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Abstract. In recent joint work (2021), we introduced a novel multivariate polynomial attached
to every metric space – in particular, to every finite simple connected graph G – and showed it
has several attractive properties. First, it is multi-affine and real-stable (leading to a hitherto
unstudied delta-matroid for each graph G). Second, the polynomial specializes to (a transform of)
the characteristic polynomial χDG of the distance matrix DG; as well as recovers the entire graph,
where χDG cannot do so. Third, the polynomial encodes the determinants of a family of graphs
formed from G, called the blowups of G.

In this short note, we exhibit the applicability of these tools and techniques to other graph-
matrices and their characteristic polynomials. As a particular case, we will see that the adjacency
characteristic polynomial χAG is in fact the shadow of a richer multivariate blowup-polynomial,
which is similarly multi-affine and real-stable. Moreover, this polynomial encodes not only the
aforementioned three properties, but also yields additional information for specific families of graphs.
For instance, bipartite graphs are characterized by their adjacency blowup-polynomials being even;
this extends a folklore ‘univariate’ characterization.

Throughout this work, G = (V,E) denotes a finite simple connected graph (without self-loops or
parallel edges).

1. Introduction

This work provides novel connections between various matrices obtained from graphs G, their
spectra, and the geometry of real/complex polynomials. It is a follow-up to our recent work [10],
where we were motivated by the problem of co-spectrality for (the characteristic polynomial of)
the distance matrix DG. In that work, we introduced a novel graph-invariant – a multi-affine,
real-stable polynomial pG(·) – which (a) specializes to a transformation of the usual characteristic
polynomial of DG, and (b) is able to recover the entire graph G up to isometry, where the univariate
characteristic polynomial does not. Additionally, (c) pG(·) encodes the determinant of DG′ for G′

every possible “blowup” of G:

Definition 1.1. Given a finite simple graph G = (V,E), and a tuple n = (nv : v ∈ V ) of positive
integers, the n-blowup of G is defined to be the graph G[n] – with nv copies of each vertex v – such
that a copy of v and one of w are adjacent in G[n] if and only if v 6= w are adjacent in G. (Blowups
have previously been studied in the context of extremal graph theory among other areas; see e.g.
[15, 16].)

In this short note, we apply the tools and techniques developed in [10] to explore other well-
known matrices in spectral graph theory (and their corresponding characteristic polynomials). For
each graph, we will introduce a multivariate polynomial for each matrix in a certain class, and
prove that this polynomial has similarly attractive properties as in [10] (and mentioned above). As
a prototypical example, we will briefly discuss the adjacency matrix later in this note.
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We now introduce the matrices of interest. Given a graph G = (V,E), we study matrices of the
form

AG := ∆G +MG, (1.2)

where:

• MG = (mvw)v,w∈V ∈ RV×V is a real symmetric matrix (which encodes a graph-property)
that is “well-behaved” under blowups, in that MG[n] is a block V × V matrix, with the
(v, w) block equal to mvw1nv×nw .
• ∆G = diag(fv)v∈V is a nonsingular diagonal matrix that is well-behaved under blowups, in

that ∆G[n] is a V × V block diagonal matrix, with the (v, v) block equal to fv Idnv .

Here are a few examples of well-known matrices that are subsumed by this paradigm:

(1) G is a finite simple connected graph, with MG = DG the modified distance matrix studied
in [10]; and ∆G = −2 IdV . Thus AG = DG − 2 IdV is precisely the ‘usual’ distance matrix
DG = (d(v, w))v,w∈V , where d(v, w) denotes the (edge-)length of a shortest path joining
v, w in G. In fact the framework for an arbitrary finite metric space X is also subsumed by
the present model: MX = DX and ∆X = diag(−2dX(x,X \ {x}))x∈X , where dX(x, Y ) :=
miny∈Y dX(x, y) for a non-empty subset Y ⊂ X.

(2) G is a finite simple graph, and MG = AG is its adjacency matrix. In this case, we fix a
(nonzero) scalar λ ∈ R and let ∆G = λ IdV .

(3) G is a finite simple graph, and AG is the Seidel matrix, also studied in spectral graph theory.
In this case, MG = 1V×V − 2AG, and ∆G = − IdV .

