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Abstract. Entrywise powers of matrices have been well-studied in the literature, and have
recently received renewed attention due to their application in the regularization of high-
dimensional correlation matrices. In this paper, we study powers of positive semidefinite block
matrices (Hst)

n
s,t=1 where each block Hst is a complex m × m matrix. We first characterize

the powers α ∈ R such that the blockwise power map (Hst) 7→ (Hα
st) preserves Loewner pos-

itivity. The characterization is obtained by exploiting connections with the theory of matrix
monotone functions which was developed by C. Loewner. Second, we revisit previous work by
D. Choudhury [Proc. Amer. Math. Soc. 108] who had provided a lower bound on α for pre-
serving positivity when the blocks Hst pairwise commute. We completely settle this problem
by characterizing the full set of powers preserving positivity in this setting. Our characteri-
zations generalize previous results by FitzGerald-Horn, Bhatia-Elsner, and Hiai from scalars
to arbitrary block size, and in particular, generalize the Schur Product Theorem. Finally, a
natural and unifying framework for studying the cases where the blocks Hst are diagonalizable
consists of replacing real powers by general characters of the complex plane. We thus classify
such characters, and generalize our results to this more general setting. In the course of our
work, given β ∈ Z, we provide lower and upper bounds for the threshold power α > 0 above
which the complex characters z = reiθ 7→ rαeiβθ preserve positivity when applied entrywise to
Hermitian positive semidefinite matrices. In particular, we completely resolve the n = 3 case
of a question raised in 2001 by Xingzhi Zhan. As an application of our results, we also extend
previous work by de Pillis [Duke Math. J. 36] by classifying the characters K of the complex
plane for which the map (Hst)

n
s,t=1 7→ (K(tr(Hst)))

n
s,t=1 preserves Loewner positivity.

1. Introduction

The study of positive definite matrices and of functions that preserve them arises naturally
in many branches of mathematics and other disciplines. Given a function f : R → R and a
matrix A = (ast), the matrix f [A] := (f(ast)) is obtained by applying f to the entries of A.
Such mappings are called entrywise or Hadamard functions (see [22, §6.3]). Entrywise functions
preserving Loewner positivity have been widely studied in the literature (see e.g. Schoenberg
[33], Rudin [32], Herz [19], Horn [21], Christensen and Ressel [5], Vasudeva [36], FitzGerald,
Micchelli, and Pinkus [9], Hiai [20]). The subject has recently received renewed attention due to
its importance in the regularization of high-dimensional covariance/correlation matrices [13, 12,
17, 18, 27, 38]. An important family of functions is the set of power functions f(x) = xα for α > 0.
Characterizing the entrywise powers that preserve positivity is a classical problem that has been
well-studied in the literature and is now completely resolved (see [8, 3, 20, 10]). A natural
generalization of this problem consists of studying powers preserving positivity when applied to
block matrices (see e.g. [4, 14, 28]). More precisely, let H := (Hst)

n
s,t=1 be anmn×mn Hermitian

positive semidefinite matrix, where each block Hst is an m×m Hermitian positive semidefinite
matrix. Our first main result in this paper is a complete characterization of the powers α such
that the matrix (Hα

st)
n
s,t=1 is always positive semidefinite. Here, the power Hα

st is computed using
the spectral decomposition of Hst. Note that when each block of H is 1×1, the problem reduces
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to the classical problem of characterizing entrywise powers preserving positivity. In contrast,
when H consists of only one block, every power trivially preserves positive semidefiniteness.
Surprisingly, we demonstrate that except in trivial cases, powers do not preserve positivity
when the block size is 2 or more. This sharply contrasts the classical case where all powers
preserve positivity beyond a certain critical exponent (see e.g. [8, 24]).

In a previous paper, Choudhury [4] has studied powers α > 0 such that the map (Hst) 7→ (Hα
st)

preserves Loewner positivity, under the additional assumption that the blocks Hst pairwise
commute. She demonstrates that every power α ∈ N∪ [mn−2,∞) preserves Loewner positivity.
However, it is not clear if the bound mn − 2 is sharp, nor which smaller non-integer powers
preserve positivity. In our second main result, we completely answer these questions by showing
that the set of powers preserving positivity when the blocks commute is exactly N ∪ [n− 2). In
contrast to previous results, the answer turns out to be independent of the block size m. Our
result therefore shows that positivity is actually retained at a much lower threshold (critical
exponent) than was previously thought. We then extend this characterization to commuting
Hermitian blocks that are not necessarily positive semidefinite, by considering the odd and even
extensions of the power functions. Our characterization extends previous work by FitzGerald
and Horn [8], Bhatia and Elsner [3], Hiai [20], and Guillot, Khare, and Rajaratnam [10].

When studying powers of block matrices, one has to assume the blocks Hst are positive
semidefinite for the powers Hα

st to be well-defined. When the blocks are only Hermitian, it is
natural to replace the power functions by their odd or even extensions to R (see Hiai [20]).
Note that these functions are precisely the Lebesgue measurable multiplicative functions on
R (see e.g. [11]). More generally, when the blocks Hst are only diagonalizable, it is natural
to replace the power functions by general Lebesgue measurable multiplicative functions on C.
Considering such multiplicative functions provides a general and systematic framework in which
to study powers preserving Loewner positivity, either in the block case, the commuting block
case, or the traditional scalar setting studied by FitzGerald and Horn, Bhatia and Elsner,
and Hiai. Thus, in Section 3, we classify all measurable multiplicative functions on C that
preserve [0,∞), and identify a natural two-parameter family of functions {Ψα,β : α ∈ R, β ∈ Z}
that is used throughout the paper to generalize the power functions. Next, in Section 4 we
characterize which of these functions preserve Loewner positivity when applied blockwise to
Hermitian positive semidefinite matrices (Hst)

n
s,t=1. In Section 5, we consider the case where

the blocks Hst pairwise commute, and complete the characterization initiated by D. Choudhury
in [4]. We also demonstrate how our work can be used to generalize previous work by de Pillis
[6], by characterizing the functions Ψα,β for which the map (Hst)

n
s,t=1 7→ (Ψα,β(tr(Hst)))

n
s,t=1

preserves Loewner positivity.
Finally, in Section 6, we consider the traditional setting where each block is 1 × 1. For all

integers β ∈ Z and n ∈ N, we provide lower and upper bounds for the threshold power α > 0
above which Ψα,β [−] preserves Loewner positivity on n × n Hermitian positive semidefinite
matrices. In particular, when β = 1, we completely resolve the n = 3 case of a question raised
in 2001 by Xingzhi Zhan [20, Acknowledgment Section], concerning the powers α > 0 for which
Ψα,1[−] preserves Loewner positivity. Moreover, we study the same problem for arbitrary β,
which had not been previously done in the literature.

Notation: Given a subset S ⊂ C, denote by Pn(S) the set of n × n Hermitian positive semi-
definite matrices with entries in S. We denote the complex disc centered at a ∈ C and of
radius R > 0 by D(a,R). We write A ≥ 0 to denote that A ∈ Pn(C), and write A ≥ B when
A−B ∈ Pn(C). We denote by In the n×n identity matrix, and by 0n×n and 1n×n the n×n ma-
trices with every entry equal to 0 and 1 respectively. Finally, we denote the conjugate transpose
of a vector or matrix A by A∗.
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2. Literature review

Entrywise powers and their properties have been studied by many authors including Horn
and FitzGerald [8], Bhatia and Elsner [3], Hiai [20], and Guillot, Khare, and Rajaratnam [10].
Most of the known results concern matrices with blocks of dimension 1× 1. We now review two
of the most important results in the area.

