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Motivation

Many problems in physics have the form

of Conservation Laws ∂tU +∇x · F (U) = 0

where
I U can be a scalar or a vector, thus F (U) a vector or a matrix,
I x can be one- or multi-dimensional

or Balance Laws ∂tU +∇x · F (U) = S(U).

Goal: To design a “good and efficient” numerical method
I mathematical and physical criterion
I non linearities
I conservation of equilibria (∇x · F (Ueq) = S(Ueq)).



Example Kr Adm
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What does “conservation” mean?
Density of a passive tracer immersed in a fluid

I ρ(t, x) = density of “particles”:∫
Ω
ρ(t, y)dy = Mass contained in Ω at time t

I u(t, x) = (God-given) velocity of the fluid
I Mass balance

d

dt

∫
Ω
ρ(t, y) dy = −

∫
∂Ω
ρ(t, y)u(t, y) · ν(y)dσ(y).

I Integrating by parts yields the PDE ∂tρ+∇x · (ρu) = 0.

Moto
To design numerical schemes by mimicking the physical derivation
of the equation (Finite Volume Schemes)



The cornerstone is the notion of flux

I Given a physical quantity U, its evolution in a domain Ω is
driven by gain/loss through the boundaries described by a flux
Q so that

d

dt

∫
Ω

U(t, y)dy =

∫
∂Ω

Q(t, y) · ν(y) dσ(y).

I Then, a physical law prescribes how Q depends on U.
I Example: U =temperature, Fourier’s law: Q = −k∇xU.

It leads to the Heat Eq. ∂tU = ∇x · (k∇U). But this eq.
does not belong to the framework of Hyperbolic problems...
Main differences: Infinite Speed of Propagation &
Regularizing Effects



Examples
Transport eq.
∂tρ+∇x · (ρu) = 0

Kinetic eq. (Statistical physics)
Description in phase space ∂t f +∇x · (ξf ) = Interaction terms,
with f (t, x , ξ) depending on space and velocity.

Non linear models: traffic flows
Lighthill-Whitham-Richards’ model: ρ=density of vehicles, the
velocity is u(t, x) = V0(1− ρ) depends on ρ!

∂tρ+ ∂x (V0ρ(1− ρ)) = 0, the flux is V0ρ(1− ρ)

Non linear models: Burgers eq.
A toy model for gas dynamics

∂tρ+ ∂x (ρ2/2) = 0



Examples Contn’d
Waves eq. (linear system)
∂tu + c∂xv = 0, ∂tv + c∂xu = 0

I leads to ∂2
ttu − c2∂2

xxu = 0.
I Set W± = u ± v , then ∂tW± ± c∂xW± = 0 that is a system

of transport eq. (or a kinetic model with 2 velocities).

Euler system

∂t

 ρ
ρu
ρE

+ ∂x

 ρu
ρu2 + p

(ρu2/2 + p)u

 = 0

with E = u2/2 + e, p = p(ρ, e). (For instance p = 2ρe.)

Moto
A numerical scheme for a complex system should first work on

simple equations!



The NON-CONSERVATIVE transport equation
∂tρ+ u∂xρ = 0

Define the Characteristics
Assume that u : R× R→ R is C1 and satisfies
|u(t, x)| ≤ C(1 + |x |). Then we can apply the Cauchy-Lipschitz
theorem and define the Characteristic Curves

d

ds X (s; t, x) = u(s,X (s; t, x)), X (t; t, x) = x .

X (s; t, x) is the position occupied at time s by a particle which
starts from position x at time t.

Go back to the PDE
I Chain Rule:

d

ds

[
ρ(s,X (s; t, x))

]
= (∂tρ+ u · ∇xρ)(s,X (s; t, x)) = 0

I Integrate between s = 0 and s = t: ρ(t, x) = ρInit(X (0; t, x)).



The CONSERVATIVE transport equation

∂tρ+ ∂x (ρu) = ∂tρ+ u∂xρ+ ρ∂xu = 0

becomes d

ds

[
ρ(s,X (s; t, x))

]
= −ρ∂xu(s,X (s; t, x)).

Therefore ρ(t, x) = ρInit(X (0; t, x)) J(0; t, x) with

J(s; t, x) = exp
(
−
∫ t

s
∂xu(σ,X (σ; t, x))dσ

)
.

Interpretation: J is the jacobian of y = X (s; t, x){
∂s
(
∂xX (s; t, x)

)
= (∂xu)(s,X (s; t, x)) ∂xX (s; t, x),

∂xX (t; t, x) = 1.

We deduce that

∂xX (s; t, x) = exp
(

+

∫ s

t
∂xu(σ,X (σ; t, x) dσ

)
= J(s; t, x)

and dy = J(s; t, x)dx .