As in [10], we are motivated by the well-studied problem of co-spectrality with respect to a graph-
matrix (e.g. the distance matrix, or the adjacency/Seidel matrix). Recall that two graphs G 6∼= H
are said to be co-spectral with respect to a graph-matrix M if the spectra of MG and MH agree
as multi-sets (equivalently, the characteristic polynomials of MG,MH agree). Thus, a longstanding
problem in spectral graph theory is to understand, for a given graph-matrix M , which pairs of non-
isomorphic graphs are M -cospectral. In particular, it is well-known that all three matrices above
admit such graph pairs. In other words, none of these matrices MG detects the underlying graph
G – i.e., recovers the graph up to isomorphism. See Figure 1 for ‘small graph’ examples for the
adjacency and Seidel matrices, and [13] for an example for distance matrices. (For completeness,
we also refer the reader to the texts [11, 12] on spectral graph theory.)

Figure 1. Two non-isomorphic graphs on five vertices that are adjacency co-
spectral; and two non-isomorphic graphs on three vertices that are Seidel co-spectral

The purpose of this note is to show that in such cases, one can nevertheless refine each such
univariate polynomial – in a natural manner from multiple viewpoints: algebraic, spectral, and
polynomial – to obtain a multivariate real polynomial with several interesting properties, listed
presently. For instance, if MG is the (modified) distance matrix or the adjacency matrix, then this
polynomial does recover the graph, hence is truly a graph-invariant. This yields a novel family of
multivariate graph-invariants for every graph G = (V,E), which we will term pAG(·) – see (1.2).
(This was carried out for the distance matrix in previous work [10]; we now provide a general
model that works for all graph-matrices AG as in (1.2).) We also show that in addition to being
polynomials, these invariants pAG(·) have other attractive properties:
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• They are multi-affine in their arguments nv, v ∈ V .
• They are real-stable in the nv.
• The univariate specialization of pAG(·) is closely related to the characteristic polynomial of
MG, so that pAG(·) is indeed related to the spectrum of MG. Combined with the preceding
point, this implies that the univariate specialization is also real-rooted.
• Unlike their univariate specializations (at least for the distance/adjacency/Seidel matrices),

the polynomials pAG recover the matrix M◦2G , whence MG if MG has non-negative entries.
• The polynomials pAG simultaneously encode the determinants of the corresponding matrices
AG[n] for all graph-blowups (defined above) ofG. Thus, in addition to our original, ‘spectral’
motivation, these polynomials also carry algebraic information.

For the last-mentioned reason, we continue to adopt the notation in [10], and call this object the
A-blowup-polynomial of G. These polynomials are desirable in other ways as well. For example, it
is well-known that the (adjacency) spectrum of a bipartite graph B = (V,E) is always symmetric
about the origin, as a multi-set. We show in this short note that the more general fact that the
zero-locus of the corresponding adjacency blowup-polynomial of B is also symmetric around the
origin in CV . Thus, the workings of [10] (and now of this paper) provide a broader recipe for a
more refined study of graph-polynomials. We expect this line of investigation to lead to further
multivariate refinements of known results.

In a sense, this short note conforms to the philosophy that univariate polynomials are special
cases of multivariate ones, and these latter are the more natural and general objects to study –
and they are more powerful too. A famous recent manifestation of this has been in the geometry
of (the roots in C of) real and complex univariate polynomials, where Borcea–Brändén and other
mathematicians have recently been extremely active in advancing the field (to cite a very few
sources, [2, 3, 4, 20, 21, 28]), a century after the activity on the Laguerre–Pólya–Schur program
[17, 22, 23]. This recent progress has extensively advanced the theory of (real) stable polynomials,
with numerous applications including to negative dependence, constructing bipartite Ramanujan
graphs, and the Kadison–Singer problem. Additionally, there are other several other examples. For
instance, Wagner’s involved proof of the univariate Brown–Colbourn conjecture [27] was shortly
followed by a one-paragraph proof of its multivariate strengthening [24, 25]. Similarly, multivariate
versions [18] of Lee–Yang type theorems for Ising models, have been very influential in e.g. the
Borcea–Brändén program. We refer the reader to the excellent survey of Sokal [26] for more
instances and details.

2. Algebraic results: polynomiality, coefficients, iterated blowup, symmetries

We now state and prove our results. The first set of assertions is algebraic in nature.

Theorem 2.1. We retain the notation in (1.2) and the lines immediately thereafter. Thus MG =
MT
G , and fv ∈ R \ {0} for all v ∈ V .