Theorem 2.1 (FitzGerald and Horn, [8, Theorem 2.2]). Suppose A = (ast) ∈ Pn((0,∞)) for
some n ≥ 2. Then A◦α := (aαst) ∈ Pn for all α ∈ N∪[n−2,∞). If α ∈ (0, n−2) is not an integer,
then there exists A ∈ Pn((0,∞)) such that A◦α /∈ Pn. More precisely, Loewner positivity is not
preserved for A = ((1+ ǫst))ns,t=1, for all sufficiently small ǫ = ǫ(α, n) > 0 for α ∈ (0, n− 2) \N.

Note that in Theorem 2.1, the entries of the matrix A are assumed to be positive for the power
xα to be well-defined. In practice, one also commonly encounters matrices with negative and
complex entries. In order to work with matrices with real entries, the papers [3, 20] considered
the odd and even extensions of the power functions to the real line.

Definition 2.2. Let α ∈ R. We define the even and odd extensions to R of the power function
x 7→ xα via:

φα(x) := |x|α, ψα(x) := sgn(x)|x|α, ∀x 6= 0, (2.1)

and φα(0) = ψα(0) := 0. Also define fα(x) := xα for x > 0, and fα(0) := 0.

Note that the definitions of φα, ψα given above are natural, as they yield the unique even
and odd multiplicative extensions to R of the standard power functions. The following result
completely characterizes the powers α such that φα or ψα preserves Loewner positivity when
applied entrywise. The reader is referred to [10] for a proof and history of this result.

Theorem 2.3 (Bhatia and Elsner [3], Hiai [20], Guillot, Khare, and Rajaratnam [10]). Let
α ∈ R and let n ≥ 2. Then

(1) φα[A] ∈ Pn(R) for all A ∈ Pn(R) if and only if α ∈ 2N ∪ [n− 2,∞).
(2) ψα[A] ∈ Pn(R) for all A ∈ Pn(R) if and only if α ∈ (−1 + 2N) ∪ [n− 2,∞).

Moreover, if f = φα or f = ψα does not preserve positivity on Pn(R) for some α ∈ R, there
exists a rank 2 matrix A ∈ Pn(R) such that f [A] 6∈ Pn(R).

Blockwise powers yield a generalization of the entrywise powers analysis studied above. We
now recall a sufficient condition for preserving positivity that was shown in [4] in the case where
H = (Hst) is a block matrix with commuting blocks Hst.

Theorem 2.4 (Choudhury, [4, Theorem 5]). Let H = (Hst) be a given positive semidefinite
mn×mn matrix, where {Hst : 1 ≤ s, t ≤ n} are a commuting family of normal m×m matrices.
If H is positive semidefinite, then so is (Hα

st) for all α ∈ N. If in addition each Hst is positive
semidefinite, then (Hα

st) is positive semidefinite for all real α ≥ mn− 2.

In Section 4 we completely characterize the powers α that preserve positivity when the blocks
do not necessarily commute. We then show in Section 5 that the bound α ≥ mn−2 in Theorem
2.4 is not sharp and that the optimal bound is α ≥ n− 2. Moreover, we will demonstrate how
Theorem 2.4 can be naturally extended to blocks Hst that are diagonalizable.

3. Preliminaries and main results

Before we proceed to characterize functions preserving Loewner positivity for block matrices,
we provide a framework in which to work with powers of complex matrices. In order to do so,
first note that the functions φα and ψα defined in Section 2 are in fact the unique non-constant
Lebesgue measurable multiplicative functions on R (see e.g. [11]). Since we work with complex
matrices in the present paper, it is natural to first classify the multiplicative maps on the complex
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plane under mild measurability assumptions. Such a classification has been achieved in related
work [11].

3.1. Multiplicative maps on the complex plane. Given α, β ∈ R, define Ψα,β : C → C by:

Ψα,β(r exp(iθ)) := rα exp(iβθ) ∀r > 0, θ ∈ (−π, π], Ψα,β(0) := 0. (3.1)

When β ∈ Z, the maps Ψα,β are multiplicative on C and continuous on the unit circle S1 :=
{z ∈ C : |z| = 1}. Moreover, (α, β) 7→ Ψα,β is a monoid homomorphism from the additive group
(R × Z,+) to the monoid of multiplicative maps on C (under pointwise multiplication). The
following lemma shows that the functions Ψα,β for α ∈ R and β ∈ Z are in fact the only non-
constant multiplicative functions from C to C that 1) are continuous on S1, 2) map the positive
real axis into itself (needed to preserve Loewner positivity), and 3) satisfy natural measurability
conditions.

Lemma 3.1. Given R ∈ (1,∞] and K : D(0, R) → C, the following are equivalent.

(1) K is multiplicative on D(0, R), continuous on S1 ⊂ D(0, R), sends Ĩ := (0, R) to R, and

is Lebesgue measurable on some subinterval I ⊂ Ĩ which contains 1.
(2) Either K ≡ 0 or K ≡ 1 on D(0, R), or there exist α ∈ R and β ∈ Z such that K ≡ Ψα,β.

Moreover, the maps {Ψα,β : α ∈ R, β ∈ Z} ∪ {K ≡ 1} are linearly independent as functions on
D(0, r) for any 0 < r ≤ ∞.

Proof of Lemma 3.1. Note that K : S1 → C is multiplicative and continuous, hence a character.
ThereforeK : D(0, R) → C is multiplicative and conjugation-equivariant. The result now follows
from [11, Theorem 8]. �

3.2. Main results. Before stating the main results of the paper, we introduce some notation.
Let S ⊂ C and f : S → C. Given a complex diagonalizable matrix A with eigen-decomposition
A = P−1DP and spectrum contained in S, we denote by f(A) the matrix f(A) = P−1f(D)P

where f(D) denotes the diagonal matrix with diagonal f(d11), . . . , f(dnn). We denote by P
[m]
mn(S)

the subset of block matrices H = (Hst)
n
s,t=1 ∈ Pmn(C) where each block Hst is an m × m

diagonalizable matrix with spectrum contained in S. Note that when m = 1, the set P
[m]
mn(S)

reduces to Pn(S). Given H = (Hst)
n
s,t=1 ∈ P

[m]
mn(S), we define

f [m][H] := (f(Hst))
n
s,t=1. (3.2)

When m = 1, f [m][A] reduces to f [A]. Using this notation, we can now state the main results
of the paper.

Recall that by Theorem 2.1, a power function xα preserves positivity when applied entrywise
to all n×n symmetric positive semidefinite matrices with positive entries, if and only if α ≥ n−2
or α ∈ N. Our first main result shows that, surprisingly, the situation is radically different when
the blocks have size greater than 1.

Theorem A. Let β ∈ Z and let m,n ≥ 2.

(1) Given α > 0, the matrix f
[m]
α [(Hst)] = (Hα

st) ∈ Pmn(C) for all (Hst) ∈ P
[m]
mn([0,∞)), if

and only if α = 1. If α ≤ 0, then f
[m]
0 [−] preserves positivity on P

[m]
mn((0,∞)) if and only

if α = 0.

(2) The functions φ
[m]
α [−] do not preserve positivity on P

[m]
mn(R) for any α ∈ R.

(3) For α ∈ R, the functions ψ
[m]
α [−] preserve positivity on P

[m]
mn(R) if and only if α = 1.

(4) For α ∈ R, the functions Ψ
[m]
α,β [−] preserve positivity on P

[m]
mn(C) if and only if α = 1 and

β = ±1 – i.e., Ψα,β(z) ≡ z or z.
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A natural relaxation of the hypothesis in Theorem A is to assume that the blocks Hst all
commute with each other. Powers preserving positivity when applied to block matrices where
the blocks commute have been studied by D. Choudhury in [4]. It is natural to ask if the
lower bound α ≥ mn − 2 in Theorem 2.4 is sharp, or if other powers preserve positivity. We
completely settle this question in our second main result, Theorem B, by showing that the
critical exponent is in fact α = n − 2 and that smaller non-integer powers do not preserve
Loewner positivity. In Section 5 we also consider the analogue of Theorem B where the blocks
are complex diagonalizable.

