The Grothendieck inequality

Gadadhar Misra
Indian Institute of Science, Bangalore

April 22, 2019
max Cut

- A cut in a undirected graph $G = (V, E)$ is defined as partition of the vertices of G into two sets; and the weight of a cut is the number of edges that has an end point in each set, that is, the edges that connect vertices of one set to the vertices of the other.
- The max-cut is the problem of finding a cut in G with maximum weight.
- As an example, we note that the bipartite graph has maxcut exactly equal to the number of its edges.
- This is the MAX-2COLORING problem, namely, that of finding the maximum number of edges in a graph G which can be colored by using only two colors.
max Cut

- A cut in a undirected graph \(G = (V, E) \) is defined as partition of the vertices of \(G \) into two sets; and the weight of a cut is the number of edges that has an end point in each set, that is, the edges that connect vertices of one set to the vertices of the other.
- The max-cut is the problem of finding a cut in \(G \) with maximum weight.
- As an example, we note that the bipartite graph has maxcut exactly equal to the number of its edges.
- This is the MAX-2COLORING problem, namely, that of finding the maximum number of edges in a graph \(G \) which can be colored by using only two colors.
max Cut

- A cut in a undirected graph $G = (V, E)$ is defined as partition of the vertices of G into two sets; and the weight of a cut is the number of edges that has an end point in each set, that is, the edges that connect vertices of one set to the vertices of the other.
- The max-cut is the problem of finding a cut in G with maximum weight.
- As an example, we note that the bipartite graph has maxcut exactly equal to the number of its edges.
- This is the MAX-2COLORING problem, namely, that of finding the maximum number of edges in a graph G which can be colored by using only two colors.
max Cut

• A cut in a undirected graph $G = (V, E)$ is defined as partition of the vertices of G into two sets; and the weight of a cut is the number of edges that has an end point in each set, that is, the edges that connect vertices of one set to the vertices of the other.
• The max-cut is the problem of finding a cut in G with maximum weight.
• As an example, we note that the bipartite graph has maxcut exactly equal to the number of its edges.
• This is the MAX-2COLORING problem, namely, that of finding the maximum number of edges in a graph G which can be colored by using only two colors.
Max Cut:

A cut in a graph $G = (V, E)$ is a pair $(S, V \setminus S)$.

The edge set of the cut is the set of all edges:

$$E(S, V \setminus S) = \{ e \in E \mid |e \cap S| = |e \cap V \setminus S| = 1 \}$$
the edge set with labels
the edge set with crossings marked
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$

Claim: The cut norm (of the matrix on the right) is equal to the size of the max cut (of the graph on the left).
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S,$

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$

Claim: The cut norm is at least the size of the max cut.
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S,$

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S,$

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S,$

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S,$

\[
\left| \sum_{i \in I, j \in J} a_{ij} \right|
\]

We have shown:
The cut norm is at least the size of the max cut.
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$|\sum_{i \in I, j \in J} a_{ij}|$$

Claim: The cut norm is at most the size of the max cut.
Cut Norm
maximum, over all \(I \subseteq R, J \subseteq S, \)
\[
| \sum_{i \in I, j \in J} a_{ij} |
\]

Claim: The cut norm is at most the size of the max cut.
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$| \sum_{i \in I, j \in J} a_{ij} |$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$\left| \sum_{i \in I, j \in J} a_{ij} \right|$$
Cut Norm

maximum, over all $I \subseteq R, J \subseteq S$,

$$|\sum_{i \in I, j \in J} a_{ij}|$$

We have shown:
The cut norm is at most the size of the max cut.
the Cut norm

- The cut-norm $\|A\|_C$ of a real matrix $A = \left((a_{ij}) \right)_{i \in R, j \in S}$ is the maximum, over all $I \subseteq R, J \subseteq S$, of the quantity $|\sum_{i \in I, j \in J} a_{ij}|$.
- It is not difficult to show that the norm $\| \cdot \|_C$ is equivalent to the norm $\|A\|_{\infty \to 1}$, that is, for any $n \times n$ matrix A, we have

$$4\|A\|_C \geq \|A\|_{\infty \to 1} \geq \|A\|_C,$$

where

$$\|A\|_{\infty \to 1} := \sup \left\{ \left| \sum_{j,k=1}^{n} a_{jk} s_j t_k \right| : |s_j|, |t_k| = 1, 1 \leq j, k \leq n \right\},$$

$s_j, t_k \in \mathbb{R}$ (resp. in \mathbb{C}).
proof

For any $x_i, y_j \in \{-1, 1\}$,

$$\sum_{i,j} a_{i,j} x_i y_j = \sum_{i:x_i=1, j:y_j=1} a_{i,j} - \sum_{i:x_i=1, j:y_j=-1} a_{i,j}$$

$$- \sum_{i:x_i=-1, j:y_j=1} a_{i,j} + \sum_{i:x_i=-1, j:y_j=-1} a_{i,j}.$$

The absolute value of each of the four terms in the right hand side is at most $\|A\|_C$, implying, by the triangle inequality, that

$$\|A\|_{\infty \rightarrow 1} \leq 4\|A\|_C.$$
proof (contd.)