(1) There exists a polynomial pAG : RV → R such that for all integer tuples n ∈ ZV>0, we have:

detAG[n] =
∏
v∈V

fnv−1v · pAG(n), ∀n ∈ ZV>0.

In fact, the polynomial is (unique, and) given by:

pAG(n) = det(∆G + ∆nMG), where ∆n := diag(nv)v∈V .

In particular, pAG is multi-affine in n, with constant and linear terms respectively equal to

pAG(0) = det ∆G =
∏
v∈V

fv and (1, . . . , 1) ·∆n · ∇pAG(0) = pAG(0)
∑
v∈V

mvv

fv
nv.
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(2) More generally, for each I ⊂ V the coefficient in pAG(n) of
∏
v∈I nv equals

det(MG)I×I
∏

v∈V \I

fv.

(3) The A-blowup-polynomial of the blowup G[n] has a closed-form expression. More precisely,
given an integer tuple n ∈ ZV>0 and variables {mvi : v ∈ V, 1 ≤ i ≤ nv}, define n′v :=

∑
imvi

and n′ := (n′v)v∈V . Then:

pAG[n]
(m) ≡ pAG(n′)

∏
v∈V

fnv−1v .

As an immediate consequence of the final part, the polynomials pAG[n]
(·) all have total degree at

most |V |, regardless of the integer tuple n.

Proof. The second part follows easily from the first (see e.g. [10, Section 2]). The first part was
shown in loc. cit. using arguments from commutative algebra (specifically, Zariski density), and
these arguments also apply here, so that the result holds over an arbitrary unital commutative
ring. In the interest of variance, we now provide an alternate, more direct proof using real numbers.
Begin by noticing that in the desired assertion

detAG[n] =
∏
v∈V

fnv−1v det(∆G + ∆nMG),

both sides are polynomial functions, whence continuous, in the entries of (the real symmetric
matrix) MG. In particular, if MG is singular, we may replace it by MG + ε IdV for small ε > 0, and
let ε→ 0+. Thus, without loss of generality, we may assume detMG 6= 0.

We now proceed to the proof. Define the integers 0 < k ≤ K and the matrix W via:

k := |V |, K :=
∑
v∈V

nv, WK×k :=


1n1×1 0n1×1 · · · 0n1×1
0n2×1 1n2×1 · · · 0n2×1

...
...

. . .
...

0nk×1 0nk×1 · · · 1nk×1

 ,

where (n1, . . . , nk) is a fixed enumeration of the integers nv. Now compute, with a repeated use of
Schur complements, and using that ∆G = diag(fv)v∈V is invertible:

detAG[n] = det(∆G[n] +WMGWT ) = det

(
∆G[n] −W
WT M−1G

)
det(MG)

= det(∆G[n]) det(M−1G +WT∆−1G[n]W) det(MG),

where we label ∆G,MG compatibly with the enumeration (nj)
k
j=1. Now since WT∆−1G[n]W =

diag(nvf
−1
v )v∈V , we continue:

=
∏
v∈V

fnvv · det(IdV +∆−1G ∆nMG) =
∏
v∈V

fnv−1v · det(∆G + ∆nMG).

This proves the first part, except for the uniqueness of the polynomial – but this follows from
the Zariski density of ZV>0 in RV , which simply means that any polynomial on RV that vanishes on

ZV>0 is identically zero. (There is some more work to do if one wants to prove this result over an
arbitrary commutative ring, as was done in [10].)

It remains to show the third part. Once again, we avoid Zariski density arguments as in [10],
and work with the real symmetric matrix MG. As above, we may assume MG is invertible (as is



MULTIVARIATE BLOWUP-POLYNOMIALS OF GRAPHS 5

∆G). We compute using the first part, and Schur complements:

pAG[n]
(m) = det(∆G[n] + ∆mWMGWT )

= det(∆m) det(∆−1m ∆G[n] +WMGWT )

= det(∆m) det

(
∆−1m ∆G[n] −W
WT M−1G

)
det(MG)

= det(∆m) det(∆−1m ) det(∆G[n]) det(M−1G +WT∆m∆−1G[n]W) det(MG).

But WT∆m∆−1G[n]W = diag(f−1v n′v)v∈V , where n′v :=
∑

imvi as above. Hence we continue:

=
∏
v∈V

fnvv · det(M−1G + ∆−1G ∆n′) det(MG) =
∏
v∈V

fnv−1v · det(∆G + ∆n′MG),

which proves the third part. �

A consequence of the preceding result is a linear delta-matroid that arises from the A-blowup-
polynomial:

Corollary 2.2. Setting as in Theorem 2.1. The set of monomials with nonzero coefficients in
pAG(n) forms the linear delta-matroid MMG

.

