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Abstract

A classical theorem of I.J. Schoenberg characterizes functions that preserve positivity when applied entrywise to
positive semidefinite matrices of arbitrary size. Obtaining similar characterizations in fixed dimension is intricate.
In this note, we provide a solution to this problem in the polynomial case. As consequences, we derive tight linear
matrix inequalities for Hadamard powers of positive semidefinite matrices, and a sharp asymptotic bound for the
matrix cube problem involving Hadamard powers.

Résumé

Sur les transformations positives des matrices d’une dimension donnée. Un résultat classique de
I.J. Schoenberg caractérise les fonctions préservant la positivité lorsqu’elles sont appliquées aux entrées des ma-
trices semidéfinies positives de dimension arbitraire. Le problème analogue lorsque la dimension est fixe est beau-
coup plus complexe à résoudre. Dans cette note, nous résolvons ce problème dans le cas où la fonction est un
polynôme. Nous dérivons de ce résultat des inégalités exactes pour les puissances d’Hadamard d’une matrice
positive et pour le problème du cube matriciel.

1. Introduction

During the last decade, the study of maps, linear or not, that preserve matrix structures with positivity
constraints has had at least three different motivations: statistical mechanics, well illustrated in the
highly original work of Borcea and Brändén on the Lee–Yang and Pólya–Schur programs [7,8]; global
optimization algorithms based on the cone of hyperbolic or positive definite polynomials [4]; and the
statistics of big data, having the correlation matrix of a large number of random variables as the central
object of study [12,13,15]. Inspired by these works, our investigation evolves out of a classical result of
Schoenberg [22], by imposing the challenging condition of dealing with matrices of a fixed size.

Given a set K ⊂ C and an integer N ≥ 1, denote by PN (K) the set of positive semidefinite N × N
matrices with entries in K. Also, let D(0, ρ) ⊂ C denote the complex disc of radius ρ > 0 centered at the
origin and let D(0, ρ) denote its closure. A function f : K → C acts naturally on PN (K) when applied
entrywise:

f [A] := (f(aij))

Email addresses: a.belton@lancaster.ac.uk (Alexander Belton), dguillot@udel.edu (Dominique Guillot),

khare@stanford.edu (Apoorva Khare), mputinar@math.ucsb.edu, mihai.putinar@ncl.ac.uk (Mihai Putinar).

Preprint submitted to the Académie des sciences January 14, 2016



for any A = (aij) ∈ PN (K). Akin to the theory of positive definite functions, it is natural to seek charac-
terizations of those functions f such that f [A] is positive semidefinite for all A ∈ PN (K). This problem
has been well studied in the literature. The following classical result of Schoenberg [22] classifies functions
preserving positivity on matrices of arbitrary dimension. Recall that the Gegenbauer (or ultraspherical)

polynomials C
(λ)
n (x) and the Chebyshev polynomials of the first kind C

(0)
n (x) are such that

(1− 2xt+ t2)−λ =

∞∑
n=0

C(λ)
n (x)tn (λ > 0), (1− xt)(1− 2xt+ t2)−1 =

∞∑
n=0

C(0)
n (x)tn.

Theorem 1.1 (Schoenberg [22]) Fix an integer d ≥ 2 and a continuous function f : [−1, 1]→ R.

(i) f(cos ·) is positive definite on the unit sphere Sd−1 ⊂ Rd if and only if f can be written as a

non-negative linear combination of the polynomials C
(λ)
n , where λ = (d− 2)/2:

f(x) =
∑
n≥0

anC
(λ)
n (x) (an ≥ 0).

(ii) f [−] : PN ([−1, 1]) → PN (R) for all N ≥ 1 if and only if f is analytic on [−1, 1] and absolutely
monotonic on [0, 1], i.e., f has a Taylor series with non-negative coefficients convergent on D(0, 1).