Theorem B. Let α > 0 and m,n ≥ 2. Then (Hα
st) ∈ Pmn(C) for all (Hst)

n
s,t=1 ∈ Pmn(C) such

that Hst ∈ Pm(C) and the blocks Hst commute, if α ∈ N∪ [n−2,∞). If α 6∈ N∪ [n−2,∞), there
exist matrices Hst ∈ Pm(C) such that (Hst) ∈ Pmn(C), the blocks Hst commute, but (Hα

st) is not
positive semidefinite. Moreover, if α < 0, there exist real symmetric positive definite matrices
Hst, s, t = 1, . . . , n such that (Hst)

n
s,t=1 ∈ Pmn(R), but (H

α
st) is not positive semidefinite.

In our third main result, we consider an interesting question raised by X. Zhan in 2001 (see
[20, Acknowledgments]). Zhan asked if Theorem 2.1 can be generalized to matrices with complex
entries when the power functions xα are replaced by the functions z = reiθ 7→ rαeiθ. This is
precisely the power function Ψα,1. More generally, in the framework developed in Section 3.1,
it is natural to generalize Zhan’s question by asking for which values of α, β does Ψα,β preserve
positivity when applied entrywise. Our third result, Theorem C, provides bounds on α, β which
guarantee that Ψα,β preserves or does not preserve Loewner positivity.

Theorem C. Let n ≥ 3.

(1) The entrywise function Ψα,β preserves Loewner positivity on Pn(C) if β ∈ Z, (α, β) 6=
(0, 0), and either α ∈ |β| − 2 + 2N or α ≥ max(n− 2, |β|+ 2n− 6).

(2) The entrywise function Ψα,β fails to preserve positivity if either:
(a) β 6∈ Z, or
(b) α < 1, or
(c) 1 ≤ α < max(n− 2, |β|+ 2⌊(

√
8n+ 1− 5)/2⌋) and α 6∈ |β| − 2 + 2N.

Thus for n ≥ 3, β ∈ Z, and α 6∈ |β| − 2 + 2N, we see that Ψα,β preserves Loewner positivity for

α ≥ max(n− 2, |β|+ 2n− 6), but not for α < max(n− 2, |β|+ 2⌊(
√
8n+ 1− 5)/2⌋). Note that

if n = 3, these two quantities coincide and equal max(1, |β|). We therefore have the following
corollary, which completely answers Zhan’s question for the n = 3 case.

Corollary 3.2. For n = 3, the entrywise power function Ψα,β preserves Loewner positivity on
Pn(C) if and only if β ∈ Z and α ≥ max(1, |β|).
A consequence of Theorem C is that complex critical exponents exist for the power functions
Ψα,β :

Corollary 3.3. For every n ≥ 3 and β ∈ Z, there exists a smallest real number αmin such that
Ψα,β [−] preserves Pn(C) for all α ≥ αmin. Moreover, αmin = max(1, |β|) for n = 3, while for
n ≥ 4,

max(n− 2, |β|+ 2⌊(
√
8n+ 1− 5)/2⌋) ≤ αmin ≤ |β|+ 2n− 6.

Note that Theorem 2.1 and an application of the Schur product theorem imply that n − 2 ≤
αmin ≤ |β|+2n−4. Corollary 3.3 thus greatly improves this lower bound for the critical exponent
αmin.

4. Powers preserving positivity: the block case

We now characterize powers preserving positivity when applied blockwise. To prove Theorem
A we need some preliminaries. First recall the notion of an m-matrix monotone function.
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Definition 4.1. Let I ⊂ R be an interval and let m ≥ 1. A function f : I → R is said to be
m-matrix monotone (or m-monotone) if given m ×m Hermitian matrices A,B with spectrum
in I,

A ≥ B =⇒ f(A) ≥ f(B).

The following lemma reformulatesm-monotonicity of power functions in terms of block matrices,
and will be crucial in proving Theorem A.

Lemma 4.2. Given an integer m ∈ N, define the subset Pm ⊂ P2m(C) via:

Pm := {
(
A B
B C

)
∈ P

[m]
2m([0,∞)) : detC 6= 0, BC = CB}.

Also fix α ∈ R. Then the following are equivalent:

(1) The blockwise power function f
[m]
α [−] sends Pm to P2m(C).

(2) The function fα is m-monotone on (0,∞).

In particular, if f
[m]
α [−] preserves Loewner positivity on P

[m]
mn(C) for some n ≥ 2, then it is

m-monotone.

Proof. First suppose f
[m]
α [−] preserves Loewner positivity on Pm, and assume A ≥ B > 0. Let

X ∈ Pm(C) denote the principal square root of B. Then the block matrix M :=

(
A X
X Im

)
∈

P
[m]
2m([0,∞)), by computing the Schur complement of Im in M . Therefore by hypothesis, the

matrix f
[m]
α [M ] =

(
Aα Xα

Xα Im

)
is also positive semidefinite. Using Schur complements again,

we conclude that Aα − (Xα)2 = Aα − Bα ≥ 0. Thus A ≥ B > 0 ⇒ Aα ≥ Bα and so fα is
m-monotone on (0,∞).

Conversely, suppose fα is m-monotone on (0,∞), and suppose

(
A B
B C

)
∈ Pm. Then A ≥

BC−1B (by taking Schur complements). Moreover, B,C are simultaneously diagonalizable,
whence B,C±1 commute. It is now easy to verify that (BC−1B)α = Bα(Cα)−1Bα. Now using
the m-monotonicity of fα, we compute:

Cα ≥ 0α = 0, Aα = fα(A) ≥ fα(BC
−1B) = Bα(Cα)−1Bα.

In turn, this implies that the matrix

(
Aα Bα

Bα Cα

)
is positive semidefinite, proving (1). The final

assertion is also clear since Pm ⊕ 0m(n−2)×m(n−2) ⊂ P
[m]
mn(C) (via padding by zeros). �

Matrix monotone functions have been the subject of a detailed analysis by Loewner [29] and
many others including Wigner and von Neumann [37], Bendat and Sherman [2], Korányi [25],
Donoghue [7], Sparr [34], Hansen and Petersen [16], Ameur [1], and more recently by Hansen
[15] - also see [15] for a history of the problem. We now state an important and interesting
characterization of matrix monotone functions using Loewner matrices. This result was shown
by Hansen [15] and plays an essential role in proving Theorem A.

Definition 4.3. Let I ⊂ R and f : I → R be differentiable. The first divided difference of f for
λ1, λ2 ∈ I, denoted by [λ1, λ2]f is given by

[λ1, λ2]f :=

{
f(λ1)−f(λ2)

λ1−λ2
if λ1 6= λ2,

f ′(λ1) if λ1 = λ2.

Now given m ≥ 2 and λ1, . . . , λm ∈ I, define the Loewner matrix Lf (λ1, . . . , λm) of f at the
points λj to be

Lf (λ1, . . . , λm) := ([λs, λt]f )
m
s,t=1. (4.1)
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Theorem 4.4 (Hansen [15, Theorem 3.2]). Let m ∈ N and f be a real function in C1(I),
where I ⊂ R is an open interval. Then f is m-monotone if and only if the Loewner matrix
Lf (λ1, . . . , λm) is positive semidefinite for all sequences λ1, . . . , λm ∈ I.

We now have all the ingredients for proving Theorem A.

Proof of Theorem A.
Proof of (1). Clearly, f

[m]
1 [−] preserves positivity on P

[m]
mn([0,∞)). Next, if α = 0 and the

blocks Hst are positive definite, then f
[m]
0 [(Hst)] = 1n×n ⊗ Im, where ⊗ denotes the Kronecker

product, and so f
[m]
0 [(Hst)] ∈ Pmn(C). Now assume α ∈ R and α 6= 0, 1. We claim that the

function f
[m]
α [−] does not preserve positivity on P

[m]
mn([0,∞)). It suffices to prove the claim for

m = n = 2 (the general case follows by padding with zeros).