Recall that delta-matroids were defined and studied by Bouchet [6], and generalize the notion
of a matroid. Given a symmetric matrix M over a field, Bouchet showed in [7] that the subsets of
indices corresponding to non-vanishing principal minors, form a (linear) delta-matroid MM . This
explains how the corollary follows immediately from Theorem 2.1(2).

The next result shows that the A-blowup-polynomial pAG , together with the scalars fv,mvv,
determine the rest of the matrix MG – or more precisely, its Hadamard square M◦2G = (m2

ij).

Proposition 2.3. The homogeneous quadratic part of pAG, i.e. its Hessian at the origin, equals

H(pAG) := ((∂nv∂nv′pAG)(0))v,v′∈V =
∏
v∈V

fv ·∆−1G (mGmT
G −M◦2G )∆−1G ,

where mG := (mvv)v∈V ∈ RV is the (column) vector containing the diagonal entries of MG. Thus
if the scalars fv,mvv are known, then the A-blowup-polynomial pAG(n) detects the matrix M◦2G .

For instance, if one works with the distance or adjacency matrix of G, then all entries in MG are
non-negative, and the entries fv,mvv are also known (see above), so Proposition 2.3 recovers the
entire matrix MG, and hence the graph G.

As the proof of Proposition 2.3 is based on a direct computation using Theorem 2.1(2), and is
similar to the corresponding proof in our recent paper [10], we omit it here. (Note however that
the formula here is more general than its counterpart in [10].)

3. Results on real-stability

We now move to results connecting the blowup-polynomial with spectral graph theory and the
geometry of (real) polynomials. The next result provides a sufficient condition for the real-stability
of pAG in the above paradigm (and hence the real-rootedness of its univariate specialization):

Theorem 3.1. Setting as in Theorem 2.1. Define uAG(x) := pAG(x, x, . . . , x).

(1) Suppose all scalars fv are (nonzero and) of the same sign. Then pAG(·) is real-stable. (This
means that if all arguments n lie in the open upper half-plane =(z) > 0, then pAG(n) 6= 0.)
In particular, uAG is real-rooted.

(2) Suppose in fact that all scalars fv are equal, say to λ 6= 0. Then x ∈ R is a root of uAG if
and only if x 6= 0 and −λ/x is an eigenvalue of MG.
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We remark here that these hypotheses are indeed satisfied when one studies distance matrices
of graphs [10], or the adjacency or Seidel matrices as above.

Proof.

(1) Suppose ε ∈ {±1} is the sign of every fv, so that the diagonal matrix ε∆G is positive
definite. We compute, allowing for the nv to now be complex variables:

pAG(n) = det(∆n)(−ε)|V | det(−εMG −∆−1n (ε∆G)).

Let Evv denote the elementary V ×V matrix, with 1 in the (v, v) entry and all other entries
zero. Then,

pAG(n) = det(∆n)(−ε)|V | det

(
−εMG +

∑
v∈V

(−n−1v )(εfv)Evv

)
. (3.2)

Ignoring the scalar (−ε)|V |, it suffices to show that the determinant-expression times
det(∆n) is real-stable in the nv. Here, we recall a result of Borcea and Brändén [2, Propo-

sition 2.4], which says that the determinantal polynomial det(B +

m∑
j=1

zjAj) is real-stable

in the zj if all Aj are positive semidefinite and B is real symmetric. As an application,
since the matrices εfvEvv are positive semidefinite for all v ∈ V , the determinant in (3.2)
(without the extra factor of

∏
v nv) is real-stable, provided that one replaces each (−n−1v )

by nv. Now use that stability is preserved under ‘inversion’: if a polynomial p({nv}) with
nw-degree d is stable (for some fixed w ∈ V ), then so is ndwp({nv : v 6= w},−n−1w ). Applying
this for each variable nv in turn, the first assertion follows.

