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Abstract
A classical result by Schoenberg (1942) identifies all real-valued functions
that preserve positive semidefiniteness (psd) when applied entrywise to ma-
trices of arbitrary dimension. Schoenberg’s work has continued to attract
significant interest, including renewed recent attention due to applications in
high-dimensional statistics. However, despite a great deal of effort in the area,
an effective characterization of entrywise functions preserving positivity in a
fixed dimension remains elusive to date. As a first step, we characterize new
classes of polynomials preserving positivity in fixed dimension. The proof of
our main result is representation theoretic, and employs Schur polynomials.

Entrywise functions preserving positivity

Definition. Let PN (I) := Hermitian N ×N positive semidefinite matrices with entries in I .

Problem
Given a function f : R→ R, when is it true that

f [A] := (f (ajk)) ∈ PN (R) for all A ∈ PN (R)?

Which functions f [−] : PN (R)→ PN (R) have this property? (Note: f (x) = 1, x work.)

This problem has a long history, starting with Schur.

The Schur product (or Hadamard product) of two matrices is A ◦B := (ajkbjk).

Theorem (Schur Product Theorem, J. Reine angew. Math. 1911)
If A,B ∈ PN (C), then A ◦B ∈ PN (C).

As a consequence of the Schur product theorem:
• f (x) = x2, x3, . . . preserve positivity on PN (C) for all N .
• If ck > 0 ∀k and f (x) =

∑∞
k=0 ckx

k is convergent, then f [−] preserves positivity.

Question (Pólya–Szegö, 1925): Are these functions all that work (in every dimension)?

Schoenberg’s theorem
Pólya and Szegö’s question was answered positively by Schoenberg.

Theorem (Schoenberg, Duke Math. J. 1942; see also Rudin, Duke Math. J. 1959)
Let f : [−1, 1]→ R. The following are equivalent:

1. The entrywise map preserves positivity, f [−] : PN ([−1, 1])→ PN (R) for all N > 1.

2. The function f is analytic on [−1, 1] and has non-negative Taylor coefficients.

Note: Schoenberg’s result characterizes functions preserving positivity for matrices of all
dimensions.

Challenging refinement: Classify entrywise maps preserving positivity in fixed dimension.
(This is known for N = 1, 2, but is open to date for N > 3.)

Modern motivations: regularization of covariance matrices
Understanding relationships between variables is a fundamental problem in many fields (e.g.
bioinformatics, climate science, finance, etc.).
Given a sample x1, . . . , xn ∈ Rp, estimate the covariance matrix Σ := (Cov(Xj, Xk)

p
j,k=1).

This is very challenging in high dimensions.
• Previous approaches: Classical estimator S = sample covariance matrix is a poor estimator

of Σ in modern “large p, small n” problems.
Compressed sensing methods (Daubechies, Tao, Candes, . . . ) use convex optimization, and
work well for dimensions up to ∼ 10, 000. However, they are not scalable to modern-day
problems with 100, 000+ variables (disease detection, climate science, finance. . . ).

• Promising recent approach: Small entries in S suggest independence of the corresponding
variables. Thus it is natural to threshold these entries. E.g.,

True Σ =

 1 0.2 0
0.2 1 0.5
0 0.5 1

 , say S =

0.95 0.18 0.02
0.18 0.96 0.47
0.02 0.47 0.98

  S̃ =

0.95 0.18 0
0.18 0.96 0.47
0 0.47 0.98

 .

Can be significant if p = 100, 000 and only ∼ 1% of the entries of the true Σ are nonzero.

•More generally, apply a function f : R→ R to elements of S [Bickel–Levina 2008; Hero–
Rajaratnam 2011; Rothman–Levina–Zhu 2009].

•Highly scalable. Analysis on the cone – no optimization. Regularized matrix f [S] further
used in applications, where (estimates of) Σ are required in PCA, CCA, MANOVA, etc.

Question: When does this procedure f [−] preserve positivity? (Critical for applications.)

Main result: polynomials preserving positivity
Finding a useful characterization of functions preserving positivity in fixed dimension remains
a difficult open problem.

Horn’s necessary condition
Theorem (Horn, Trans. AMS 1969; Guillot–Khare–Rajaratnam, Trans. AMS 2016)

Fix N > 1 and suppose that f ∈ CN−1(I), where I := (0, ρ) and 0 < ρ 6 ∞. Suppose
f [−] preserves positivity on PN (I). Then f (k)(x) > 0 for all x ∈ I and 0 6 k 6 N − 1.

Main result
Now suppose c0, . . . , cN−1, cN 6= 0, and

f (z) =

N−1∑
j=0

cjz
j + cNz

N

preserves positivity on PN ((−ρ, ρ)). Then by Horn’s result, c0, . . . , cN−1 > 0.

Can cN be negative? What is a sharp bound?
(Open since Horn’s 1969 paper.)

Theorem 1 ([1], Adv. Math. 2016)

Fix ρ > 0 and integers N > 1, M > 0. Let f (z) :=
∑N−1
j=0 cjz

j + c′zM be a polynomial
with real coefficients. Let c := (c0, . . . , cN−1) and define

C(c; zM ;N, ρ) :=

N−1∑
j=0

(
M

j

)2(M − j − 1

N − j − 1

)2ρM−j

cj
. (1)

Then the following are equivalent.

1. f [−] preserves positivity on PN (D(0, ρ)).