Thus, suppose f
[2]
α [−] preserves positivity on P

[2]
4 ((0,∞)). By Lemma 4.2, the function fα(x) =

xα is 2-monotone on (0,∞). By Theorem 4.4, this is possible if and only if the Loewner matrix
Lfα(λ1, λ2) is positive semidefinite for all λ1, λ2 > 0 such that λ1 6= λ2. Thus, the (1, 1)-entry
of Lfα(λ1, λ2) has to be nonnegative and so α ≥ 0. Computing the determinant of Lfα(λ1, λ2),
we obtain:

detLfα(λ1, λ2) = αλα−1
1 · αλα−1

2 −
(
λα1 − λα2
λ1 − λ2

)2

≥ 0 ∀λ1, λ2 > 0, λ1 6= λ2. (4.2)

Now fix λ2 > 0. If α > 1, then detLfα(λ1, λ2) → −∞ as λ1 → ∞ since α 6= 0, 1. Thus,
detLfα(λ1, λ2) < 0 for λ1 large enough. This proves that fα(x) = xα is not 2-monotone, and

hence f
[m]
α [−] does not preserve positivity if α > 1 or α < 0.

Finally, suppose α ∈ (0, 1). We first claim that there exists a real matrix

(
A X
X N

)
∈

P
[2]
4 ((0,∞)) such that the matrix

(
Aα Xα

Xα Nα

)
is not positive semidefinite. To prove the claim,

consider the matrix

M :=




3/2 0 1 1/2
0 2 1/2 1
1 1/2 1 4/5
1/2 1 4/5 223/250


 =

(
A X
X N

)
, (4.3)

where A,X,N ∈ P2(R). It can be verified that det(λI4 − M) is a fourth-degree polynomial
which is positive for |λ| large and at λ = 1, 4; zero at λ = 0; and negative at 1/5, 2. Therefore
0 is an eigenvalue of M , and the other three eigenvalues of M lie in (1/5, 1), (1, 2), (2, 4). It is

now easily verified that M ∈ P
[2]
4 ((0,∞)). We next claim that f

[2]
α [M ] /∈ P4 for small α > 0

close enough to zero. To verify the claim, we will compute explicitly the determinant of f
[2]
α [M ],

and show that it is negative close to α = 0. We begin by computing the powers of the 2 × 2
blocks A,X,N of M . The block A is diagonal, while the powers of the off-diagonal block X are
computed using its spectral decomposition:

X =

(
1 1

2
1
2 1

)
= U diag(

1

2
,
3

2
)UT , U :=

1√
2

(
−1 1
1 1

)

from which it follows that

Xα =
1

2

(
(3/2)α + (1/2)α (3/2)α − (1/2)α

(3/2)α − (1/2)α (3/2)α + (1/2)α

)
.

To compute the spectral powers of the last remaining block N :=

(
1 4/5

4/5 223/250

)
, we define

x± := 27 ±
√
160729 = 27 ±

√
272 + 4002 for convenience. Then N has spectral decomposition
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N = V DV −1, where

V :=

(
x−/400 x+/400

1 1

)
, D := diag(1− x+

500
, 1− x−

500
), V −1 =

1

2
√
160729

(
−400 x+
400 −x−

)
.

Let λ± := 1− x±

500 be the eigenvalues of N . Since V = UD′ with U unitary and D′ diagonal, we
obtain:

Nα := V DαV −1 =
1

2
√
160729

(
x+λ

α
− − x−λα+ 400(λα− − λα+)

400(λα− − λα+) x+λ
α
+ − x−λα−

)
.

Therefore if we define gM (α) := det f
[2]
α [M ], then

4

2α
gM (α) = 22−α det

(
Aα Xα

Xα Nα

)
= 4a2b3 + 4aL−L+ +

54√
160729

ab(1− ab)(L− − L+)

+ (ab+ 1)
(
(2L− 1)(L−a

2 + L+b
2)− (2L+ 1)(L+a

2 + L−b
2)
)
,

where L± := λα±, a := (3/2)α, b := (1/2)α, and L := 200/
√
160729. Note that gM (0) =

det f
[2]
0 [M ] = 0. Moreover, using the explicit form of the function gM (α), it can be verified

that g′M (0) = 0 and g′′M (0) < 0. This shows that gM (α) < 0 for all 0 < |α| < ǫM for some
ǫM > 0.

Now suppose f
[2]
α [−] preserves positivity on P

[2]
4 ((0,∞)) for some α ∈ (0, 1). Choose k ∈ N

such that αk ∈ (0, ǫM ), with ǫM as above. Then (f
[2]
α )◦k[M ] = f

[2]

αk [M ] ∈ P
[2]
4 ((0,∞)) ⊂ P4(C),

which contradicts the previous paragraph. This proves that f
[2]
α [−] does not preserve positivity

for α ∈ (0, 1).

Proof of (2). The first part shows that φ
[m]
α [−] does not preserve positivity on P

[m]
mn(R) for

α 6= 0, 1. We now prove that φ
[m]
α [−] also does not preserve positivity for α = 0 and α = 1.

Suppose first α = 0. Fix B :=

(
0 0
1 1

)
, and for c ∈ R, define the matrix

A(c) :=

(
cI2 B
BT cI2

)
. (4.4)

Note that A(c) has eigenvalues c, c, c±
√
2. Moreover, B is diagonalizable and has eigenvalues 0

and 1. As a consequence, φ0(B) = B. Therefore the matrix A(
√
2) ∈ P

[2]
4 (R), but φ

[2]
0 [A(

√
2)] =

A(1) 6∈ P4. This proves φ
[2]
0 [−] does not preserve positivity on P

[2]
4 (R). The case of general

m,n ≥ 2 follows by padding A(
√
2) with zeros. To prove that φ

[m]
1 [−] does not preserve positivity

on P
[m]
mn(R), consider the matrix

M :=




2 0 −1 −1
0 1 −1 0
−1 −1 2 0
−1 0 0 1


 (4.5)

It is not difficult to verify that M ∈ P
[2]
4 (R), but detφ

[2]
1 [M ] = −4/5. This proves that φ

[2]
1 [−]

does not preserve positivity on P
[2]
4 (R). It follows that φ

[m]
1 [−] does not preserve positivity on

P
[m]
mn(R) for m,n ≥ 2.

Proof of (3). By part (1), the function ψ
[m]
α [−] does not preserve positivity if α 6= 0, 1. Clearly,

ψ
[m]
1 [−] preserves positivity since ψ1(x) = x for all x ∈ R. That ψ

[m]
0 [−] does not preserve

positivity on P
[m]
mn(R) follows by considering the matrix A(c) in Equation (4.4).
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Proof of (4). By part (1), Ψ
[m]
α,β [−] does not preserve positivity on P

[m]
mn(C) if α 6= 0, 1. Moreover,

the above analysis of the matrix A(c) in Equation (4.4) shows that Ψ
[m]
0,β [−] does not preserve

positivity on P
[m]
mn(C) for any β ∈ Z. Now suppose α = 1. By the second part of the proof,

Ψ
[m]
1,0 ≡ φ

[m]
1 does not preserve positivity on P

[m]
mn(C). Also, Ψ

[m]
1,1 clearly preserves positivity.

Note that since a matrix A is positive semidefinite if and only if its complex conjugate A is

positive semidefinite, Ψ
[m]
α,β [−] preserves positivity on P

[m]
mn(C) if and only if Ψ

[m]
α,−β [−] does so. To

conclude the proof, it thus remains to prove that Ψ
[m]
1,β [−] does not preserve positivity on P

[m]
mn(C)

for β ≥ 2. Without loss of generality, let m = n = 2, and define:

M(a, b, c) :=




1 0 a b
0 1 c a
a c 1 0

b a 0 1


 a, b, c ∈ C. (4.6)

One verifies that the four eigenvalues of the matrix M(a, a, 0) are 1± a(
√
5± 1)/2. Therefore if

we fix a ∈ (0, (
√
5− 1)/2), the matrix M(a, a, 0) is positive definite. Consequently, there exists

ǫ > 0 such that M(a, a, c) ∈ P
[2]
4 ((0,∞)) for |c| < ǫ.

