 0 if i ∈ I0 and 1 if i ∈ I1 – and these sets are measurable because
they are unions of intervals. It is now clear, by partitioning [0, 1] into 2max(I0∪I1)-many intervals of

equal length, that each of these sets has measure 2−|I0∪I1|, which proves the claim.
We now show the second assertion. Note that f(x) = ±∞ only on a set of measure zero, since f

is Lebesgue integrable. Next, the functions f± := max(±f, 0) are also measurable (and integrable)
if f is; hence by linearity it suffices to prove the result for each of them. Thus, suppose without
loss of generality that 0 ≤ f < ∞. We carry out a standard construction to approximate f by a
sequence of nonnegative simple functions 0 ≤ f1 ≤ f2 ≤ · · · on [0, 1], which converge pointwise to f
almost everywhere. Given n ∈ N, define In,k :=

[

k−1
2n ,

k
2n

)

for 1 ≤ k ≤ 22n, and In,22n+1 := [2n,∞).

Now define An,k := f−1(In,k) ⊂ [0, 1], and Bn,k := {G ∈ G (V ) : f(‖G‖ψ,2) ∈ In,k}. Thus by
Theorem B, both An,k and Bn,k are measurable and of equal measures. Now define the functions

fn :=
22n+1
∑

k=1

k − 1

2n
1An,k , gn :=

22n+1
∑

k=1

k − 1

2n
1Bn,k .

It is then standard that 0 ≤ fn ≤ fn+1 ≤ f at each point, and fn(x) → f(x) for all x. The
same facts also hold for gn and g, where we define: g(G) := f(‖G‖ψ,2) and gn(G) := fn(‖G‖ψ,2).
Moreover, since ‖·‖ψ,2 is measure-preserving, the simple functions fn, gn are pullbacks of each other

(via the invertible map ‖·‖ψ,2 and its inverse – outside the countable set G0(V ), say). Hence,

Eµ[gn] =

∫

G (V )
gn(G) dµ1/2 =

∫ 1

0
fn(x) dx =

∫ 1

0
fn dµR ∀n ∈ N.

Now use the Monotone Convergence Theorem twice:

Eµ1/2 [f(‖·‖ψ,2)] = Eµ1/2 [g] = lim
n→∞

Eµ1/2 [gn] = lim
n→∞

∫ 1

0
fn(x) dx =

∫ 1

0
f(x) dx.

�

Remark 3.1. Note that ‖·‖ψ,2 is not a bijection on G (V ); thus to make sense of (‖·‖ψ,2)−1,

ignore all finite graphs G0(V ), and/or cofinite graphs G1(V ) (since all countable sets have measure
zero). Then ‖·‖ψ,2 is a measure-preserving bijection on the complement, whence a random variable

T |G (V )\G0(V ) is measurable if and only if T ◦ (‖·‖ψ,2)−1 : [0, 1] \ ‖G0(V )‖ψ,2 → G (V ) \ G0(V ) → X
is measurable.

Remark 3.2. We now illustrate an application of Theorem B. Recall the definition of the “kth
minimum edge number” as defined in Proposition 2.18(1). One can now show that

Ψ1(G) = minψ(G) := −⌊log2 ‖G‖ψ,2⌋.
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More generally, Ψk(G) can be inductively defined as fk(‖G‖ψ,2), where:

fk(x) := f1

(

x−
k−1
∑

i=1

2−fi(x)

)

, f1(x) := −⌊log2 x⌋.

In particular, one can compute the expected value of Ψ1 (with respect to µ1/2) using Theorem B,

to be −
∫ 1

0
⌊log2(x)⌋ dx, which can be shown to converge to 2. Recall that this expectation was

also computed in Proposition 2.18(1).

3.2. Pontryagin duality and Walsh-Rademacher functions. We conclude the paper with a
discussion of Fourier analysis in graph space. We require the following terminology.

Definition 3.3. Suppose V is any fixed vertex set.

(1) A function f : G (V ) → C is positive definite if for all integers n ∈ N and G1, . . . , Gn ∈ G (V ),
the matrix (f(Gi∆Gj))1≤i,j≤n is positive semidefinite.

(2) Given a finite graph E ∈ G0(V ), the corresponding Walsh function χE : G (V ) → C is
defined as follows:

χE(G) := (−1)|E∩G| =
∏

e∈E

χ{e}(G).

The Walsh functions turn out to be important for several reasons, including for Fourier analysis
via Pontryagin duality. Recall the following terminology:

Definition 3.4. A unitary character of a group G is a group homomorphism χ : G → S1, the unit
circle in C

×. The Pontryagin dual of a locally compact abelian group is simply the set of continuous
unitary characters, which form a group under pointwise multiplication.