Fundamental observations

I Maximum principle: for the non-conservative case if
0 ≤ ρInit(x) ≤ M, then 0 ≤ ρ(t, x) ≤ M; for the conservative
case if ρInit(x) ≥ 0 then ρ(t, x) ≥ 0.

I Mass conservation: for the conservative case∫
R
ρ(t, x) dx =

∫
R
ρInit(y) dy .

I For ρInit ∈ C1, we get solutions in C1 (no gain of regularity)
I The discussion extends to the multi-dimensional framework.
I The formulae generalize to data in Lp(R), 1 ≤ p ≤ ∞: it

provides a (unique) solution in C0([0,T ], Lp(R)) for
1 ≤ p <∞, in C0([0,T ], L∞(R)− weak− ?) for p =∞.



Hints for proving uniqueness (Conservative case)
Weak solution
For any trial function φ ∈ C1

c ([0,∞)× R),

−
∫ ∞

0

∫
R
ρ(t, x)

(
∂tφ(t, x)+u(t, x)∂xφ(t, x)

)
dx dt−

∫
R
ρInit(x)φ(0, x)dx = 0.

Hölmgren’s method
Let ψ ∈ C∞c ((0,+∞)× R). ψ(t, ·) = 0 for t ≥ T . Solve
∂tφ+ u∂xφ = ψ with final data φ

∣∣
t=T = 0. Precisely, we have

φ(t, x) =

∫ t

T
ψ(σ,X (σ; t, x))dσ ∈ C1

c ([0,+∞)× R).

thus
∫ ∞

0

∫
R
ρ(t, x)ψ(t, x)dx dt = 0.



Fundamental example
Linear Transport with Constant Speed
Let c ∈ R. Consider the PDE

∂tρ+ c∂xρ = ∂tρ+ ∂x (cρ) = 0.

Exact solution is known: ρ(t, x) = ρInit(x − ct).

To be compared with the solution of the heat equation
∂tρ = k∂2

xxρ which is given by

ρ(t, x) =
1√

4πt/k

∫
R

e−k|x−y |2/(4t)ρInit(y) dy .

(Infinite speed of propagation and regularization of the data.)

Exercise: Find the solution of ∂tρε + ∂x (cρε) = ε∂2
xxρε

and its limit as ε→ 0.



Behavior of different schemes (initial data=step, speed> 0)
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Nonlinear problems
Linear transport: For Ck data, we get a Ck solution.
Let us try to reproduce the reasoning for a non linear problem:

Burgers eq. ∂tρ+ ∂xρ
2/2 = 0 = (∂t + ρ∂x )ρ.

We still get ρ(t, x) = ρInit(X (0; t, x)). BUT now the
characteristics depend on the solution itself

d

ds X (s; t, x) = ρ(s,X (s; t, x)), X (t; t, x) = x .

Singularities might appear in finite time
Let v(t, x) = ∂xρ(t, x): (∂t + ρ∂x )v = −v2. Along characteristics
we recognize the Ricatti eq.

d

ds
[
v(s,X (s; t, x))

]
= −v2(s,X (s; t, x))

We get v(t, x) =
(

t +
1

∂xρInit(X (0; t, x))

)−1
. Blow up when

∂xρInit ≤ 0.



Loss of regularity for nonlinear problems
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I ρ remains bounded but
∂xρ becomes singular

I Characteristics not
well-defined:
Cauchy-Lipschitz th. does
not apply

Another way to think of the loss of regularity
I Sol constant along characteristics
I d

dt X (t; 0, x) = f ′
(
(ρ(t; X (t; 0, x))

)
= f ′

(
ρInit(x)

)
hence

X (t; 0, x) = x + tf ′
(
ρInit(x)

)
= φt(x)

I To find ρ(t, x) by means of ρInit(x), one needs to invert
x 7→ φt(x). But φ′t(x) = 1 + tf ′′

(
ρInit(x)

)
ρ′Init(x) might

change sign.



(We need) Weak solution for Scalar Conservation Laws

Definition
For any trial function φ ∈ C1

c ([0,∞)× R),

−
∫ ∞

0

∫
R

(
ρ∂tφ+ f (ρ)∂xφ

)
(t, x) dx dt−

∫
R
ρInit(x)φ(0, x)dx = 0.

Rankine-Hugoniot conditions
Discontinuities satisfy [[f (ρ)]] = ṡ[[ρ]].

Non uniqueness
Burgers eq. with ρInit = 0: ρ1(t, x) = 0 and
ρ2(t, x) = 10<x<t/2 − 1−t/2<x<0 are both weak solutions!