We now claim that Ψ
[2]
1,β [M(a, a, c)] 6∈ P4(C) if c is negative and close enough to 0. To prove

the claim, we first compute Ψ
[2]
1,β [M(a, a, c)]. Note that Ψ1,β(I2) = I2; now set B :=

(
a a
c a

)
,

with c < 0. The eigenvalues of B are a ± i
√
a|c|, with corresponding eigenvectors v± :=

(∓i
√
a/|c|, 1)T . As a consequence, defining λ± := Ψ1,β(a± i

√
a|c|), we obtain:

Ψ1,β(B) =

(
−i

√
a/|c| i

√
a/|c|

1 1

)(
λ+ 0
0 λ−

)(
−i

√
a/|c| i

√
a/|c|

1 1

)−1

=




λ++λ−

2
−i

√
a√

|c|
· λ+−λ−

2

i
√

|c|√
a

· λ+−λ−

2
λ++λ−

2


 =

(
a′ b′

c′ a′

)
,

say. Thus Ψ
[2]
1,β [M(a, a, c)] =M(a′, b′, c′).

Now suppose β ≥ 2. We will prove that there exists a > 0 such that the (1, 2)-entry of the
real matrix Ψ1,β(B) is greater than 1, if c is negative and close enough to 0. Indeed, note that

λ± = Ψ1,β(a± i
√
a|c|) =

√
a2 + a|c|eiβ arctan(±

√
|c|/a).

Thus,

lim
c→0−

Ψ1,β(B)12 = lim
c→0−

−i√a√
|c|

· λ+ − λ−
2

= lim
c→0−

−i√a√
|c|

√
a2 + a|c|e

iβ arctan(
√

|c|/a) − eiβ arctan(−
√

|c|/a)

2

= −ia lim
c→0−

eiβ arctan(
√

|c|/a) − eiβ arctan(−
√

|c|/a)

2
√
|c|/a

= −ia d

dy
eiβ arctan(y)

∣∣∣∣
y=0

= −ia eiβ arctan(y)iβ
1

1 + y2

∣∣∣∣
y=0

= aβ.

As a consequence, if β ≥ 2 and a ∈ (1/β, (
√
5 − 1)/2), then for c < 0 small enough, the (1, 2)-

entry of Ψ1,β(B) is greater than 1. But then the minor of Ψ
[2]
1,β [M(a, a, c)] obtained by deleting
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the second row and column is negative, from which it follows that Ψ
[2]
1,β [M(a, a, c)] 6∈ P4(C).

Therefore Ψ
[2]
1,β [−] does not preserve positivity on P

[2]
4 (C) if β 6= ±1. As before, the case of

general m,n ≥ 2 follows by padding with zeros. This concludes the proof. �

Remark 4.5. In the proof of part (1) of Theorem A, we showed that det f
[2]
α [M ] < 0 for all

α ∈ (0, ǫM ) for some ǫM ∈ (0, 1), with M as in Equation (4.3). In fact, numerical computations

indicate that det f
[2]
α [M ] < 0 for all α ∈ (0, 1); this would provide a “universal” counterexample

M for the proof of part (1).

5. Powers preserving positivity for commuting blocks

Recall that D. Choudhury [4] studied an interesting variant of the problem considered in
Section 4 - namely, which blockwise powers (Hst)

n
s,t=1 7→ (Hα

st) preserve positivity when all

the m × m blocks Hst commute and are positive semidefinite. It was shown in [4] that if
α ∈ N ∪ [mn − 2,∞) then the corresponding blockwise power preserves positivity. We now
demonstrate that the boundmn−2 can be significantly improved. More precisely, we completely
characterize the powers preserving Loewner positivity in that setting.

Proof of Theorem B. The proof is a refinement of the argument in [4, Theorem 5]. Let
H = (Hst) ∈ Pmn(C) be as given. Since the blocks Hst commute, they are simultaneously
diagonalizable, i.e., there exists a m×m unitary matrix U and diagonal matrices Λst such that
Hst = UΛstU

∗ ∀s, t. Letting T := U⊕n and Λ := (Λst), we obtain H = TΛT−1. Let P be the
permutation matrix such that

P−1ΛP = A1 ⊕ · · · ⊕Am, (5.1)

where (Ak)st := (Λst)kk with 1 ≤ k ≤ m and 1 ≤ s, t ≤ n. Then H = (TP )(A1 ⊕ · · · ⊕
Am)(TP )−1. By assumption, Ak ∈ Pn([0,∞)) ∀k. Moreover, since the entries of the matrices
Ak are the eigenvalues of the blocks Hst, we have (Hα

st) = (TP )(A◦α
1 ⊕ · · · ⊕A◦α

m )(TP )−1. Here
A◦α := (aαst) denotes the entrywise power of A = (ast). Since Ak are n × n matrices, it follows
immediately by Theorem 2.1 that (Hα

st) ∈ Pmn(C) if α ∈ N ∪ [n− 2,∞).
Now suppose α ∈ (0, n−2)\N. Choose ǫ > 0 such that the matrix A := (1+ ǫst)ns,t=1 satisfies

A◦α 6∈ Pn (see Theorem 2.1). Let

Λ = (Λst)
n
s,t=1 := PA⊕mP−1, (5.2)

where P is the permutation matrix given in Equation (5.1) and Λst are m×m diagonal matrices.
Define Hst := Λst. Then the matrices Hst are Hermitian positive semidefinite, as is the matrix
H = (Hst), but (H

α
st) = P (A◦α⊕· · ·⊕A◦α)P−1 is not positive semidefinite by construction of A.

This shows that the powers α ∈ (0, n−2)\N do not preserve positivity when applied blockwise.
Finally, suppose α < 0. Let A := Im×m+1m×m ∈ Pm([1, 2]). Examining the leading principal

2×2 block of A, it follows that A◦α 6∈ Pm. Repeating the same construction as in Equation (5.2),
we conclude that there exist commuting blocks Hst := Λst ∈ Pm(C) such that (Hst) ∈ Pmn(C),
but (Hα

st) 6∈ Pm(C) if α < 0. This concludes the proof. �

In Theorem B, we assumed each block Hst to be positive semidefinite. This assumption
was necessary for the powers Hα

st to be well-defined. We now consider the case where the
blocks are not positive semidefinite. Using the functions φα and ψα, it is natural to extend the
characterization provided by Theorem B to Hermitian blocks with arbitrary eigenvalues. Using

Theorem 2.3, we can now characterize the powers α such that φ
[m]
α and ψ

[m]
α preserve positivity

when the blocks commute.

Theorem 5.1. Let α ∈ R \ {0} and m,n ≥ 2. Then
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(1) φ
[m]
α [H] ∈ Pmn(C) for all m×m Hermitian matrices Hst such that (Hst) ∈ Pmn(C) and

the blocks Hst commute if α ∈ 2N ∪ [n − 2,∞). If α 6∈ 2N ∪ [n − 2,∞), there exist
real symmetric matrices Hst such that (Hst) ∈ Pmn(R), the blocks Hst commute, but

φ
[m]
α [H] 6∈ Pmn(R).

(2) ψ
[m]
α [H] ∈ Pmn(C) for all Hermitian m×m matrices Hst such that (Hst) ∈ Pmn(C) and

the blocks Hst commute if α ∈ (−1+2N)∪ [n−2,∞). If α 6∈ (−1+2N)∪ [n−2,∞), there
exist real symmetric matrices Hst such that (Hst) ∈ Pmn(R), the blocks Hst commute,

but ψ
[m]
α [H] 6∈ Pmn(R).

