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Overview

• We present a new method for computing volumes of flow
polytopes by giving a combinatorial interpretation of the
Lidskii volume formula through objects called unified diagrams.

• We use our method to show that the volume of the caracol
polytope is the product of a Catalan number and the number
of parking functions.

Flow polytopes

Let G be an acyclic directed graph with n + 1 vertices and m
edges. Given a vector a = (a1, . . . , an) ∈ Zn≥0, an a-flow on G is
a tuple (bij)(i,j)∈E(G) of real numbers such that for j = 1, . . . , n,∑

(j,k)∈E(G)
bjk −

∑
(i,j)∈E(G)

bij = aj.

We view an a-flow on G as an assignment of flow bij to the edge
(i, j) such that the net flow at vertex j is aj. The set FG(a) of
a-flows of G can be viewed as a polytope in Rm and it is called
the flow polytope of G with net flow a.

The Kostant partition function

By associating the vector ei−ej to the edge (i, j), an a-flow on G
is equivalent to the expression of the vector a′ = ∑

(i,j)∈E(G) bij[ei−
ej] as a linear combination of the positive roots in the set

Φ+
G = {ei − ej | (i, j) ∈ E(G)}.

The number of integral a-flows onG is called the Kostant partition
function of G evaluated at a′ and we denote it by KG(a′). This
enumerates the number of lattice points of FG(a).

The Lidskii volume formula

A remarkable formula for the normalized volume of a flow polytope
was obtained by Baldoni and Vergne using residue techniques [1].
This formula was also proved by Mészáros and Morales using poly-
tope subdivisions [3].
Lidskii formula. Let G be a directed graph with n+ 1 vertices
and m edges. Let t = (t1, . . . , tn) be the shifted out-degree vector
whose i-th entry is one less than the out-degree of vertex i. Let
a = (a1, . . . , an) ∈ Zn≥0, and let G|n denote the restriction of G to
its first n vertices. Then

volFG(a) =
∑
sBt

(
m− n

s

)
· as ·KG|n(s− t),

where the sum is over weak compositions s = (s1, . . . , sn) � m−n
that dominate t.
Corollary. The special case when a = (1, 0, . . . , 0) is

volFG(1, 0, . . . , 0) = KG|n(m− n− t1,−t2, . . . ,−tn).

Motivation

For certain graphs G and net flow vectors a, the volume of FG(a)
has a nice combinatorial formula. We highlight a few examples
which are pertinent to our work.

• When G is the complete graph Kn+1 and a = (1, 0, . . . , 0),
FG(a) is the Chan–Robbins–Yuen polytope, and in the case
a = (1, . . . , 1), FG(a) is the Tesler polytope. We have

vol CRYn+1 =
n−2∏
i=1

Ci, and vol Tesn+1 = (n2)!∏n−1
i=1 (2i−1)n−i

n−1∏
i=1

Ci,

where Ck = 1
k+1

(
2k
k

)
is the k-th Catalan number. The only

known proofs of these use a variant of the Morris constant term
identity.

• When G is the Pitman–Stanley graph PSn+1, FPSn+1(1, . . . , 1)
is affinely equivalent to the Pitman–Stanley polytope and

volFPSn+1(1, . . . , 1) = nn−2.

• When G is the caracol graph Carn+1, FCarn+1(1, 0, . . . , 0) is
equivalent to the order polytope of the poset [2]× [n− 2], and

volFCarn+1(1, 0, . . . , 0) = Cn−2.
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Gravity diagrams

Let αi = ei − ei+1 for i = 1, . . . , n. A line-dot diagram is a
pictorial representation of a vector partition of the vector

c′ =
n+1∑
i=1

ciei =
n∑
i=1

(c1 + · · · + ci)αi

into the positive roots of Φ+
G. It consists of an array of c1 + · · ·+ ci

dots in the i-th column, and a part [ei−ej] of the vector partition
is represented by a line through dots in the i-th to the j-th column.
Two line-dots diagrams are equivalent if they represent the same
vector partition. A gravity diagram is an equivalence class of line-
dot diagrams, and we let GDG(c′) denote the set of classes. The
choice of a class representative depends on the graph G.
Theorem 1. The Kostant partition function of the graph G
evaluated at c′ is the number of gravity diagrams.

KG(c′) = |GDG(c′)|.

The zigzag graph. The graph Zign+1 has m = 2n− 1 edges

1 2 3 4 5
· · ·

n n+ 1

and shifted out-degree vector t = (1, . . . , 1, 0). By the Corollary
to the Lidskii formula and Theorem 1,

volFZign+1(1, 0, . . . , 0) = KZign(c
′) = |GDZign(c

′)|,
where c′ = ∑n−2

i=1 (n− 1− i)αi. Since
Φ+

Zign = {α1, . . . , αn−1} ∪ {αi + αi+1 | i = 1, . . . , n− 2},
then a gravity diagram in GDZign(c′) is a triangular array of n− 2
columns of dots whose lines may only connect dots in two consec-
utive columns, and by our convention the diagram is constructed
by placing lines from right to left such that each line occupies the
lowest available dots in their respective columns. We enumerate
these diagrams to obtain the next Proposition.
Proposition 2. The volume of the zigzag polytope is

volFZign+1(1, 0, . . . , 0) = En−1,

where the Euler number En−1 is the number of alternating permu-
tations on n− 1 letters.
Example. The gravity diagrams in GDZig5(3α1 + 2α2 + α3) are