For more on absolutely monotonic functions, see the work [3] of Bernstein.
Schoenberg’s work has been extended in several directions; see, for example, [2,5,6,9,16,19,21,23]. How-

ever, when the dimension N is fixed, obtaining a useful characterization of entrywise functions preserving
PN is difficult and remains out of reach as of today. A necessary condition on a continuous function
f : (0,∞) → R to preserve positivity comes from an inspired idea of Loewner, as developed by Horn in
his doctoral dissertation; see [18]. The result was later extended in [12] to work with matrices of low rank.
To state the result, let 1N×N denote the N ×N matrix with each entry equal to 1.
Theorem 1.2 (Horn [18], Guillot–Khare–Rajaratnam [12]) Suppose f : I → R, where I := (0, ρ)
and 0 < ρ ≤ ∞. Fix an integer N ≥ 2 and suppose that f [A] ∈ PN (R) for any matrix A = a1N×N +uuT ,
where a ∈ (0, ρ) and u ∈ [0,

√
ρ− a)N . Then f ∈ CN−3(I), with

f (k)(x) ≥ 0 ∀x ∈ I, 0 ≤ k ≤ N − 3,

and f (N−3) is a convex non-decreasing function on I. Furthermore, if f ∈ CN−1(I), then f (k)(x) ≥ 0 for
all x ∈ I and 0 ≤ k ≤ N − 1.
We note that Theorem 1.2 is sharp in the sense that there exist functions which preserve positivity on
PN ((0, ρ)), but not on PN+1((0, ρ)). For example, f(x) = xα with α ∈ (N − 2, N − 1) is such a function;
see [10,11,17] for more details. Note also that increasing the dimension N in Theorem 1.2 allows the
recovery of a version of Schoenberg’s Theorem 1.1(ii).

The study of functions that preserve positivity has recently received renewed attention, due to their
application in high-dimensional probability and statistics. In practical applications, functions are often
applied entrywise to covariance and correlation matrices, in order to improve their properties, such as
better conditioning, or to induce a Markov random field structure; see [14,15]. Whether or not the resulting
matrices are positive semidefinite is critical for the validity of these procedures. Allowing for arbitrary
dimensions is unnecessarily restrictive, as the dimension of the problem is usually known. Motivated by
such applications, characterizations of positivity preserving functions have recently been obtained in fixed
dimensions, under further constraints that arise in practice; see, e.g., [12,13,15]. In this context, our note
provides an effective criterion for verifying positivity preservation for polynomial maps.
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2. Main result

We reconsider Schoenberg’s original problem in fixed dimension for the case where f is a polynomial.
Our main result characterizes the polynomials of degree N that preserve positivity on PN (D(0, ρ)).

Theorem 2.1 Fix ρ > 0 and integers M ≥ N ≥ 1, and let f(z) =
∑N−1
j=0 cjz

j + cMz
M be a polynomial

with real coefficients. For any vector d := (d0, . . . , dN−1) with non-zero entries, define

C(d) = C(d; zM ;N, ρ) :=

N−1∑
j=0

(
M

j

)2(
M − j − 1

N − j − 1

)2
ρM−j

dj
, (1)

and let c := (c0, . . . , cN−1). The following are equivalent.

(i) f [−] preserves positivity on PN (D(0, ρ)).

(ii) The vector (c0, . . . , cN−1, cM ) belongs to the set

[0,∞)N+1 ∪
(
(0,∞)N × [−C(c)−1,∞)

)
.

(iii) f [−] preserves positivity on P1
N ((0, ρ)), the set of matrices in PN ((0, ρ)) having rank at most 1.

The necessity of having c0, . . . , cN−1 ≥ 0 when f [−] preserves positivity follows from Theorem 1.2.
The constant C(c) = C(c; zM ;N, ρ) provides a threshold for polynomials that preserve positivity on PN .

Our result thus provides a quantitative version in fixed dimension of Schoenberg’s result, Theorem 1.1(ii),
as well as of Horn’s result, Theorem 1.2. Surprisingly, preserving positivity on PN (D(0, ρ)) is equivalent
to preserving positivity on the much smaller set of real rank-one matrices.

The proof of Theorem 2.1 relies on a careful analysis of the polynomial

pt[A] := det(t(c01N×N + c1A+ · · ·+ cN−1A
◦(N−1))−A◦M )

for rank-one matrices A ∈ P1
N (D(0, ρ)). Recall that given a non-increasing N -tuple of non-negative

integers, nN ≥ · · · ≥ n1, the corresponding Schur polynomial over a field F is the unique polynomial
extension to FN of

s(nN ,...,n1)(x1, . . . , xN ) :=
det(x

nj+j−1
i )

det(xj−1i )
(2)

for pairwise distinct xi ∈ F. Note that the denominator is precisely the Vandermonde determinant
∆N (x1, . . . , xN ) := det(xj−1i ) =

∏
1≤i<j≤N (xj − xi).