Suppose, now, that \(\|A\|_C = \sum_{i \in I, j \in J} a_{i,j} \) (the computation in case it is \(-\sum_{i \in I, j \in J} a_{i,j} \) is essentially the same). Define \(x_i = 1 \) for \(i \in I \) and \(x_i = -1 \) otherwise, and similarly, \(y_j = 1 \) if \(j \in J \) and \(y_j = -1 \) otherwise. Then

\[
\|A\|_C = \sum_{i,j} a_{i,j} \frac{1+x_i}{2} \frac{1+y_j}{2} =
\]

\[
\frac{1}{4} \left(\sum_{i,j} a_{i,j} + \sum_{i,j} a_{i,j} x_i \cdot 1 + \sum_{i,j} a_{i,j} 1 \cdot y_j + \sum_{i,j} a_{i,j} x_i y_j \right).
\]

The absolute value of each of the four terms in the right hand side is at most \(\|A\|_{\infty \to 1}/4 \), implying, by the triangle inequality, that

\[
\|A\|_{\infty \to 1} \geq \|A\|_C.
\]
Finding the norm $\|A\|_{\infty \rightarrow 1}$ is called an integer linear program since

$$\|A\|_{\infty \rightarrow 1} := \sup \left\{ \left| \sum_{j,k=1}^{n} a_{jk}s_j t_k \right| : s_j, t_k \in \{-1,1\}, 1 \leq j, k \leq n \right\},$$

at least in the real case.

Thus one may wish to simply compute the $\|A\|_{\infty \rightarrow 1}$ instead of the CUT norm. However, this is not easy either.

Let us see if we can give ourselves a little more room and compute a norm, namely, the 2-summing norm, related to the cut norm and the norm $\|A\|_{\infty \rightarrow 1}$ that we have already seen.
Finding the norm $\|A\|_{\infty \rightarrow 1}$ is called an integer linear program since

$$\|A\|_{\infty \rightarrow 1} := \sup \left\{ \left| \sum_{j,k=1}^{n} a_{jk} s_j t_k \right| : s_j, t_k \in \{-1, 1\}, 1 \leq j, k \leq n \right\},$$

at least in the real case. Thus one may wish to simply compute the $\|A\|_{\infty \rightarrow 1}$ instead of the CUT norm. However, this is not easy either. Let us see if we can give ourselves a little more room and compute a norm, namely, the 2-summing norm, related to the cut norm and the norm $\|A\|_{\infty \rightarrow 1}$ that we have already seen.
The 2 - summing norm $\gamma(A)$ is defined as follows:

$$
\gamma(A) := \sup \left\{ \left| \sum_{j,k=1}^{n} a_{jk} \langle x_j, y_k \rangle \right| : x_j, y_k \in (\ell_2)_1, 1 \leq j, k \leq n \right\}.
$$

Finding $\gamma(A)$, the 2 - summing norm, is called a semi-definite program.

Define the numerical constant, the Grothendieck constant:

$$
K_G(n) \overset{\text{def}}{=} \sup \{ \gamma(A) : A = A_{n \times n}, \|A\|_{\infty \to 1} \leq 1 \}.
$$

The constant $K_G(n)$ depends on the ground field.
The 2 - summing norm $\gamma(A)$ is defined as follows:

$$
\gamma(A) := \sup \left\{ \left| \sum_{j,k=1}^{n} a_{jk} \langle x_j, y_k \rangle \right| : x_j, y_k \in (\ell_2)_1, 1 \leq j, k \leq n \right\}.
$$

Finding $\gamma(A)$, the 2 - summing norm, is called a semi-definite program.