Proof. The proof is similar to the proof of Theorem B. Let U be a unitary matrix and P be a
permutation matrix such that defining H := (Hst) and T := U⊕n, we have

H = (TP )(A1 ⊕ · · · ⊕Am)(TP )−1, (5.3)

where A1, . . . , Am are n × n matrices containing the eigenvalues of the blocks Hst. If f = φα
or ψα, we have f [m][H] = (TP )(f [A1]⊕ · · · ⊕ f [Am])(TP )−1. It follows from Theorem 2.3 that

φ
[m]
α [H] ∈ Pmn(C) if α ∈ 2N ∪ [n− 2,∞) and ψ

[m]
α [H] ∈ Pmn(C) if α ∈ (−1 + 2N) ∪ [n− 2,∞).

Conversely, if f = φα and α 6∈ 2N ∪ [n − 2,∞) or f = ψα and α 6∈ (−1 + 2N) ∪ [n − 2,∞),
then by [10, Theorem 2.5, Proposition 6.2] there exists a matrix A ∈ Pn such that f [A] 6∈ Pn.

Using the same construction as in Equation (5.2), we conclude that f [m][−] does not preserve
positivity. �

Remark 5.2. We now address the case α = 0, which was omitted from Theorem 5.1 for ease of
exposition. We first claim that if n = 2 and H := (Hst) ∈ P2m(C) with Hermitian commuting

blocks Hst, then φ
[m]
0 [H], ψ

[m]
0 [H] ∈ P2m(C). Indeed, as in Equation (5.3), the block matrix H

can be factored as H = (TP )(A1 ⊕ · · · ⊕Am)(TP )−1, where A1, . . . , Am ∈ P2. Moreover, φ0, ψ0

preserve positivity when applied entrywise to P2, since the only possible resulting matrices are

02×2,12×2, I2×2, and

(
1 −1
−1 1

)
, which are all positive semidefinite. However, when n ≥ 3,

we claim that φ
[m]
α [H], ψ

[m]
α [H] are not always positive semidefinite. Indeed, as in [10, Equation

6.2], define

A :=




1 1/
√
2 0

1/
√
2 1 1/

√
2

0 1/
√
2 1


⊕ 0(n−3)×(n−3) ∈ Pn. (5.4)

One easily verifies that φ0[A] = ψ0[A] 6∈ Pn. Using the same construction as in Equation (5.2), we
conclude that there exist commuting blocks Hst := Λst ∈ Pm(C) such that H = (Hst) ∈ Pmn(C),

but φ
[m]
α [H], ψ

[m]
α [H] 6∈ Pmn(C) when α = 0.

Remark 5.3. An interesting consequence of Theorem 5.1 is that when the blocks commute,
preserving positivity is in fact independent of the block size m (see part (2) of Theorem 5.4).
This is in contrast to Theorem A, in which increasing the block size to m ≥ 2 drastically reduces
the set of powers preserving positivity, when the commutativity assumption is omitted.

Powers of the trace function. Problems similar to the ones above have been considered in
the literature, with the power function Hst 7→ Hα

st replaced by other functions mapping m×m
blocks to p × p matrices (see e.g. [35, 30, 6, 31, 39]). In particular, de Pillis [6] studies the
map (Hst)

n
s,t=1 7→ (tr(Hst))

n
s,t=1 and demonstrates that it preserves positivity. See also [39] for

a nice short proof of the same result. To conclude this section, we extend de Pillis’s result by
characterizing the values α ≥ 0, β ∈ Z such that (Hst) 7→ (Ψα,β(tr(Hst))) preserves positivity.

Theorem 5.4. Fix α ≥ 0, β ∈ Z, and m,n ∈ N. Then the following are equivalent:

(1) Ψα,β [(tr(Hst))
n
s,t=1] ∈ Pn(C) for all (Hst)

n
s,t=1 ∈ Pmn(C).
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(2) Ψα,β [−] preserves positivity on Pn(C).
(3) Ψα,β [(tr(H

∗
sHt))

n
s,t=1] ∈ Pn(C) for all m×m complex matrices H1, . . . , Hn.

(4) Ψ
[m]
α,β [(Hst)] ∈ Pmn(C) if (Hst)

n
s,t=1 ∈ P

[m]
mn(C) and all blocks Hst commute.

Proof. Suppose first (1) holds and let A = (ast)
n
s,t=1 ∈ Pn(C). Define Hst ∈ Pm(C) by (Hst)qr :=

ast if q = r = 1 and 0 otherwise. Then (Hst)
n
s,t=1 ∈ Pmn(C), so Ψα,β [A] ∈ Pn(C) by (1). Thus

(1) ⇒ (2). Conversely, if (Hst)
n
s,t=1 ∈ Pmn(C), then (tr(Hst))

n
s,t=1 ∈ Pn(C) by [6, Proposition

2.3], and (2) ⇒ (1) follows immediately. Next, (2) ⇔ (3) because matrices of the form (tr(H∗
sHt))

are general Gram matrices in the inner product space C
m×m with 〈A,B〉 := tr(A∗B), so that

the set of such matrices coincides with Pn(C). Finally, that (2) ⇔ (4) follows by simultaneously
diagonalizing the blocks Hst and proceeding as in the proof of Theorem B. �

Note that when β is even or odd, the function Ψα,β reduces on R to φα and ψα respectively.
Thus the powers α such that φα[−] or ψα[−] preserves positivity on Pn(R) in Theorem 5.4 are
known (see Theorem 2.3). In the next section, we explore the general problem of characterizing
the values α, β for which Ψα,β [−] preserves Loewner positivity on Pn(C).

6. Entrywise powers preserving positivity on Hermitian matrices

This section is devoted to proving Theorem C. As the proof is long and intricate, we show
the n = 3 case in Section 6.1, and then the general case in Section 6.2.

6.1. Preserving positivity on Hermitian matrices of order 3. Note that for n = 1, 2,
all maps Ψα,β preserve positivity when applied entrywise to every matrix in Pn(C). In this
subsection we focus on the n = 3 case. We begin by identifying a smaller sub-family of matrices
which it suffices to consider when verifying whether or not Ψα,β preserves Loewner positivity.

Lemma 6.1. For j = 1, 2, 3, suppose rj > 0, sj ≥ 0, tj ∈ R, θj , θ ∈ (−π, π], and define t :=
(t1, t2, t3). Now define:

A :=




r1 s3e
iθ3 s2e

iθ2

s3e
−iθ3 r2 s1e

iθ1

s2e
−iθ2 s1e

−iθ1 r3


 , T (t, θ) :=




1 t3 t2e
iθ

t3 1 t1
t2e

−iθ t1 1


 . (6.1)

Then the following are equivalent:

(1) A ∈ P3(C);

(2) T (t, θ) ∈ P3(C), where tj :=
sj
√
rj√

r1r2r3
for j = 1, 2, 3, and θ = θ1 + θ3 − θ2.

(3) Given tj :=
sj
√
rj√

r1r2r3
, we have tj ∈ [0, 1] for j = 1, 2, 3, and detT (t, θ) = 1 −∑3

j=1 t
2
j +

2t1t2t3 cos θ ≥ 0.

Proof. Define D := diag(r
−1/2
1 , r

−1/2
2 , r

−1/2
3 ). That (1) ⇔ (2) follows from the fact that the

principal minors of T (t, θ) are equal to the corresponding principal minors of DAD, and hence
are obtained from the principal minors of A by rescaling by positive factors. That (2) ⇔ (3) is
obvious. �

The following corollary to Lemma 6.1 helps simplify the task of ascertaining if an entrywise
power function Ψα,β preserves Loewner positivity.

Corollary 6.2. Let n ≥ 3, α ∈ R, and β ∈ Z. Then Ψα,β [−] preserves positivity on P3(C) if
and only if T (t◦α, βθ) ∈ P3(C) for every t ∈ [0, 1]3 and θ ∈ (−3π, 3π) such that detT (t, θ) ≥ 0.

