Schur polynomials, entrywise positivity preservers, and weak majorization

Apoorva Khare
(Indian Institute of Science)

Terence Tao
(University of California at Los Angeles)

Abstract
- Which functions when applied entrywise, preserve pos-
itive semidefiniteness?
- In all dimensions, results of Schur and others show:
these are power series with non-negative coefficients.
- For matrices of a fixed dimension, no other polynomi-
als/power series were known.
- We provide (i) examples of such polynomials, (ii) char-
acterization results for 'fewnomials', and (iii) a com-
plete solution to which coefficients can be negative.
- The proofs crucially rely on Schur polynomials.
- Also extend a conjecture of Cuttler-Greene-Skandera.

Schur polynomials

Definition 1 (Littlewood). Given $N \in \mathbb{N}$ and decreasing integers

$$
n_{N-1}>n_{N-2}>\cdots>n_{0} \geqslant 0
$$

let $\mathbf{n}:=\left(n_{N-1}, \ldots, n_{0}\right)$. The Schur polynomial $s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right)$ is the sum of weights of all column-strict Young tableaux, with shape $\left(n_{N-1}-(N-1), \ldots, n_{0}-0\right)$ and alphabet u_{1}, \ldots, u_{N}.
Example 2. Suppose $N=3$ and $\mathbf{n}:=(4,2,0)$. The tableaux are:

$s_{(4,2,0)}\left(u_{1}, u_{2}, u_{3}\right)$

$=u_{3}^{2} u_{2}+u_{3}^{2} u_{1}+u_{3} u_{2}^{2}+2 u_{3} u_{2} u_{1}+u_{3} u_{1}^{2}+u_{2}^{2} u_{1}+u_{2} u_{1}^{2}$
$=\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)$.
Schur polynomials are homogeneous and symmetric.
(Characters of irreducible polynomial representations of $G L_{n}(\mathbb{C})$.)
Definition 3 (Cauchy). Weyl Character Formula: $s_{\mathbf{n}}(\mathbf{u})=\frac{\operatorname{det}\left(u_{j}^{n-1}\right)}{\operatorname{det}\left(u_{j}^{k-1}\right)}$.

Ratios of Schur polynomials: Monotonicity, via Schur positivity

Suppose $0 \leqslant n \leqslant m$ coordinatewise. How does the ratio of these Schur polynomials behave on the positive orthant?

$$
f(\mathbf{u}):=\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}, \quad \mathbf{u} \in(0, \infty)^{N}
$$

(4)

Example 5. Suppose $\mathbf{m}=(4,2,0)$ as above, and $\mathbf{n}=(3,2,0)$. Then: $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
Note: both numerator and denominator are monomial-positive, hence non-decreasing in each coordinate.
Claim: f is also non-decreasing in each coordinate.
(Why?) Applying the quotient rule of differentiation to f,
$s_{\mathbf{n}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{m}}(\mathbf{u})-s_{\mathbf{m}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{n}}(\mathbf{u})=\left(u_{1}+u_{2}\right)\left(u_{1} u_{3}+2 u_{1} u_{2}+u_{2} u_{3}\right) u_{3}$,
and this is monomial-positive. In fact, more holds: if we write this as $\sum_{j \geq 0} p_{j}\left(u_{1}, u_{2}\right) u_{3}^{j}$ then each p_{j} is Schur-positive, i.e. a sum of Schur polynomials: $p_{0}\left(u_{1}, u_{2}\right)=0$, while

$=s_{(3,0)}\left(u_{1}, u_{2}\right)+s_{(2,1)}\left(u_{1}, u_{2}\right)$.
This happens in greater generality:

[^0]Entrywise p.s.d. preservers: history

Let $\mathbb{P}_{N}(I):=$ symmetric $N \times N$ positive semidefinite matrices with entries in $I \subset \mathbb{R}$. A function $f: I \rightarrow \mathbb{R}$ acts entrywise on $\mathbb{P}_{N}(I)$ via: $f[A]:=\left(f\left(a_{j k}\right)\right)$.

Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, when is it true that $f[A]=\left(f\left(a_{j k}\right)\right) \in \mathbb{P}_{N}(\mathbb{R})$ for all $A \in \mathbb{P}_{N}(\mathbb{R}) ?$
(Note: $f(x)=1, x$ work.) This problem has a long history, starting with Schur. The Schur product of matrices A, B is $A \circ B:=\left(a_{j k} b_{j k}\right)$.
Theorem 7 (Schur, Crelle, 1911). $A, B \in \mathbb{P}_{N}(\mathbb{R}) \Rightarrow A \circ B \in \mathbb{P}_{N}(\mathbb{R})$.
As a consequence of the Schur product theorem:

- $f(x)=x^{2}, x^{3}, \ldots$ preserve positivity on $\mathbb{P}_{N}(\mathbb{R})$ for all N.
- Hence, if $c_{k} \geqslant 0 \forall k$ and $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ is convergent, then $f[-]$ preserves positivity in all dimensions N.

Question 8 (Pólya-Szegö, 1925). Any other preservers (for all N)? (A "No" would show a "converse" to the Schur product theorem.)

Theorem 9 (Schoenberg, Duke 1942; see also Rudin, Duke 1959)
Let $f:(-1,1) \rightarrow \mathbb{R}$. The following are equivalent:

1. The entrywise map preserves positivity, $f[-]: \mathbb{P}_{N}((-1,1)) \rightarrow$ $\mathbb{P}_{N}(\mathbb{R})$ for all $N \geqslant 1$.
2. The function f is analytic on $(-1,1)$ and has non-negative Maclaurin coefficients.
This characterizes positivity preservers for matrices of all dimensions.
Challenging refinement: Classify entrywise maps preserving positivity in fixed dimension.

- Complete characterization open to date for each $N \geqslant 3$.
- Studied by Loewer, Horn, FitzGerald (1960s, 1970s) in connection with Bieberbach conjecture.
- Recently by Bhatia, Elsner, Fallat, Hiai, Jain, Johnson, Sokal,
- Leads to a new graph invariant. [JCT-A 2016; FPSAC 2017]
- Strong modern motivations, from high-dimensional covariance estimation in applied fields.

Entrywise polynomial preservers

Today: only work with polynomial preservers, in fixed dimension N.
\bullet If all coefficients of such a preserver f are non-negative,
then $f[-]: \mathbb{P}_{n}(\mathbb{R}) \rightarrow \mathbb{P}_{n}(\mathbb{R})$ for all dimensions n.

- For fixed N, the test set is reduced, so more polynomials should work - entrywise polynomial preservers with negative coefficients.
But, no examples known on $\mathbb{P}_{N}(\mathbb{R})$! (I.e., on 'covariance' matrices.)
- If we restrict to bounded domains $[0, \rho]$ for $\rho>0$ ('correlation' matrices), the only known necessary condition (essentially due to Horn) is that the first N nonzero coefficients of any entrywise polynomial preserver must be positive. E.g., if

$$
f(x)=c_{0}+c_{2} x^{2}+c_{5} x^{5}+c^{\prime} x^{M} \quad(M>5)
$$

entrywise preserves positivity on $\mathbb{P}_{3}([0, \rho])$, then $c_{0}, c_{2}, c_{5} \geqslant 0$; and if $c^{\prime}<0$ then $c_{0}, c_{2}, c_{5}>0$.

Now can c^{\prime} be negative? What is a sharp bound? (Open to date.)

Main result

Theorem 10 ([1] 2017)
Fix $N \geqslant 1$ and integers $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, and let $f(x):=c_{n_{0}} x^{n_{0}}+\cdots+c_{n_{N-1}} x^{n_{N-1}}+c^{\prime} x^{M}$,
where $c_{n_{j}}>0$. Let $0<\rho<\infty$. Then the following are equivalent. 1. $f[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
2. det $f[A] \geqslant 0$ for all real rank-one matrices in $\mathbb{P}_{N}((0, \rho))$.
3. Either $c_{0}, \ldots, c_{N-1}, c^{\prime} \geqslant 0$, or $c_{0}, \ldots, c_{N-1}>0>c^{\prime}$ and

$$
\frac{1}{\left|c^{\prime}\right|} \geqslant \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}(1, \ldots, 1)^{2}}{s_{\mathbf{n}}(1, \ldots, 1)^{2}} \frac{\rho^{M-n_{j}}}{c_{n_{j}}}
$$

where $\mathbf{n}_{j}:=\left(M, n_{N-1}, \ldots, n_{j+1}, \widehat{n_{j}}, n_{j-1}, \ldots, n_{0}\right)$ for all j.
Some consequences of Theorem 10:

- First examples of polynomial preservers with negative coefficients.
- More strongly, we can use this to characterize the sign patterns of power series preservers on \mathbb{P}_{N}.
- Provides the first construction of polynomials that preserve positivity on \mathbb{P}_{N}, but not on \mathbb{P}_{N+1}. Thus Horn's result is sharp.