Note for G = G (V ) that all unitary characters have image in {±1}, since G (V ) is a group with
exponent 2. Now the following result completely characterizes all positive definite functions on
G (V ), as well as its Pontryagin dual.

Theorem 3.5. Suppose V is a countable set. Then the Pontryagin dual to G (V ) is naturally iden-
tified with its subgroup G0(V ) of finite graphs, via Walsh functions. They also form an orthonormal
basis of L2(G (V ),R).

Moreover, a function f : G (V ) → C is positive definite and satisfies f(0) = 1, if and only if
there exists a probability measure µ on G0(V ) (i.e., a countable set of nonnegative numbers µ(H)
that add up to 1), such that

f(G) =
∑

H∈G0(V )

(−1)|G∩H|µ(H).

(In particular, f has image in [−1, 1].)
Since G (V ) is a compact abelian group, one can also apply the theory of Pontryagin duality to

carry out Fourier analysis on it, or to state Parseval’s identity and Plancherel’s theorem (a useful
reference is [Ru, Chapter 1]). We now write down some of the results in this setting.

Proposition 3.6. Suppose V is an arbitrary set (of labelled vertices).

(1) The “group algebra” L1(G (V ),R) is a Banach algebra under convolution.
(2) The set of Walsh functions {χE : E ∈ G0(V )} is an orthonormal subset of L2(G (V ),R).

When V is countable, the Walsh functions form a complete/Hilbert basis; moreover, they
transform into the usual Walsh functions – i.e., products of Rademacher functions – via the
Haar measure-preserving map ‖·‖ψ,2.
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Note that the first part follows from [Ru, Theorem 1.1.7], and the second part follows from Theorem
B, since the Walsh functions form a complete orthonormal system in L2([0, 1],R). Moreover, they
comprise the Pontryagin dual of G (V ):

Theorem 3.7. Suppose G ∧ is the Pontryagin dual group to G (V ) for a set V .

(1) For all finite sets E ∈ G0(V ), we have χE ∈ G ∧, with image in {±1}.
(2) G ∧ is a discrete (locally compact) abelian group, which is metrizable if V is countable.
(3) (Plancherel’s Theorem.) The Fourier transform, when restricted to (L1 ∩ L2)(G (V )), is a

linear isometry in the L2-metric, onto a dense subset of L2(G ∧). Hence it has a unique
extension to a unitary operator from L2(G (V )) onto L2(G ∧) (for some Haar measure µ∧

on G ∧).
(4) When V is countable, G ∧ is precisely the set of Walsh functions, and the assignment χE 7→

E := {e ∈ KV : χE({e}) = −1} is a group isomorphism onto (G0(V ),∆).

Proof. To show (1), one shows that χ{e} is continuous for each e ∈ KV :

χ−1
{e}(−1) = E (∅, {e}), χ−1

{e}(1) = E ({e}, ∅),
and these are both open by Proposition 2.10. Note that by [Ru, Theorem 1.2.5], G ∧ is discrete
since G (V ) is compact. Similarly, G ∧ is metrizable since G (V ) is separable. This proves (2). Part
(3) is shown (for more general G ) in [Ru, Theorem 1.6.1]. Part (4) is also not hard to show – see
e.g. [Fi, Wa]. �

Finally, we prove the remaining unproved result above.

Proof of Theorem 3.5. All but the last assertion follow from Proposition 3.6 and Theorem 3.7.
To prove the last part, apply Bochner’s Theorem [Ru, Theorem 1.4.3] to the compact abelian

group G (V ). Thus, every normalized function f is of the form f(G) =

∫

ξ∈G∧

ξ(G) dµ(ξ) for some

probability measure µ on G ∧. Since G ∧ ∼= G0(V ) from above, every measure is a countable tuple
as claimed. �

Concluding remarks. In this paper we analyzed measures and integration on labelled graph
space G (V ). We showed that G (V ) with its Haar measure is very closely related to the circle with
its Haar measure, which allowed us to transport Haar-Lebesgue integration on [0, 1] over to graph
space G (V ).

A more involved task is to study random graphs – i.e., sequences of G (V )-valued random vari-
ables. This involves the analysis of measurable functions from a probability space into G (V ) (as
opposed to real-valued functions of graphs studied in this paper). Note that graph space G (V )
is a 2-torsion group, and hence does not embed as a group into a normed linear space. Thus the
next step in the study of labelled graphs and their limits involves developing the foundations of
probability theory on G (V ), and studying probability inequalities and stochastic convergence on
random graphs. The study of probability theory on graph space is addressed in recent work [KR2].
Such a formalism is essential in order to discuss issues like probability generating mechanisms for
graphs, or to sample from graph space.
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