Define the numerical constant, the Grothendieck constant:

$$
K_G(n) \overset{\text{def}}{=} \sup \{ \gamma(A) : A = A_{n \times n}, \|A\|_{\infty \rightarrow 1} \leq 1 \}.
$$

The constant $K_G(n)$ depends on the ground field.
what we know about the Grothendieck constant

- The fact that $K_G(n)$ remains finite, say K_G, as $n \to \infty$ was established by Grothendieck and is known as the Grothendieck constant, that is,

$$\sup\{ \frac{\gamma(A)}{\|A\|_{\infty \to 1}} : A \in \mathbb{C}^{n \times n}, n \in \mathbb{N} \} < \infty.$$

- The Grothendieck inequality says that the two norms $\|A\|_{\infty \to 1}$ and $\gamma(A)$ can differ only by a constant factor.
- The exact value of K_G is not known. However, $K_G^\mathbb{C}(1) = K_G^\mathbb{C}(2) = 1$ and $K_G^\mathbb{R}(2) = \sqrt{2} = K_G^\mathbb{R}(3)$.
- Although, not entirely trivial, it is known that $K_G > 1$.
- Kirvine’s proof gives $\frac{\pi}{2 \ln(1+\sqrt{2})} = 1.782 \ldots$.
- Krivine conjectured that his bound is actually the exact value of K_G. Recently, this conjecture has been shown to be false.
Grothendieck constant for graphs

• Let G be a graph with n vertices denoted by $\{1, \ldots, n\}$ and $E \subseteq \{1, \ldots, n\}^2$ be the set of its edges.
• Following Noga Alon, Assaf Naor and many others, define the Grothendieck constant of the graph G, denoted by $K(G)$, to be the smallest constant K such that

$$\sup \left\{ \left| \sum_{\{i,j\} \in E} a_{ij} \langle x_i, y_j \rangle : \|x_i\| = 1 = \|y_j\| \right| \right\} \leq K \sup \left\{ \sum_{\{i,j\} \in E} a_{ij} s_i t_j : |s_i| = 1 = |t_j| \right\}$$

holds true for any real matrix $A = ((a_{ij}))$.
The original Grothendieck inequality is the particular case that corresponds to the bipartite graphs (i.e. of chromatic number 2) and, as a consequence,

\[K_G = \sup_{n \in \mathbb{N}} \{ K(G) : G \text{ is a bipartite graph on } n \text{ vertices} \}. \]

Additionally, if \(C_n \) stands for the complete graph with \(n \) vertices, the corresponding Grothendieck constant is of order \(\log(n) \). The Grothendieck constant of a graph \(G \) is clearly related to the combinatorics of \(G \).
On the other hand, the expression on the right hand side of the Grothendieck inequality for graphs is relevant statistical physics: if G weighted by the matrix A represents the possible interaction of n particles affected by a spin $i = \pm 1$, then the total energy generated by these particles in the system in the Ising model of the spin glass is

$$\mathcal{E} = -\left(\sum_{\{i,j\}\in E} a_{ij} \varepsilon_i \varepsilon_j \right).$$

A configuration of the spins $(\varepsilon_i) \in \{-1,1\}^n$ represents its ground state if it minimizes the energy.
Kirvine’s proof of the Grothendieck inequality

Let $S \subseteq \mathbb{C}^k$ be the Euclidean sphere of radius 1.

Lemma

$$\sup \left\{ \left| \sum_{i,j=1}^{n} a_{ij} \sin^{-1} \langle u_i, v_j \rangle \right| : \|A\|_{1 \rightarrow \infty} \leq 1; u_i, v_j \in S \right\} \leq \frac{\pi}{2}. $$

Proof. Let μ be the unique probability measure on S which is rotation invariant. First, show that

$$ I := \int_S \text{sign} \langle x, u \rangle \text{sign} \langle y, u \rangle \, d\mu(u) = 1 - \frac{2\psi}{\pi}, \psi = \cos^{-1} \langle x, y \rangle, x, y \in S. $$

- The verification consists of finding an unitary $U : \ell_2(k) \to \ell_2(k)$ with

 $$ Ux = (1, 0, \ldots, 0), \; Uy = (\cos \psi, \sin \psi, 0, \ldots, 0), $$

 where $\psi = \cos^{-1} \langle x, y \rangle$, $0 \leq \psi \leq \pi$ and $\sin^{-1} \langle x, y \rangle = \frac{\pi}{2} - \psi$.

Kirvine’s proof of the Grothendieck inequality

Let $S \subseteq \mathbb{C}^k$ be the Euclidean sphere of radius 1.

