Schur polynomials and matrix positivity preservers

Alexander Belton (Lancaster University)

Dominique Guillot (University of Delaware)

Apoorva Khare (Stanford University)

Mihai Putinar
(University of California at Santa Barbara and Newcastle University)

Proof of main result (sketch)

Clearly (1) \Longrightarrow (3). We now show (3) $\Longrightarrow(2)$, assuming $c_{0}, \ldots, c_{N-1}>0>c^{\prime}$ and \geq
Note that (1), (3) can be reformulated via linear matrix inequalities:

$$
f[A] \in \mathcal{P}_{N} \quad \Longleftrightarrow \quad A^{\circ M} \leqslant t \cdot \sum_{j=0}^{N-1} c_{j} A^{\circ j} .
$$

Question: How small cant $t=\left|c^{\prime}\right|^{-1}$ be? Note by Equation (2):
$0 \leqslant \operatorname{det} p_{t}\left[\mathbf{u u}{ }^{T}\right]=t^{N-1} \Delta_{N}(\mathbf{u})^{2} c_{0} \cdots c_{N-1}\left(t-\sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\mathbf{u})^{2}}{c_{j}}\right)$.

Set $u_{k}:=\sqrt{\rho}\left(1-t^{\prime} \epsilon_{k}\right)$, with pairwise distinct $\epsilon_{k} \in(0,1)$, and $t^{\prime} \in(0,1)$. Thus, $\Delta_{N}(\mathbf{u}) \neq$ Taking the limit as $t^{\prime} \rightarrow 0^{+}$, since the final term in (3) must be non-negative, it follows that
$t \geqslant \sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\sqrt{\rho}, \ldots, \sqrt{\rho})^{2}}{c_{j}}=\sum_{j=0}^{N-1} s_{\mu(M, N, j)}(1, \ldots, 1)^{2} \cdot \frac{\rho^{M-j}}{c_{j}}=\mathcal{C}\left(\mathbf{c} ; z^{M} ; N, \rho\right)$.
That $s_{\mu(M, N, j)}(1, \ldots, 1)=\binom{M}{j}\binom{M-j-1}{N-j-1}$ follows using the Weyl Dimension Formula in
ype A; or the dual Jacobi-Trudi (Von Nägelsbach-Kostka) identity
A refined analysis of the proof shows that in fact, $f[A] \in \mathcal{P}_{N}$ is generically positive definite.
Suppose $N>1$, and $A \in \mathcal{P}_{N}(\bar{D}(0, \rho)$ has a row with pairwise distinct entries. Define $f(z):=c_{0}+\cdots+c_{N-1} z^{N-1}-\mathcal{C}\left(\mathbf{c} ; z^{M} ; N, \rho\right)^{-1} z^{M}$. Then $f[A]$ is positive definite.
This uses the connection to Schur polynomials and semi-standard Young tableaux (see [I]).

Alternative variational approach:

Rayleigh quotients via Schur polynomials
Given $\mathbf{c}=\left(c_{0}, \ldots, c_{N-1}\right)$, define $h_{\mathbf{c}}(z):=\sum_{j=0}^{N-1} c_{j} z^{j}$. Want the smallest constant $t>0$ with $A^{\circ M} \leqslant t \cdot h_{c}[A]$,
for all $A \in \mathcal{P}_{N}(\bar{D}(0, \rho))$, or for all rank-one psd matrices A.
Strategy:

1. First produce optimal constant $\Psi_{\mathbf{c}, M}(A)$ for a single matrix: $A^{\circ M} \leqslant \Psi_{\mathbf{c}, M}(A) \cdot h_{\mathbf{c}}[A]$.
2. Maximize $\Psi_{\mathbf{c}, M}(A)$ over $A \in \mathcal{P}_{N}(\bar{D}(0, \rho))$.

he first step is addressed by the following resul.

Theorem 4 (III), Adv. Math. 2016)

(

$$
\Psi_{\mathbf{c}, M}(A)=\sup _{v \in S^{2 N-1} \cap\left(\underline{k e r} h_{\mathrm{c}}[A)^{2}\right.} \frac{v^{*} A^{*} h_{\mathbf{c}}[A] v}{v^{\prime}[A] v}=\varrho\left(h_{\mathbf{c}}[A]^{\dagger / 2} A^{\circ M} h_{\mathbf{c}}[A]^{\dagger / 2}\right)
$$

where $\varrho(C), C^{\dagger}$ denote the spectral radius and Moore-Penrose inverse of C, respectively.

he proof uses the theory of Kronecker normal forms.

Novel connections: Rayleigh quotients to Schur polynomials If $A=\mathbf{u u}^{*}$, the Rayleigh quotient $\Psi_{\mathbf{c}, M}(A)$ can be written using Schur polynomials!
Theorem 5 (III], FPSAC 2016)
If $\mathbf{u} \in \mathbb{C}^{N}$ has distinct coordinates and $A=\mathbf{u} \mathbf{u}^{*}$, then $h_{\mathrm{c}}[A]$ is invertible, and
$\Psi_{\mathbf{c}, M}\left(\mathbf{u u}^{*}\right)=\left(\mathbf{u}^{\circ} \mathrm{M}^{*}\right)_{\mathrm{c}}\left[\mathbf{u u ^ { * }}\right]^{-1} \mathbf{u}^{\circ M}=\sum_{j=0}^{N-1} \frac{\left|s_{\mu(M, N, j)}(\mathbf{u})\right|^{2}}{c_{j}}$.
otice, this result immediately implies Main Theorem (3) \Longrightarrow (2)
The proof of (2) \Longrightarrow (1) is more involved (see [1] for details).

Reference

A. Betlon, D. Guillot, A. Khare, and M. Putinar. Matrix positivity preservers in fixed dimension. I.