2. Either c0, . . . , cN−1, c′ > 0, or c0, . . . , cN−1 > 0 and c′ > −C(c; zM ;N, ρ)−1.

3. f [−] preserves positivity on the real rank-one matrices, with entries in (0, ρ).

Some consequences:
• Characterization of polynomials of degree 6 N that preserve positivity on PN .

• Provides the first construction of polynomials that preserve positivity on PN , but not
on PN+1. Thus Horn’s result is sharp.

• Surprisingly, preserving positivity on PN (D(0, ρ)) is equivalent to preserving positivity on
the much smaller set of real rank-one matrices.

•Also implies a sufficient condition for an arbitrary analytic function to preserve positivity.

A determinantal identity of Jacobi–Trudi type

A Schur polynomial is the unique extension to FN of

s(nN ,...,n1)(x1, . . . , xN ) :=
det(x

nj+j−1
i )

det(x
j−1
i )

(nN > · · · > n1)

for pairwise distinct xi ∈ F. The denominator is precisely the Vandermonde determinant
∆N (x1, . . . , xN ) := det(x

j−1
i ) =

∏
16i<j6N (xj − xi).

Theorem 2 ([1], Adv. Math. 2016)

Let M > N > 1 be integers, and c0, . . . , cN−1 ∈ F× be non-zero scalars in any field F.
Define the polynomial

pt(z) := t(c0 + · · · + cN−1z
N−1)− zM ,

and the hook partition µ(M,N, j) := (M −N + 1, 1, . . . , 1, 0, . . . , 0)

· · ·

...
(N − j − 1 ones, j zeros).

Then the following identity holds for u,v ∈ FN :

det pt[uv
T ] = tN−1∆N (u)∆N (v)

N−1∏
j=0

cj ×
(
t−

N−1∑
j=0

sµ(M,N,j)(u)sµ(M,N,j)(v)

cj

)
. (2)

The proof uses the Cauchy–Binet formula to expand det
∑m
j=1 cnjA

◦nj for A = uvT .

Proof of main result (sketch)
Clearly (1) =⇒ (3). We now show (3) =⇒ (2), assuming c0, . . . , cN−1 > 0 > c′ and
M > N .

Note that (1), (3) can be reformulated via linear matrix inequalities:

f [A] ∈ PN ⇐⇒ A◦M 6 t ·
N−1∑
j=0

cjA
◦j.

Question: How small can t = |c′|−1 be? Note by Equation (2):

0 6 det pt[uu
T ] = tN−1∆N (u)2c0 · · · cN−1

(
t−

N−1∑
j=0

sµ(M,N,j)(u)2

cj

)
. (3)

Set uk :=
√
ρ(1− t′εk), with pairwise distinct εk ∈ (0, 1) , and t′ ∈ (0, 1). Thus, ∆N (u) 6= 0.

Taking the limit as t′→ 0+, since the final term in (3) must be non-negative, it follows that

t >
N−1∑
j=0

sµ(M,N,j)(
√
ρ, . . . ,

√
ρ)2

cj
=

N−1∑
j=0

sµ(M,N,j)(1, . . . , 1)2 · ρ
M−j

cj
= C(c; zM ;N, ρ).

That sµ(M,N,j)(1, . . . , 1) =
(M
j

)(M−j−1
N−j−1

)
follows using the Weyl Dimension Formula in

type A; or the dual Jacobi–Trudi (Von Nägelsbach–Kostka) identity.

A refined analysis of the proof shows that in fact, f [A] ∈ PN is generically positive definite.

Theorem 3 ([1], FPSAC 2016)

Suppose N > 1, and A ∈ PN (D(0, ρ)) has a row with pairwise distinct entries. Define
f (z) := c0 + · · · + cN−1z

N−1 − C(c; zM ;N, ρ)−1zM . Then f [A] is positive definite.

This uses the connection to Schur polynomials and semi-standard Young tableaux (see [1]).

Alternative variational approach:
Rayleigh quotients via Schur polynomials

Given c = (c0, . . . , cN−1), define hc(z) :=
∑N−1
j=0 cjz

j. Want the smallest constant t > 0 with

A◦M 6 t · hc[A],

for all A ∈ PN (D(0, ρ)), or for all rank-one psd matrices A.

Strategy:
1. First produce optimal constant Ψc,M (A) for a single matrix: A◦M 6 Ψc,M (A) · hc[A].

2. Maximize Ψc,M (A) over A ∈ PN (D(0, ρ)).

The first step is addressed by the following result.

Theorem 4 ([1], Adv. Math. 2016)
With notation as above, the optimal constant for A equals a Rayleigh quotient:

Ψc,M (A) = sup
v∈S2N−1∩(kerhc[A])⊥

v∗A◦Mv
v∗hc[A]v

= %(hc[A]†/2A◦Mhc[A]†/2), (4)

where %(C), C† denote the spectral radius and Moore-Penrose inverse of C, respectively.

The proof uses the theory of Kronecker normal forms.

Novel connections: Rayleigh quotients to Schur polynomials
If A = uu∗, the Rayleigh quotient Ψc,M (A) can be written using Schur polynomials!

Theorem 5 ([1], FPSAC 2016)

If u ∈ CN has distinct coordinates and A = uu∗, then hc[A] is invertible, and

Ψc,M (uu∗) = (u◦M )∗hc[uu∗]−1u◦M =

N−1∑
j=0

|sµ(M,N,j)(u)|2

cj
. (5)

Notice, this result immediately implies Main Theorem (3) =⇒ (2).

The proof of (2) =⇒ (1) is more involved (see [1] for details).
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