From determinants to Schur polynomials

Sketch of proof of Theorem 10: $(1) \Longrightarrow(2)$: Immediate
$(3) \Longrightarrow(1)$: Done using Theorem 6; see [1] for details.
$(2) \Longrightarrow(3)$: We will only show how Schur polynomials and the threshold (12) arise out of Theorem 10(2), assuming that $c_{n_{j}}>0>c^{\prime}$. First note that for any vector $\mathbf{u} \in \mathbb{R}^{N}$,

$$
\begin{aligned}
& f\left[\mathbf{u u}^{T}\right]=\sum_{j=0}^{N-1} c_{n_{j}} \mathbf{u}^{\circ \mathbf{n}_{j}}\left(\mathbf{u}^{\circ \mathbf{n}_{j}}\right)^{T}+c^{\prime} \mathbf{u}^{\circ M}\left(\mathbf{u}^{\circ M}\right)^{T} \\
= & \left(\mathbf{u}^{\circ n_{0}}|\ldots| \mathbf{u}^{\left.\circ n_{N-1} \mid \mathbf{u}^{\circ M}\right)\left(\begin{array}{cccc}
c_{n_{0}} & \cdots & 0 & 0 \\
\vdots & \cdots & \vdots & \vdots \\
0 & \cdots & c_{n_{N-1}} & 0 \\
0 & \cdots & 0 & c^{\prime}
\end{array}\right)\left(\mathbf{u}^{\circ n_{0}}|\ldots| \mathbf{u}^{\left.\circ n_{N-1} \mid \mathbf{u}^{\circ M}\right)^{T} .}\right.} .\right.
\end{aligned}
$$

Let $V(\mathbf{u}):=\prod_{1 \leqslant j<k \leqslant N}\left(u_{j}-u_{k}\right)$ be the "Vandermonde determinant for \mathbf{u} ". Then by the Cauchy-Binet formula and Definition 3,

$$
\begin{equation*}
\operatorname{det} f\left[\mathbf{u} \mathbf{u}^{T}\right]=V(\mathbf{u})^{2} \prod_{j=0}^{N-1} c_{n_{j}}\left(c^{\prime} \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}(\mathbf{u})^{2}}{c_{n_{j}}}+s_{\mathbf{n}}(\mathbf{u})^{2}\right) \geqslant 0 \tag{13}
\end{equation*}
$$

Now suppose the coordinates of \mathbf{u} are distinct and in $(0, \sqrt{\rho})$. Solving for c^{\prime} yields

$$
\frac{1}{\left|c^{\prime}\right|} \geqslant \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}(\mathbf{u})^{2}}{c_{n_{j}} s_{\mathbf{n}}(\mathbf{u})^{2}}
$$

Finally, if Theorem $10(2)$ holds, then $1 /\left|c^{\prime}\right|$ must exceed the righthand side for all $\mathbf{u} \in(0, \sqrt{\rho})^{N}$ with distinct coordinates, hence for all $\mathbf{u} \in(0, \sqrt{\rho})^{N}$. By continuity and Theorem 6 ,

$$
\frac{1}{\left|c^{\prime}\right|} \geqslant \sum_{j=0}^{N-1} \sup _{\mathbf{u} \in(0, \sqrt{\rho}]^{N}} \frac{s_{\mathbf{n}_{j}}(\mathbf{u})^{2}}{c_{n_{j}} s_{\mathbf{n}}(\mathbf{u})^{2}}=\sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}\left(\mathbf{u}_{1}\right)^{2}}{c_{n_{j}} s_{\mathbf{n}}\left(\mathbf{u}_{1}\right)^{2}}
$$

where $\mathbf{u}_{1}:=\sqrt{\rho}(1, \ldots, 1)^{T}$. But this equals the threshold in (12) by the principal specialization of the (type A) Weyl Character Formula.