(2) By Theorem 2.1(1), uAG(x) = det(λ IdV +xMG), and this does not vanish if x = 0, since
λ 6= 0. Thus, x is a root here, if and only if x 6= 0 and

0 = x−|V |uAG(x) = det(λx−1 IdV +MG),

and the result is immediate from here. �

The next result provides necessary conditions and sufficient conditions for when a graph is a
blowup, in terms of the matrix AG:

Proposition 3.3. Notation as above; also suppose that all scalars fv are equal, say to λ ∈ R. Then
each of the following statements implies the next:

(1) G is a nontrivial blowup. In other words, G is a blowup of a graph H with |V (H)| < |V (G)|.
(2) There exist two vertices v 6= w in G which share the same set of neighbors. (Thus, v, w are

not adjacent.)
(3) λ is an eigenvalue of the matrix AG.
(4) The blowup-polynomial pAG has total degree at most |V | − 1.

In fact the first two assertions are equivalent (and do not depend on AG), and so are the last two.

Proof. The first two assertions are taken from [10]; we reproduce that proof here. If (1) holds then
there are two distinct vertices which are copies of one another, proving (2). Conversely, if (2) holds
then G is a blowup of the smaller graph where one of these two vertices is removed, proving (1).

We next show (2) =⇒ (3): if (2) holds, then MG contains two identical rows, hence is singular.
But then AG = MG + λ IdV has λ as an eigenvalue, proving (3). Finally, (3) holds if and only if
MG is singular, if and only if (by Theorem 2.1(2)) the unique monomial in pAG(n) of top degree is
zero, proving that (3)⇐⇒ (4). �

Our final result in this section takes an in-depth look at the real-stability of the polynomial
pAG(n). Notice by Theorem 2.1(1) that these polynomials are not homogeneous; nor are their coef-
ficients a priori all of the same sign. Real-stable polynomials with either of these two properties are
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the subjects of active research: the former fall in the broader family of Lorentzian polynomials [9],
as well as strongly/completely log-concave polynomials [1, 14]; and the latter are termed strongly
Rayleigh polynomials, and are important in probability and the theory of negative dependence
(see [5] and the references therein). We first provide the necessary definitions.

Definition 3.4. Fix a real polynomial of complex variables p(z1, . . . , zk) ∈ R[z1, . . . , zk].

(1) A real symmetric matrix is Lorentzian if it is nonsingular with only one positive eigenvalue.
(2) Following [9], we say p is Lorentzian if p is homogeneous of some degree d ≥ 2, has non-

negative coefficients, and given indices 1 ≤ j1, . . . , jd−2 ≤ k, if we define

g(z1, . . . , zk) :=
(
∂zj1 · · · ∂zjd−2

p
)

(z1, . . . , zk),

then its Hessian matrix Hg := (∂zi∂zjg)ki,j=1 ∈ Rk×k is Lorentzian.

(3) Following [14], we say that p is strongly log-concave if p has all coefficients non-negative,

and for all tuples α ∈ Zk≥0, either the derivative ∂α(p) :=
k∏
i=1

∂αizi · p is identically zero, or

log(∂α(p)) is defined and concave on (0,∞)k.
(4) Following [1], we say that p is completely log-concave if p has all coefficients non-negative,

and for all integers m ≥ 0 and matrices A = (aij) ∈ [0,∞)m×k, either the derivative

∂A(p) :=

m∏
i=1

 k∑
j=1

aij∂zj

 · p is identically zero, or log(∂A(p)) is defined and concave on

(0,∞)k.
(5) We say p is strongly Rayleigh if p is multi-affine and real-stable in the zj , and has all

coefficients non-negative and summing to 1.

We now explore when the homogenized blowup-polynomial of pAG is Lorentzian – or its nor-
malization is strongly Rayleigh – in the spirit of a result proved in [10] for distance matrices. The
following adapts that result to the current setting.

Theorem 3.5. Setting as in Theorem 2.1, with k := |V | ≥ 2. Also suppose that all scalars fv ∈ R
are nonzero and have the same sign ε ∈ {±1}. Define the homogenized polynomial

p̃AG(z0, z1, . . . , zk) := (εz0)
kpAG(εz1/z0, . . . , εzk/z0) ∈ R[z0, z1, . . . , zk],

with possibly complex arguments. Then the following statements are equivalent.

(1) p̃AG(z0, z1, . . . , zk) is real-stable.
(2) p̃AG(z0, z1, . . . , zk) is Lorentzian (equivalently, strongly / completely log-concave).
(3) All coefficients of p̃AG(z0, z1, . . . , zk) are non-negative.
(4) We have εkpAG(ε, . . . , ε) > 0, and the following polynomial is strongly Rayleigh:

(z1, . . . , zk) 7→ pAG(εz1, . . . , εzk)

pAG(ε, . . . , ε)
.

