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Motivation

Many problems in physics have the form
of Conservation Laws U+ Vi -F(U)=0

where
» U can be a scalar or a vector, thus F(U) a vector or a matrix,

» x can be one- or multi-dimensional

or Balance Laws  0.U+ V- F(U) = S(V).

Goal: To design a “good and efficient” numerical method
» mathematical and physical criterion
> non linearities
» conservation of equilibria (V- F(Usq) = S(Ueq))-
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What does “conservation” mean?

Density of a passive tracer immersed in a fluid
» p(t,x) = density of “particles”:
p(t,y)dy = Mass contained in  at time t
> u?t,x) = (God-given) velocity of the fluid
» Mass balance

d

T Qp(ty)dyz /an(tvy)U(t,y)~V(y)d0(y)-

» Integrating by parts yields the PDE 0:p + V - (pu) = 0.

Moto
To design numerical schemes by mimicking the physical derivation
of the equation (Finite Volume Schemes)
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The cornerstone is the notion of flux

» Given a physical quantity U, its evolution in a domain Q is
driven by gain/loss through the boundaries described by a flux
Q so that

d

P /Q U(t,y)dy = (;Q Q(t,y) - v(y)do(y).

» Then, a physical law prescribes how @ depends on U.

» Example: U =temperature, Fourier's law: Q@ = —kV, U.
It leads to the Heat Eq. 0:U = V, - (kVU). But this eq.
does not belong to the framework of Hyperbolic problems...
Main differences: Infinite Speed of Propagation &
Regularizing Effects



Examples
Transport eq.
Otp+ V- (pu)=0
Kinetic eq. (Statistical physics)

Description in phase space 0;f + V - (£f) = Interaction terms,
with f(t, x, &) depending on space and velocity.

Non linear models: traffic flows
Lighthill-Whitham-Richards’ model: p=density of vehicles, the
velocity is u(t,x) = Vp(1 — p) depends on p!

ep + 0x(Vop(1 — p)) =0, the flux is Vop(1 — p)
Non linear models: Burgers eq.
A toy model for gas dynamics

, dep+ 0 (p?/2) = 0
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Examples Contn'd

Waves eq. (linear system)
Oru+ cOxv =0, Otv + cOxu =0
» leads to 02u — c20% u = 0.
» Set Wy = u=+v, then 0; W4 £ cO Wy = 0 that is a system
of transport eq. (or a kinetic model with 2 velocities).

Euler system

p pu
Ot | pu | + Ox pu® +p =0
pE (pu?/2+ p)u

with E = u?/2 + e, p= p(p,e). (For instance p = 2pe.)

Moto
A numerical scheme for a complex system should first work on

simple equations!
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The NON-CONSERVATIVE transport equation

Otp + udsxp =0
Define the Characteristics
Assume that u: R x R — R is C! and satisfies
|u(t,x)| < C(1+ |x|). Then we can apply the Cauchy-Lipschitz
theorem and define the Characteristic Curves

%X(s; t,x) = u(s, X(s; t, x)), X(t; t,x) = x.

X(s; t,x) is the position occupied at time s by a particle which
starts from position x at time t.

Go back to the PDE

> Cgain Rule:
= p(s,X(sit,x))] = (8ep + u- Vip)(s,X(s; t,x)) =0

> Integrate between s =0 and s = t: p(t, x) = pmit(X(0; t, x)).
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The CONSERVATIVE transport equation

Otp + Ox(pu) = Orp + udxp + pOxu =0

becomes % [p(s,X(s; t,x))} = —pou(s, X(s; t, x)).
Therefore p(t, x) = pInit(X(O t,x)) J(0; t,x) with

J(s; t,x) = exp — / Oxu(o, X(o; t,x)) da).
J S
Interpretation: J is the jacobian of y = X(s; t, x)

{8( sit,x)) = (Oxu)(s, X(s; t,x)) 0 X(s; t, x),
aX(ttx)zl

We deduce that
S
Ok X(s; t,x) = exp < + / Oxu(o, X(o; t, x) da) = J(s; t,x)
t

lveiar and dy = J(s; t,x) dx.



Fundamental observations

Maximum principle: for the non-conservative case if
0 < pmit(x) < M, then 0 < p(t, x) < M; for the conservative
case if pmmit(x) > 0 then p(t,x) > 0.

Mass conservation: for the conservative case
/p(t,x) dx = / pmit(y) dy.
R R

For pmit € C!, we get solutions in C! (no gain of regularity)

The discussion extends to the multi-dimensional framework.

The formulae generalize to data in LP(R), 1 < p < oc: it
provides a (unique) solution in C°([0, T], LP(R)) for
1 < p<oo,in CO[0, T], L®(R) — weak — x) for p = oco.



Hints for proving uniqueness (Conservative case)

Weak solution
For any trial function ¢ € C1(]0, 00) x R),

[T [ ot @eote 0 +ule )06t 0) dxde= [ ps(x)o(0.x) de =0,
0 R R

Holmgren's method
Let ¢ € C°((0,+00) x R). 9(t,-) =0 for t > T. Solve

0t + udx¢ = 1 with final data <Z>|t:T = 0. Precisely, we have
t
6(t,x) :/ W(o, X (03 £, x)) do € CL([0, +oc) x R).
T

thus /OO/ p(t, x)(t, x) dx dt = 0.
o Jr
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Fundamental example

Linear Transport with Constant Speed
Let c € R. Consider the PDE

Orp + cOxp = Orp + Ox(cp) = 0.

Exact solution is known: p(t,x) = prmit(x — ct).

To be compared with the solution of the heat equation
Oip = k2 p which is given by

—k|x—y|?/(4t) pmit(y) dy.

o(t,x) = W [ e

(Infinite speed of propagation and regularization of the data.)