Labeled t-Dyck paths

Given t ∈ Zn≥0, a labeled t-Dyck path is a pair
(s, σ) where s is a weak composition of |t| such
that sBt, and σ is a permutation of |t| whose de-
scents can possibly occur in positions s1+· · ·+sj
for j = 1, . . . , |t|−1. The figure to the right de-
picts a (1, . . . , 1)-Dyck path, which is a parking
function in the classical sense.
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s = (2, 3, 1, 0, 0, 2, 0, 0)
σ = 2 3 5 7 8 6 1 4

t = (1, 1, 1, 1, 1, 1, 1, 1)

Unified diagrams

A unified diagram for the flow polytope FG(a) with shifted out-
degree vector t is a tuple U = (s, σ, ϕ,D) where (s, σ) is a labeled
t-Dyck path, ϕ ∈ [a1]s1× · · · × [an]sn, and D is a gravity diagram
in GDG|n(s− t). We let UG(a) denote the set of unified diagrams.
Theorem 3. The volume of the flow polytope FG(a) is the
number of unified diagrams.

volFG(a) = |UG(a)|.

The Pitman–Stanley graph. The graph PSn+1

1 2 3 4
· · ·
n− 1 n n+ 1

has m = 2n − 1 edges and shifted out-degree vector t =
(1, . . . , 1, 0). The restriction G|n is simply the path on n ver-
tices so there is a unique gravity diagram for every Dyck path
sB t. As such, a unified diagram in UPSn+1(1, . . . , 1) is completely
characterized by its labeled t-Dyck path, which can be identified
with a parking function.
Proposition 4. The volume of the Pitman–Stanley polytope is
the number of parking functions

volFPSn+1(1, . . . , 1) = nn−2.

For i ≥ 0, the level-i unified diagrams Ui
G(a) is the set of unified

diagrams whose first column north steps are omitted and whose
first east step begins at the i-th line.
Theorem 5. We use the following refined formula to compute
the volume of the caracol polytope in the next section.

volFG(a) = |UG(a)| =
|t|∑
i=0

(
|t|
i

)
a
|t|−i
1 |Ui

G(a)|.

The caracol polytope

The caracol graph. The graph Carn+1 has m = 3n − 4
edges and shifted out-degree vector t = (n− 2, 1, . . . , 1, 0).

1 2 3 4 5
· · ·
n− 1 n n+ 1

The caracol polytope is FCarn+1(1, . . . , 1).
Example. The figure to the right
depicts the two-dimensional caracol
polytope of flows on the graph Car4
with net flow a = (1, 1, 1). Its nor-
malized volume is

volFCar4(1, 1, 1) = C1 · 31 = 3.
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Gravity diagrams. Let c′ = ∑n−2
i=1 (n− 1− i)αi. Since

Φ+
Carn+1 |n = {α1, . . . , αn−1}∪{α1 + · · ·+αi | i = 2, . . . , n−1},

a gravity diagram in GDCarn+1 |n(c′) is a triangular array of n−2
columns of dots whose lines are horizontal and left-justified, and
by our convention the longer lines are bottom-justified.
The gravity diagrams in GDCar6 |5(3α1 + 2α2 + α3) are

Proposition 6. The volume of the flow polytope of Carn+1
with net flow (1, 0, . . . , 0) is the Catalan number

volFCarn+1(1, 0, . . . , 0) = Cn−2.

Unified diagrams. The figure to the right
depicts a unified diagram U = (s, σ,D) for
FCar8(1, . . . , 1) with shifted out-degree vector
t. The t-Dyck path is s with parking label σ,
and D is a gravity diagram in GDCar8 |7(2α1 +
3α2 + 2α3 + α4 + α5). When a = (1, . . . , 1),
the net flow label ϕ may be suppressed.
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t = (5, 1, 1, 1, 1, 1, 0)

s = (7, 2, 0, 0, 1, 0, 0)
σ = 2 3 4 6 7 8 10 1 5 9

The parking triangle.
1

1 1
2 3 3

5 10 16 16
14 35 75 125 125

42 126 336 756 1296 1296

For r ≥ 0, the numbers in the r-th row of the parking triangle
enumerate the level-i unified diagrams for the caracol polytope
FCarr+3(1, . . . , 1). The numbers along the r-th row interpolate
between the Catalan number Cr and the number (r + 1)r−1 of
parking functions of r.
Theorem 7. The number of level-i unified diagrams for the
caracol polytope FCarn+1(1, . . . , 1) is

|Ui
Carn+1

(1, . . . , 1)| = (n− 1)i−1
(

2(n−1)−i
n−1

)
.

Example. The proof of Theorem 7 is obtained by con-
structing a bijection Φ from the set of level-i unified dia-
grams UCarn+1(1, . . . , 1) to the set M(n − 2, i) of Dyck paths
from (0, 0) to (n − 2, n − 2) which are labeled by the mul-
tiset {0n−2−i, 1, . . . , i}. Below is a level-4 unified diagram
U ∈ UCar4

11
(1, . . . , 1) and its corresponding multiset-labeled

Dyck path M ∈ M(8, 4).
1

3

4

2

i = 0

i = 1

i = 2

i = 3

i = 4
...

...

−→
Φ
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0
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Our final result follows by combining Theorems 5 and 7.
Theorem 8. The volume of the caracol polytope is the prod-
uct of a Catalan number and the number of parking functions.

volFCarn+1(1, . . . , 1) = Cn−2 · nn−2.
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