(5) The matrix MG is positive semidefinite.

Before proving Theorem 3.5, we note that it is a ‘negative’ result for the graph-properties dis-
cussed in this paper. For example, for the distance matrix the only graphs for which MG =
DG + 2 IdV is positive semidefinite, are complete (multipartite) graphs, by [19]. For the adjacency
matrix, the only graphs for which MG is positive semidefinite are the graphs with no edges. Nev-
ertheless, the family of matrices AG as in (1.2) can contain other examples for which the matrix
MG is positive semidefinite.
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Proof of Theorem 3.5. That (1) =⇒ (2) was shown in [9], and that a Lorentzian polynomial
satisfies (3) follows from the definitions. The equivalences inside assertion (2) were shown in [9,
Theorem 2.30]. We next show that (1) =⇒ (4) =⇒ (3). Given (1) (and hence (3)), we see that
the sum of all coefficients in p̃AG equals its value at (1, 1, . . . , 1), and so using (3):

εkpAG(ε, . . . , ε) = p̃AG(1, 1, . . . , 1) ≥ p̃AG(1, 0, . . . , 0) =
∏
v∈V

(εfv) > 0.

Moreover, the coefficients of the normalized polynomial

pAG(εz1, . . . , εzk)

pAG(ε, . . . , ε)
=
p̃AG(1, z1, . . . , zk)

p̃AG(1, 1, . . . , 1)
(3.6)

are non-negative and add up to one. Finally, the left-hand side is real-stable because the right-
hand side is, by (1) and by specializing at z0 7→ 1 (which preserves real-stability). This shows (4).
Conversely, if (4) holds, then Equation (3.6) implies (3), as desired.

Finally, if (3) holds, then Theorem 2.1(2) (and the hypotheses that εfv > 0 ∀v ∈ V ) implies

that every principal minor of MG is non-negative. This is because the coefficient of z
k−|J |
0

∏
v∈J zv

equals
∏
v∈V \J(εfv) ·det(MG)J×J , and this is to be non-negative for every subset J . This shows (5).

Conversely, if (5) holds, then we use the positive semidefinite matrix

CG := (ε∆G)−1/2MG(ε∆G)−1/2

in the following computation:

p̃AG(z0, z1, . . . , zk) = det(ε∆G)1/2 det(z0 Idk +∆zCG) det(ε∆G)1/2

= det(ε∆G) det(z0 Idk +
√
CG∆z

√
CG) = det(z0 Idk +

∑
v∈V

zv
√
CGEvv

√
CG),

where the second equality comes from expanding det

(
z0 Idk −

√
CG

∆z

√
CG Idk

)
in two ways, both via

Schur complements; and where the matrix Evv was defined prior to (3.2). Now the final expression
is indeed real-stable by [2, Proposition 2.4] (see the discussion following (3.2)), so (1) holds. �

4. The adjacency blowup-polynomial

We conclude this note by illustrating several of the above results in the general case, by special-
izing them to the adjacency matrix of a graph and its blowup-polynomial, as a particular example.

Suppose MG = AG is the adjacency matrix (so mvv = 0 ∀v ∈ V ), and λ ∈ R is any fixed
nonzero scalar. Defining AG,λ = λ IdV +AG, we obtain a real-stable polynomial pAG,λ(n). Now

the coefficient in pAG,λ(n) of any monomial nI (where I ⊂ V ) is a scalar times the determinant
of (AG)I×I ; note this principal submatrix is itself block diagonal, with components corresponding
to the connected components of the induced subgraph on I (this makes det(AG)I×I ‘easier’ to
compute). This observation and others lead to the following result.

Proposition 4.1. Suppose MG = AG, the adjacency matrix of a graph G; and ∆G = λ IdV for a
fixed nonzero scalar λ ∈ R.

(1) Suppose H ⊂ G is an induced subgraph. Then

pAH,λ({nv : v ∈ V (H)}) = pAG,λ(n)|nv=0 ∀v∈V (G)\V (H) · λ|V (H)|−|V (G)|.