Cuttler-Greene-Skandera conjecture, and weak majorization

Definition 14. Given integers $0 \leqslant n_{0} \leqslant \cdots \leqslant n_{N-1}$ and $0 \leqslant m_{0} \leqslant$ $\cdots \leqslant m_{N-1}$, the vector $\mathbf{m}:=\left(m_{N-1}, \ldots, m_{0}\right)^{T}$ weakly majorizes $\mathbf{n}:=\left(n_{N-1}, \ldots, n_{0}\right)^{T}$ if

$$
\sum_{j=k}^{N-1} m_{j} \geqslant \sum_{j=k}^{N-1} n_{j}, \forall 0<k<N, \quad \sum_{j=0}^{N-1} m_{j} \geqslant \sum_{j=0}^{N-1} n_{j} .
$$

If moreover the final inequality is an equality, we say \mathbf{m} majorizes \mathbf{n}.
A conjecture of Cuttler-Greene-Skandera [Eur. J. Comb. 2011] says that \mathbf{m} majorizes \mathbf{n} if and only if the following inequality holds:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

The conjecture was recently proved by Sra [Eur. J. Comb. 2016], and Ait-Haddou and Mazure [Found. Comput. Math. 2018].
Compare this with Theorem 6, which says that if $\mathbf{m} \geqslant \mathrm{n}$ coordinatewise, then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

Question 15. How can these two inequalities be reconciled?
The above three papers all assume $\sum_{j} m_{j}=\sum_{j} n_{j}$. Replace by an inequality \rightsquigarrow novel characterization of weak majorization:

Theorem 16 ([I]], 2017)

Given vectors $\mathbf{m}, \mathbf{n} \in \mathbb{Z}_{\geqslant 0}^{N}$ with strictly decreasing integer coordinates, we have

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if and only if \mathbf{m} weakly majorizes \mathbf{n}.
(In fact, this extends to real tuples $\mathbf{m}, \mathbf{n} \in(0, \infty)^{N}$.)

Acknowledgments

- SERB (Govt. of India): Ramanujan Fellowship
- Infosys Foundation (India): Young Investigator Award
- Simons Foundation (USA): Simons Investigator Award
- NSF (USA): Grant DMS-1266164

Reference

[1] A. Khare and T. Tao. On the sign patterns of entrywise positivity preservers in fixed dimension. Preprint, arXiv:1708.05197, 2017.

[^0]: Theorem 6 (Monotonicity of Schur polynomial ratios, [1]) Suppose $0 \leqslant n_{0}<\cdots<n_{N-1}$ and $0 \leqslant m_{0}<\cdots<m_{N-1}$ are integers satisfying: $n_{j} \leqslant m_{j} \forall j$. Then the function $f(\mathbf{u}):=\frac{s_{\mathrm{m}}(\mathbf{u})}{s_{\mathrm{n}}(\mathbf{u})}$ as in (4) is non-decreasing in each u_{j}. More strongly: writing
 $s_{\mathbf{n}}(\mathbf{u}) \cdot \partial_{u_{N}} s_{\mathbf{m}}(\mathbf{u})-s_{\mathbf{m}}(\mathbf{u}) \cdot \partial_{u_{N}} s_{\mathbf{n}}(\mathbf{u})$
 as a polynomial in u_{N}, the coefficient of each monomial u_{N}^{j} is a
 Schur-positive polynomial in $\left(u_{1}, u_{2}, \ldots, u_{N-1}\right)$.
 The proof ultimately reduces to showing the Schur positivity of (i) products of skew-Schur polynomials (which follows from the LittlewoodRichardson rule); and of (ii) the expressions
 where λ / μ and ν / ρ are arbitrary skew shapes, and one defines
 $\lambda \vee \nu:=\left(\max \left(\lambda_{1}, \mu_{1}\right), \max \left(\lambda_{2}, \mu_{2}\right), \ldots\right), \lambda \wedge \nu:=\left(\min \left(\lambda_{1}, \mu_{1}\right), \min \left(\lambda_{2}, \mu_{2}\right)\right.$, The Schur positivity of these expressions was proved by Lam, Postnikov, and Pylyavskyy in [Amer. J. Math. 2007].