Theorem 2.2 Let c0, . . . , cN−1 ∈ F× be non-zero scalars, where N ≥ 1, and let the polynomial

pt(x) := t(c0 + · · ·+ cN−1x
N−1)− xM ,

where t is a variable and M ≥ N are integers. Let the partition λ(M,N, j) := (M−N+1, 1, . . . , 1, 0, . . . , 0),
with N − j − 1 entries after the first equal to 1 and the remaining j entries equal to 0. The following
identity holds for all u = (u1, . . . , uN ), v = (v1, . . . , vN ) ∈ FN :

det pt[uv
T ] = tN−1∆N (u)∆N (v)

N∏
j=1

cj−1

(
t−

N−1∑
j=0

sλ(M,N,j)(u)sλ(M,N,j)(v)

cj

)
. (3)

Moreover,

sλ(M,N,j)(1, . . . , 1) =

(
M

j

)(
M − j − 1

N − j − 1

)
(0 ≤ j ≤ N − 1). (4)

We now explain how Theorem 2.2 is used to prove (iii)⇒ (ii) in Theorem 2.1. Suppose f [−] preserves
positivity on P1

N ((0, ρ)); using Theorem 1.2, it is not hard to show that the coefficients c0, . . . , cN−1 are
non-negative, and are strictly positive if cM < 0. Now suppose c0, . . . , cN−1 > 0 > cM . With pt(x) as in
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Theorem 2.2 and t := |cM |−1, the function |cM |−1f(x) = pt(x) preserves positivity on rank-one matrices
A = uuT , for any u ∈ (0,

√
ρ)n. Hence, by Equation (3),

0 ≤ det pt[uu
T ] = tN−1∆N (u)2c0 · · · cN−1

(
t−

N−1∑
j=0

sλ(M,N,j)(u)2

cj

)
. (5)

Letting uk →
√
ρ for all k with ul 6= um for l 6= m, we conclude that

t = |cM |−1 ≥
N−1∑
j=0

sλ(M,N,j)(
√
ρ, . . . ,

√
ρ)2

cj
=

N−1∑
j=0

sλ(M,N,j)(1, . . . , 1)2
ρM−j

cj
= C(c; zM ;N, ρ). (6)

3. Consequences and extensions of the main result

In this section, we set out three remarkable corollaries of Theorem 2.1.

3.1. Linear matrix inequalities

For A ∈ PN (K) and f as in the statement of Theorem 2.1, note that

f [A] = c01N×N + · · ·+ cN−1A
◦(N−1) + cMA

◦M ,

where A◦k := (akij) denotes the kth Hadamard power of A. Understanding when f [A] is positive semidefi-
nite is thus equivalent to obtaining linear inequalities for Hadamard powers. As an immediate consequence
of our main result, we provide a sharp bound for controlling the Hadamard powers of positive semidefinite
matrices using lower order powers.
Corollary 3.1 Fix ρ > 0, integers M ≥ N ≥ 1, and scalars c0, . . . , cN−1 > 0. Then

A◦M ≤ C(c; zM ;N, ρ) ·
(
c01N×N + c1A+ · · ·+ cN−1A

◦(N−1)) (7)

for all A ∈ PN (D(0, ρ)). Moreover, the constant C(c; zM ;N, ρ) is sharp.
We note that Corollary 3.1 is also sharp in the sense that the right-hand side of (7) cannot be replaced

by a linear combination of fewer than N Hadamard powers of A. This can be shown using matrices of
the form A = uuT for a vector u with distinct real entries.