Proof. Clearly Ψα,β preserves positivity on P2(C), hence on matrices A ∈ P3(C) with at least
one zero diagonal entry. For all other matrices A ∈ P3(C), we are now done by Lemma 6.1. �

In order to prove our next result, we recall the notion of a generalized Dirichlet polynomial.
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Definition 6.3. A generalized Dirichlet polynomial is a function F : R → R of the form

F (x) =
n∑

j=1

ajt
x
j , where aj , tj , x ∈ R and t1 > t2 > · · · > tn > 0.

Given a sequence (aj)
n
j=1, denote by S[(aj)] the number of sign changes in the sequence

after discarding all zero terms aj . Also define Aj := a1 + · · · + aj for all 1 ≤ j ≤ n. Then
S[(Aj)] ≤ S[(aj)]. We now recall the following classical result which extends Descartes’ Rule of
Signs to generalized Dirichlet polynomials.

Theorem 6.4 (Descartes’ Rule of Signs, [23, 26]). Suppose F (x) =
∑n

j=1 ajt
x
j : R → R is a

generalized Dirichlet polynomial (with t1 > · · · > tn > 0 as above), and Aj = a1 + · · · + aj for
all j. Then F has at most S[(Aj)] positive zeros, and at most S[(aj)] real zeros.

Before we fully classify the entrywise powers which preserve Loewner positivity on P3(C), we
first show that Ψα,β preserves positivity on P3(C) if α ≥ max(1, |β|). We also prove that Ψα,β

does not preserve positivity on Pn(C) if β 6∈ Z. In Section 6.2, we will prove that Ψα,β does not

preserve positivity on Pn(C) if α < max(n − 2, |β| + 2⌊(
√
8n+ 1 − 5)/2⌋), thus completing the

classification when n = 3.

Theorem 6.5. For n = 3, the entrywise power function Ψα,β preserves Loewner positivity on
Pn(C) if β ∈ Z and α ≥ max(1, |β|). Moreover, if β 6∈ Z, then Ψα,β does not preserve Loewner
positivity on Pn(C).

Proof. Suppose β ∈ Z and α ≥ max(|β|, 1). By Corollary 6.2, it suffices to show that Ψα,β

preserves positivity on all matrices T (t, θ) ∈ P3(C) of the form (6.1). Using Lemma 6.1, this
reduces to showing:

1−
3∑

j=1

t2j + 2t1t2t3 cos θ ≥ 0 =⇒ gβ(α) := 1−
3∑

j=1

t2αj + 2(t1t2t3)
α cos(βθ) ≥ 0. (6.2)

In (6.2) we may assume without loss of generality that β > 0. There are now three cases: first,
if tj = 0 for some j, then Equation (6.2) is easy to show. Next, suppose tj are all nonzero and
maxj tj = 1, say t1 = 1. Then g1(1) = −t22 − t23 + 2t2t3 cos θ ≥ 0 if and only if t2 = t3 and
cos θ = 1. But then θ = 0 or ±2π and (6.2) again follows. The third case is if tj ∈ (0, 1) ∀j. In
this case we use Theorem 6.4: the partial sums of the coefficients are 1, 0,−1,−2,−2+2 cos(βθ),
and hence the generalized Dirichlet polynomial has at most one positive root. First suppose θ
is not an integer multiple of 2π/β. Note that gβ(0) = 1− 3 + 2 cos(βθ) < 0. Also, by the Schur
product theorem, gβ(β) ≥ 0 since β ∈ N. Thus, the generalized Dirichlet polynomial gβ has
a unique root between 0 and β. It follows that gβ(α) ≥ 0 for all α ≥ β, since gβ(α) → 1 as
α→ ∞. Finally, suppose θ = 2πk/β for some k ∈ Z. To show (6.2), note that

1−
3∑

j=1

t2j + 2t1t2t3 cos θ ≥ 0 =⇒ 1−
3∑

j=1

t2j + 2t1t2t3 ≥ 0. (6.3)

This implies that the real matrix T (t, 0) as in Equation (6.1) is positive semidefinite. Now (6.2)
follows by applying Theorem 2.1 to T (t, 0), since α ≥ 1.

To conclude the proof, we now provide a “universal” example of a matrix A ∈ P3(C) such
that Ψα,β [A⊕ 0(n−3)×(n−3)] 6∈ Pn(C) whenever β ∈ R \ Z. Define

A =




1 e2πi/3 e−2πi/3

e−2πi/3 1 e2πi/3

e2πi/3 e−2πi/3 1


 . (6.4)

Clearly A ∈ P3(C), but detΨα,β [A] = −2 + 2 cos(2πβ), which is negative precisely when β 6∈ Z.
Thus Ψα,β does not preserve positivity on Pn(C) when β 6∈ Z. �
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6.2. Bounds for arbitrary dimension n. We now prove Theorem C, which addresses the
case of general n ≥ 3. The proof will use the following preliminary result, which generalizes an
idea from FitzGerald and Horn [8, Theorem 2.2].

Proposition 6.6. Let α > 1 and fix an integer n ≥ 3. Suppose Ψα−1,1[A] ∈ Pn−1(C) for all
A ∈ Pn−1(C). Then Ψα,0[A] ∈ Pn(C) for all A ∈ Pn(C).

Proof. Suppose Ψα−1,1[A] ∈ Pn−1(C) for all A ∈ Pn−1(C). Fix z = z1 + z2i, w = w1 + w2i ∈ C,
where z1, z2, w1, w2 ∈ R, and denote by zλ := λz + (1− λ)w. Then

d

dλ
Ψα,0(zλ) =

α

2
Ψα−2,0(zλ) [2(λz1 + (1− λ)w1)(z1 − w1) + 2(λz2 + (1− λ)w2)(z2 − w2)]

= αΨα−2,0(zλ)Re(zλz − w) = αRe(Ψα−2,0(zλ)zλz − w)

= αRe(Ψα−1,1(zλ)z − w).

We now proceed as in the proof of [8, Theorem 2.2]. Note that

Ψα,0(z) = Ψα,0(w) +

∫ 1

0

d

dλ
Ψα,0(zλ) dλ = Ψα,0(w) + α

∫ 1

0
Re(Ψα−1,1(zλ)z − w) dλ. (6.5)

Now let A ∈ Pn(C) and let ζ := (a1n, a2n, . . . , ann)
T /a

1/2
nn if ann 6= 0 and ζ := 0n×1 otherwise.

By [8, Lemma 2.1], the matrix A− ζζ∗ ∈ Pn(C). Also, note that the entries of the last row and
column of A− ζζ∗ are zero. Applying (6.5) entrywise, we obtain that

Ψα,0[A] = Ψα,0[ζζ
∗] + α

∫ 1

0
Re

(
Ψα−1,1[λA+ (1− λ)ζζ∗] ◦A− ζζ∗

)
dλ. (6.6)

Note that the Schur product Ψα−1,1[λA + (1 − λ)ζζ∗] ◦ A− ζζ∗ in the integrand in Equation
(6.6) is positive semidefinite by hypothesis and the fact that the last row and column of A− ζζ∗
are zero. It follows immediately that Ψα,0[A] ∈ Pn(C). This concludes the proof. �

We now have all the ingredients necessary to prove our last main result.

Proof of Theorem C.
Proof of (1). Suppose first that β ∈ Z and α ∈ |β| − 2 + 2N, say α = |β| + 2m with m ≥ 0.
Note that A = (ast) ∈ Pn(C) if and only if A := (ast) ∈ Pn(C). Then,

Ψα,β [A] =





Ψ2m,0[A] = (A ◦A)◦m, if β = 0,

Ψ2m+β,β [A] = A◦β ◦ (A ◦A)◦m, if β > 0,

Ψ2m+|β|,β [A] = A
◦|β| ◦ (A ◦A)◦m, if β < 0.