How to select among weak sol.: entropy criterion
Observe that for smooth solutions of ∂tρ+ ∂x f (ρ) = 0, we have

∂tη(ρ) + ∂xq(ρ) = 0, q′(z) = η′(z)f ′(z).

But, discontinuous solutions DO NOT verify this relation. Det

Definition
A weak solution ρ is said to be entropic, if, for any convex function
η, we have

−
∫ ∞

0

∫
R

(
η(ρ)∂tφ+q(ρ)∂xφ

)
(t, x) dx dt−

∫
R
η(ρInit)(x)φ(0, x)dx≤ 0

for any non negative trial function φ ≥ 0. (“∂tη(ρ) + ∂xq(ρ) ≤ 0”)

Kruzkov’s Theorem
The SCL admits a unique weak-entropic solution with
ρ ∈ C0([0,T ]; L1

loc(R)). ExBu



Admissible discontinuities
Go back to the Rankine-Hugoniot condition: [[q(u)]] ≤ ṡ[[η(u)]].
Use Kruzkhov’s entropies

ηk(u) = |u − k|, qk(u) = (f (u)− f (k))sgn(u − k).

I with k < min(u`, ur ), and k > max(u`, ur ): back to RH.
I with k = θu` + (1− θ)ur it leads to

sgn(ur − u`)
(
θf (u`) + (1− θ)f (ur )− f (θu` + (1− θ)ur )

)
≤ 0

Letting θ → 0, θ → 1, it yields the Lax criterion

f ′(ur ) ≤ ṡ ≤ f ′(u`).

I In particular, when the flux f is convex, admissible
discontinuities satisfy ur ≤ u`. ExBu



Entropy and vanishing viscosity approach
I Owing to regularizing effects, one can prove the existence of

solutions for the regularized problem

∂tρε + ∂x f (ρε) = ε∂2
xxρε

I Compare Euler and Navier-Stokes: ε plays the role of
“viscosity”. Besides, “good” numerical schemes induce such
kind of regularization.

I Entropy estimates
∂tη(ρε) + ∂xq(ρε) = εη′(ρε)∂

2
xxρε

= ε∂x
(
η′(ρε)∂xρε

)
− εη′′(ρε)|∂xρε|2

leads to
d

dt

∫
η(ρε) dx + ε

∫
η′′(ρε)|∂xρε|2 dx = 0.

I In particular, with η(ρ) = ρ2/2, we deduce that
ρε is bounded in L∞(0,T ; L2(R)),√
ε∂xρε is bounded in L2((0,T × R).



Entropy and vanishing viscosity approach, Contn’d
I We know that

ρε is bounded in L∞(0,T ; L2(R))

√
ε∂xρε is bounded in L2((0,T )× R)

I Similarly we can obtain L∞ estimates (use for instance
η(ρ) =

[
ρ− ‖ρInit‖∞

]2
−)

I Therefore

∂tρε + ∂x f (ρε) =
√
ε∂x
(√
ε∂xρε

)
−−→
ε→0

0

and, on the same token,

∂tη(ρε) + ∂xq(ρε) =
√
ε∂x
(√
εη′(ρε)∂xρε

)︸ ︷︷ ︸
−−→
ε→0

0

−εη′′(ρε)|∂xρε|2︸ ︷︷ ︸
≤0



Discontinuous solutins and entropies Kr

For discontinuous solutions, we make the following quantity appear (by
reproducing the computations that lead to RH relations)

[[η(ρ)]]ṡ − [[q(ρ)]] = (η(ρr )− η(ρ`))ṡ − (q(ρr )− q(ρ`))

=

∫ ρr

ρ`

η′(z)ṡ dz −
∫ ρr

ρ`

q′(z)ṡ dz

=

∫ ρr

ρ`

η′(z)ṡ dz −
∫ ρr

ρ`

η′f ′(z)dz

= −
∫ ρr

ρ`

η′′(z)
( f (ρr )− f (ρ`)

ρr − ρ`
(z − ρ`)−

(
f (z)− f (ρ`)

)
dz

= −
∫ ρr

ρ`

η′′(z)(z − ρ`)
( f (ρr )− f (ρ`)

ρr − ρ`
− f (z)− f (ρ`)

z − ρ`

)
dz .

Since η is convex, z 7→ η′′(z)(z − ρ`) has a constant sign on the interval
I defined by ρr and ρ`. Assuming that f is convex or concave on I, the
integrand has a constant sign and [[η(ρ)]]ṡ − [[q(ρ)]] vanishes iff

f (z)− f (ρ`) =
f (ρr )− f (ρ`)

ρr − ρ`
(z − ρ`) on I. It would mean that f is an

affine function on I, a case that we exclude by assumption
(the flux is assumed “genuinely non linear”).