3.2. Spectrahedra and matrix cubes

Our main result is also connected to the study of spectrahedra [4] and the matrix cube problem [20].
Recall that given real symmetric N ×N matrices A0, . . . , AM+1, the corresponding matrix cubes are

U [η] :=
{
A0 +

M+1∑
m=1

umAm : um ∈ [−η, η]
}

(η > 0). (8)

The matrix cube problem consists of determining whether U [η] ⊂ PN , and finding the largest η for which
this is the case. As another consequence of our main result, we obtain an asymptotically sharp bound for
the matrix cube problem when the matrices Aj are Hadamard powers.
Corollary 3.2 Fix ρ > 0, integers M ≥ 0, N ≥ 1, and c0, . . . , cN−1 > 0. Given a matrix A ∈
PN (D(0, ρ)), let

A0 := c01N×N + c1A+ · · ·+ cN−1A
◦(N−1), Am := A◦(N−1+m) (1 ≤ m ≤M + 1).
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Then

η ≤

(
M∑
m=0

C(c; zN+m;N, ρ)

)−1
⇒ U [η] ⊂ PN (C) ⇒ η ≤ C(c; zN+M ;N, ρ)−1. (9)

The upper and lower bounds for η are asymptotically equal as N →∞, i.e.,

lim
N→∞

C(c; zN+M ;N, ρ)−1
M∑
m=0

C(c; zN+m;N, ρ) = 1. (10)

3.3. Extension to other classes of functions

Theorem 2.1 naturally extends to general polynomials.
Corollary 3.3 Fix a bounded K ⊂ C and integers M ≥ N ≥ 1. There exists a universal constant
hN,M (K) > 0, with the following property: if the polynomial f(z) =

∑M
k=0 ckz

k has real coefficients with
(i) c0, . . . , cN−1 > 0, and (ii) min{ck : 0 ≤ k ≤ N−1} ≥ hN,M (K)·max{|cl| : cl < 0, N ≤ l ≤M},

then f [−] : PN (K)→ PN (C).
Our main result also extends to analytic functions.

Theorem 3.4 Fix ρ > 0 and an integer N ≥ 1. Let c := (c0, . . . , cN−1) ∈ (0,∞)N , and suppose g(z) :=∑∞
M=N cMz

M is analytic on D(0, ρ) and continuous on D(0, ρ), with real coefficients. Then

t(c01N×N + c1A+ · · ·+ cN−1A
◦(N−1))− g[A] ∈ PN (C) (11)

for all A ∈ PN (D(0, ρ)) and all t ≥
∑
M≥N :cM>0 cMC(c; zM ;N, ρ). Moreover, this series is convergent

and bounded above by

g
(2N−2)
2 (

√
ρ)

2N−1(N − 1)!2

N−1∑
j=0

(
N − 1

j

)2
ρN−j−1

cj
<∞, (12)

where g2(z) := g+(z2) and g+(z) :=
∑
M≥N :cM>0 cMz

M .

4. Extremal problems and generalized Rayleigh quotients

Understanding which polynomials preserve positivity can naturally be reformulated as an extremal
problem involving Rayleigh quotients. The following result is therefore equivalent to Theorem 2.1.
Theorem 4.1 Fix ρ > 0, integers M ≥ N ≥ 1, and positive scalars c0, . . . , cN−1 > 0. Then

inf
u∈K(A)⊥

u∗
(∑N−1

j=0 cjA
◦j
)
u

u∗A◦Mu
≥ C(c; zM ;N, ρ)−1,

for all A ∈ PN (D(0, ρ)), where K(A) := ker(c01N×N + c1A + · · · + cN−1A
◦(N−1)). Moreover, the bound

C(c; zM ;N, ρ) is sharp, and may be obtained by considering only the set of rank-one matrices P1
N ((0, ρ)).

When considering the analogue of Theorem 4.1 for a single matrix, one can first show that K(A) ⊂
kerA◦M and immediately conclude that there exists a constant C(c; zM ;A) such that

u∗
(N−1∑
j=0

cjA
◦j
)
u ≥ C(c; zM ;A)−1 · u∗A◦Mu (∀u ∈ CN ).

The subtlety in attempting to prove Theorems 2.1 and 4.1 via this approach lies in the fact that the map
A 7→ C(c; zM ;A) is not continuous. In fact, it is not continuous at the matrix A = ρ1N×N ∈ P1

N (D(0, ρ)).
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Complete proofs and more ramifications of these results will appear in [1].
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