(2) If H,H ′ are isomorphic subgraphs inside G, then the coefficients in pAG,λ of the monomials

corresponding to V (H) and V (H ′) are equal.
(3) Suppose for some non-empty subset J ⊂ V (G) that the induced subgraph on J contains a

connected component which is a tree without a perfect matching. Then the coefficient of nJ

in pAG,λ(n) is zero.
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(4) If λ = −1, then up to a scalar, the univariate specialization uAG,−1
(x) is precisely the

‘inversion’ of the characteristic polynomial of AG: uAG,−1
(z) = z|V |χAG(z−1).

The final part allows one to interpret the eigenvalues of AG in terms of the roots of uAG,−1
. (E.g.

the second largest eigenvalue is important for studying d-regular bipartite Ramanujan graphs.)

Proof. The key fact used in these results is that the adjacency matrix of any subgraph on J ⊂ V (G)
is the principal J × J submatrix of AG. This fact, combined with Theorem 2.1(2) and that ∆G

is a scalar matrix, immediately yields the second part. The ‘key fact’ also yields the first part via
setting all other variables nv, v 6∈ V (H) to zero, since this yields a matrix with only the diagonal
entry nonzero in each row not indexed by V (H). The first part follows easily from here.

The third part holds because of the observation immediately preceding this proposition, combined
with the classical fact (see e.g. [11]) that the adjacency matrix of a tree is nonsingular if and only
if the tree has a perfect matching. The final part follows immediately from Theorem 3.1(2). �

The multivariate blowup-polynomial also has other attractive properties; we mention one that
is crucially used in studying bipartite graphs (including in constructing bipartite Ramanujan ex-
panders in [20] and its precursors). A folklore result is that G is bipartite if and only if its adjacency
spectrum is symmetric (as a multiset) around the origin. In fact, this extends to the zero-locus
of the blowup-polynomial – now yielding an even polynomial since uAG,−1

is the ‘inversion’ of the
adjacency characteristic polynomial:

Proposition 4.2. Suppose G is a graph, λ ∈ R is nonzero, and we set AG,λ = λ IdV +AG. The
following are equivalent:

(1) pAG,λ is even in n.
(2) G is bipartite.

In particular, the zeros of pAG,λ for any bipartite graph G are symmetric around the origin, and
there are no odd-degree monomials in pAG,λ .

Proof. First suppose G is bipartite. Write the adjacency matrix as AG =

(
0 BT

B 0

)
, and compute:

pAG,λ(−n) = det

(
− Id 0

0 Id

)
det(λ IdV −∆nAG) det

(
− Id 0

0 Id

)
= det

(
λ IdV −∆n

(
− Id 0

0 Id

)(
0 BT

B 0

)(
− Id 0

0 Id

))
= det(λ IdV +∆nAG) = pAG,λ(n),

as desired.
Conversely, suppose (1) pAG,λ(n) ≡ pAG,λ(−n). Now it is well-known that the adjacency matrix

ACm for any cycle graph Cm on m vertices, is circulant, and has eigenvalues 2 cos(2πj/m) for
0 ≤ j < m. If m is odd then no eigenvalue is zero and ACm is non-singular. Returning to the proof
of the converse, if G is not bipartite then it has an induced odd cycle, say with vertices v1, . . . , vm
for m odd. In particular, the coefficient of nv1 · · ·nvm in pAG,λ is nonzero, by Theorem 2.1(2). But
this contradicts (1). The converse follows. �

We conclude with two directions of future investigation. In one direction, as we just saw, for
particular classes of graphs (e.g., bipartite graphs), one can obtain additional information that
refines and enriches the univariate picture. Another direction involves the adjacency blowup-
polynomial and blowup delta-matroid, and exploring their connections to previously studied notions
and invariants arising from combinatorics. For example, Bouchet showed in [8] that for any graph
G = (V,E), the subsets I ⊂ V for which the induced subgraph on I has a perfect matching, comprise
a delta-matroid. Now by Corollary 2.2, the monomials with nonzero coefficients in pAG,λ form the
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adjacency-blowup delta-matroid of G (independent of λ 6= 0). Notice that these constructions agree
whenever G is a tree. It is thus natural to ask if these two constructions agree in general; but even
for small graphs G, this is not the case. For example, for G = C5, the subset V (G) cannot have a
perfect matching, yet occurs in the blowup delta-matroid MAC5,λ

(defined in the paragraph after

Corollary 2.2); and for G = C4, the ‘reverse’ holds: V (G) has a perfect matching, but does not
occur in MAC4,λ

(e.g. by Proposition 3.3, since C4 is a blowup).
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