Exercise: Find the solution of 0;p, + Ox(cpc) = €02 pe

; and its limit as € — 0.
Crzia—



Behavior of different schemes (initial data=step, speed> 0)
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Nonlinear problems
Linear transport: For C* data, we get a C* solution.
Let us try to reproduce the reasoning for a non linear problem:
Burgers eq.  9ip+ 0xp>/2 = 0 = (0; + pdy)p.

We still get p(t, x) = prmit(X(0; t,x)). BUT now the
characteristics depend on the solution itself

disX(S; t,x) = p(s, X(s; t,x)), X(t; t,x) = x.

Singularities might appear in finite time

Let v(t,x) = Oxp(t,x): (Or + pOx)v = —v2. Along characteristics
we recognize the Ricatti eq.

% [v(s, X(s: £, x))] = —v?(s,X(s: t,x))

1

8x;OInit()<(0; t, X))
Creia— 6><pInit <0.
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Loss of regularity for nonlinear problems

> p remains bounded but
Oxp becomes singular

» Characteristics not
well-defined:
Cauchy-Lipschitz th. does
not apply

Another way to think of the loss of regularity

» Sol constant along characteristics

» LX(£0,x) = f'((p(t; X(£;0,x))) = f'(pmit(x)) hence
X(t;0,x) = x + tf’(plnit(x)) = ¢¢(x)

» To find p(t,x) by means of pm;t(x), one needs to invert

x 5 ¢e(x). But ¢h(x) =1+ tF"(pmic(x)) pluie (x) might
teeza— change sign.



(We need) Weak solution for Scalar Conservation Laws

Definition
For any trial function ¢ € C1(]0, 00) x R),

_/OOO/R(thchr f(p)ax¢)(t,x)dxdt—/RpInit(X)qﬁ(O,x)dx:0'

Rankine-Hugoniot conditions
Discontinuities satisfy [f(p)] = 5[p].

Non uniqueness
Burgers eq. with ppuit = 0: p1(f.x) = 0 and
pa(t,x) = Looxerjo — 14 oo <o are both weak solutions!
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How to select among weak sol.: entropy criterion
Observe that for smooth solutions of 9:p + 0xf(p) = 0, we have

Oen(p) +0xa(p) =0,  d'(z) =n'(2)f'(2).

But, discontinuous solutions DO NOT verify this relation. CEED

Definition
A weak solution p is said to be entropic, if, for any convex function
7, we have

/ / 1(0)Beb+a(p)0x0) (£, x) dx dt— / 7(p1mie)($)6(0, %) dx< 0

for any non negative trial function ¢ > 0. (“0:n(p) + 0xq(p) < 0")

Kruzkov's Theorem
The SCL admits a unique weak-entropic solution with
p € Co[0, T]; LL.(R)) CE=D
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Admissible discontinuities

Go back to the Rankine-Hugoniot condition: [q(u)] < s[n(u)].
Use Kruzkhov's entropies

m(u) = u—kl, aqu(u) = (f(u) = f(k))sgn(u — k).

» with k < min(ug, u,), and k > max(uy, u,): back to RH.
» with k = Ouy + (1 — )u, it leads to

sen(ur — ) (6F(r) + (1= 0)F(ur) = F(Bus + (1= 0)uy)) <0
Letting @ — 0, 8 — 1, it yields the Lax criterion

F'(u) <5< (w).

> In particular, when the flux f is convex, admissible
discontinuities satisfy u, < up.
élxu’a,—



Entropy and vanishing viscosity approach
» Owing to regularizing effects, one can prove the existence of
solutions for the regularized problem
Orpe + Oxf(pe) = €0 pe

» Compare Euler and Navier-Stokes: € plays the role of
“viscosity”. Besides, “good” numerical schemes induce such
kind of regularization.

> Entropy estimates

Atn(pe) + 0xq(pe)

€11’ (pe) Oz e
€0x (n/(pe)axpe) - en/,(Pe)’axPeF

leads to

d
< oy ax+e / 1" (p0)|Bxpel? dx = 0.

» In particular, with n(p) = p?/2, we deduce that
pe is bounded in L°°(0, T; L2(R)),
/€0y pe is bounded in L2((0, T x R).



Entropy and vanishing viscosity approach, Contn'd

» We know that
pe is bounded in L>(0, T; L3(R))

V€dxpe is bounded in L%((0, T) x R)
» Similarly we can obtain L estimates (use for instance
2
1(p) = [p = lownitlle] )
> Therefore

Depe + 0 (pe) = V/eDi (Vedp) — 0
and, on the same token,

Oen(pe) + 0xq(pe) = vVedx (Ven' (pe)dxpe) —en” (pe)|Oxpe|?
—0 <0

e—0
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Discontinuous solutins and entropies

For discontinuous solutions, we make the following quantity appear (by
reproducing the computations that lead to RH relations)

[1(0)15 = Ta(e)] = (n(pr) = 1(pe))s = (aler) — alpr)
n'(z)sdz — / q'(z)sdz

pr
n’(z)édz—/ n'f'(z)dz

_ /,: nu(z)(w(z —p)— (F(2) — (o)) dz
= _/ 77”(2)(2 _ pg) (f(/);3 : ;Epe) _ f(Zz : ;EP/)) dz.

Since 7 is convex, z — 1'/(z)(z — p¢) has a constant sign on the interval
I defined by p, and py. Assuming that f is convex or concave on /, the
integrand has a constant sign and [7(p)]$ — [q(p)] vanishes iff

f(p,)—f
f(z) — f(pe) = M(z — pe) on I. It would mean that f is an
— pe
affine function on /, ra case that we exclude by assumption

(the flux is assumed “genuinely non linear").
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