(6.7)

In all three cases, we obtain that Ψα,β [A] ∈ Pn(C) by the Schur product theorem.
Suppose instead β ∈ Z and α ≥ max(n − 2, |β| + 2n − 6). We claim that in that case,

Ψα,β [−] also preserves Loewner positivity on Pn(C). The proof is by induction on n ≥ 3. For
n = 3 we are done by Theorem 6.5. Now suppose the assertion holds for n − 1 ≥ 3. Then
Ψα,1[−] preserves Loewner positivity on Pn−1(C) for α ≥ 2(n − 1 − 3) + 1 = 2n − 7. Hence by
Proposition 6.6, Ψα,0[−] preserves Loewner positivity on Pn(C) for α ≥ 2n − 7 + 1 = 2n − 6.
Thus if α ≥ 2n− 6 + |β| and A ∈ Pn(C), then

Ψα,|β|[A] = Ψα−|β|,0[A] ◦A◦|β|, Ψα,−|β|[A] = Ψα−|β|,0[A] ◦A
◦|β|

,

and these are both in Pn(C) by the Schur product theorem. Therefore the claim is proved by
induction.
Proof of (2). If β 6∈ Z, then Theorem 6.5 shows that Ψα,β does not preserve Loewner positivity
on Pn(C). Thus assume β ∈ Z. If α < 1, it is easy to see that Ψα,β [−] does not preserve positivity
on Pn(C) (see Equation (5.4)). It thus remains to prove that Ψα,β [−] does not preserve positivity
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on Pn(C) if 1 ≤ α < |β|+2⌊(
√
8n+ 1− 5)/2⌋, but α− |β| is not a nonnegative even integer. To

show this statement, first note for each integer k ≥ 0 that

⌊(
√
8n+ 1− 5)/2⌋ ≥ k ⇐⇒ n ≥

(
k + 3

2

)
.

Thus, we first show the assertion for n =
(
k+3
2

)
, from which it immediately follows for all

n >
(
k+3
2

)
by padding with zeros. Moreover, it suffices to show that Ψα,β [−] does not preserve

Loewner positivity on Pn(C) when α ∈ (|β| + 2k − 2, |β| + 2k), since the smaller values of
α ∈ (|β|, |β|+ 2k) \ (α− 2Z) do not preserve positivity on Pn(C) by considering lower values of
k (and then padding by zeros).

Thus, suppose n =
(
k+3
2

)
and α ∈ (|β| + 2k − 2, |β| + 2k). It suffices to show that Ψα,β [−]

does not preserve positivity on Pn(C). Since Ψα,−β [A] = Ψα,β [A], we may assume β ≥ 0. Now
fix z ∈ C

× and consider the function f : (−1/|z|, 1/|z|) → C, given by:

f(ǫ) := Ψα,β(1 + ǫz) = (1 + ǫz)(α+β)/2(1 + ǫz)(α−β)/2.

Defining Z(ǫ) := 1 + ǫz, one has:

df

dǫ
=
dΨα,β(Z(ǫ))

dǫ
=
∂Ψα,β

∂Z

dZ

dǫ
+
∂Ψα,β

∂Z

dZ

dǫ
.

Repeatedly using this formula and the general Leibniz rule, we obtain for any integer l ≥ 0:

dlf

dǫl
(0) =

l∑

j=0

(
l

j

) j−1∏

t=0

(
α+ β

2
− t

) l−j−1∏

t=0

(
α− β

2
− t

)
· zjzl−jf(ǫ)

(1 + ǫz)j(1 + ǫz)l−j

∣∣∣∣
ǫ=0

=
l∑

j=0

(
l

j

)
Ψl,l−2j(z)

j−1∏

t=0

(
α+ β

2
− t

) l−j−1∏

t=0

(
α− β

2
− t

)
.

Therefore by Taylor’s theorem, as ǫ→ 0+ we have

Ψα,β(1 + ǫz) = 1 +
k+1∑

l=1

l∑

j=0

cl,jǫ
l

l!
Ψl,l−2j(z) + o(ǫk+2), (6.8)

where cl,j :=

(
l

j

) j−1∏

t=0

(
α+ β

2
− t

) l−j−1∏

t=0

(
α− β

2
− t

)
∀1 ≤ l ≤ k + 1, 0 ≤ j ≤ l.

Now consider the family of power functions Sk := {Ψl,l−2j : 1 ≤ l ≤ k+1, 0 ≤ j ≤ l}∪ {K ≡ 1}.
Note that Sk contains precisely

(
k+3
2

)
functions, which are linearly independent on C

n by Lemma
3.1. Hence there exists a vector uk,n ∈ C

n such that

Ψk+1,k+1[uk,n] /∈ spanC{h[uk,n] : h ∈ Sk \ {Ψk+1,k+1}}. (6.9)

Now define the matrix Aǫ := 1n×n + ǫuk,nu
∗
k,n ∈ Pn(C). Then,

Ψα,β [Aǫ] = 1n×n +
k+1∑

l=1

cl,jǫ
l

l!
Ψl,l−2j [uk,n]Ψl,l−2j [uk,n]

∗ + o(ǫk+2)C,
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where Cn×n is a fixed matrix independent of ǫ. Moreover, there exists vk,n ∈ C
n orthogonal to

{h[uk,n] : h ∈ Sk \ {Ψk+1,k+1}}, but not to Ψk+1,k+1[uk,n]. Now compute:

v∗k,nΨα,β [Aǫ]vk,n =
ck+1,0ǫ

k+1

(k + 1)!
|v∗k,nΨk+1,k+1[uk,n]|2 + o(ǫk+2)v∗k,nCvk,n

=
|v∗k,nΨk+1,k+1[uk,n]|2

2k+1(k + 1)!
· ǫk+1

k∏

t=0

(α− β − 2t) + o(ǫk+2)v∗k,nCvk,n.

Since α ∈ (β + 2k − 2, β + 2k), the first term is negative, whence so is the entire expression for
sufficiently small ǫ > 0. This shows that Ψα,β [−] does not preserve Loewner positivity on Pn(C)
if α ∈ (β + 2k − 2, β + 2k), which concludes the proof. �

Remark 6.7. Since n ≥
(
k+3
2

)
, we observe that the vector uk,n ∈ C

n satisfying (6.9) can in fact
be chosen to have all its entries in the complex disc D(0, R) for any fixed 0 < R ≤ ∞. Indeed,
by Lemma 3.1, the characters in the set Sk are linearly independent on D(0, R). Thus there
exists u = uk,n ∈ D(0, R)n such that the vectors {h[u] : h ∈ Sk} are linearly independent.
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[34] Gunnar Sparr. A new proof of Löwner’s theorem on monotone matrix functions. Math. Scand., 47(2):266–274,

1980.
[35] Robert C. Thompson. A determinantal inequality for positive definite matrices. Canad. Math. Bull., 4:57–62,

1961.
[36] Harkrishan L. Vasudeva. Positive definite matrices and absolutely monotonic functions. Indian J. Pure Appl.

Math., 10(7):854–858, 1979.
[37] Eugene P. Wigner and John von Neumann. Significance of Loewner’s theorem in the quantum theory of

collisions. Ann. of Math. (2), 59:418–433, 1954.
[38] Bin Zhang and Steve Horvath. A general framework for weighted gene co-expression network analysis. Stat.

Appl. Genet. Mol. Biol., 4:Art. 17, 45 pp. (electronic), 2005.
[39] Fuzhen Zhang. Positivity of matrices with generalized matrix functions. Acta Math. Sin. (Engl. Ser.),

28(9):1779–1786, 2012.

Department of Mathematics, Stanford University, Stanford, CA - 94305


	1. Introduction
	2. Literature review
	3. Preliminaries and main results
	3.1. Multiplicative maps on the complex plane
	3.2. Main results

	4. Powers preserving positivity: the block case
	5. Powers preserving positivity for commuting blocks
	6. Entrywise powers preserving positivity on Hermitian matrices
	6.1. Preserving positivity on Hermitian matrices of order 3
	6.2. Bounds for arbitrary dimension n

	References