Lemma

$$\sup \left\{ \left\| \sum_{i,j=1}^{n} a_{ij} \sin^{-1} \langle u_i, v_j \rangle \right\| : \|A\|_\infty \rightarrow 1 \leq 1; u_i, v_j \in S \right\} \leq \frac{\pi}{2}.$$

Proof. Let μ be the unique probability measure on S which is rotation invariant. First, show that

$$I := \int_S \text{sign} \langle x, u \rangle \text{sign} \langle y, u \rangle d\mu(u) = 1 - \frac{2\psi}{\pi}, \psi = \cos^{-1} \langle x, y \rangle, x, y \in S.$$

- The verification consists of finding an unitary $U : \ell_2(k) \rightarrow \ell_2(k)$ with

 $$Ux = (1, 0, \ldots, 0), \ Uy = (\cos \psi, \sin \psi, 0, \ldots, 0),$$

 where $\psi = \cos^{-1} \langle x, y \rangle$, $0 \leq \psi \leq \pi$ and $\sin^{-1} \langle x, y \rangle = \frac{\pi}{2} - \psi.$
Kirvine’s proof of the Grothendieck inequality

Let $S \subseteq \mathbb{C}^k$ be the Euclidean sphere of radius 1.

Lemma

\[
\sup\left\{ \left| \sum_{i,j=1}^{n} a_{ij} \sin^{-1} \langle u_i, v_j \rangle \right| : \|A\|_{\infty} \to 1 \leq 1; u_i, v_j \in S \right\} \leq \frac{\pi}{2}.
\]

Proof. Let μ be the unique probability measure on S which is rotation invariant. First, show that

\[
I := \int_{S} \text{sign}\langle x, u \rangle \text{sign}\langle y, u \rangle d\mu(u) = 1 - \frac{2\psi}{\pi}, \psi = \cos^{-1}\langle x, y \rangle, x, y \in S.
\]

- The verification consists of finding an unitary $U : \ell_2(k) \to \ell_2(k)$ with

 \[
 Ux = (1, 0, \ldots, 0), \quad Uy = (\cos \psi, \sin \psi, 0, \ldots, 0),
 \]

 where $\psi = \cos^{-1}\langle x, y \rangle$, $0 \leq \psi \leq \pi$ and $\sin^{-1}\langle x, y \rangle = \frac{\pi}{2} - \psi$.

Kirvine’s proof

- If x and y are linearly dependent, namely $x = -y$, then $Ux = (1, 0, \ldots, 0)$, $Uy = (-1, 0, \ldots, 0)$ and $\psi = \pi$. Similarly, if $x = y$, then choose $Ux = (1, 0, \ldots, 0)$, $Uy = (1, 0, \ldots, 0)$ and $\psi = 0$. Now, extend this map linearly to all of $\ell_2(k)$ to an unitary.

- If x and y be linearly independent, then applying Gram-Schmidt, obtain a pair of orthonormal vectors α_1, α_2 and define a linear map U on the span of these two vectors:

$$U\alpha_1 := (1, 0, \ldots, 0), \ U\alpha_2 := (0, 1, 0, \ldots, 0)$$

and extend it, as before, to an unitary on all of $\ell_2(k)$.
Kirvine’s proof

• If x and y are linearly dependent, namely $x = -y$, then $Ux = (1, 0, \ldots, 0)$, $Uy = (-1, 0, \ldots, 0)$ and $\psi = \pi$. Similarly, if $x = y$, then choose $Ux = (1, 0, \ldots, 0)$, $Uy = (1, 0, \ldots, 0)$ and $\psi = 0$. Now, extend this map linearly to all of $\ell_2(k)$ to an unitary.

• If x and y be linearly independent, then applying Gram-Schimdt, obtain a pair of orthonormal vectors α_1, α_2 and define a linear map U on the span of these two vectors:

\[U\alpha_1 := (1, 0, \ldots, 0), \quad U\alpha_2 := (0, 1, 0, \ldots, 0) \]

and extend it, as before, to an unitary on all of $\ell_2(k)$.
an integral

• A simple calculation gives $U_x = (1, 0, \ldots, 0)$, $U_y = (\cos \psi, \sin \psi, 0, \ldots, 0)$. Therefore, in computing $\langle U_x, U_u \rangle$ and $\langle U_y, U_u \rangle$, we assume without loss of generality: $U_u = (\cos \theta, \sin \theta, 0 \ldots, 0)$.

• The integral I is U invariant, we have

\[
I = \int_S \text{sign} \langle U_x, U_u \rangle \text{sign} \langle U_y, U_u \rangle d\mu(U_u) \\
= \int_S \text{sign} u_1 \text{sign}(\cos \psi u_1 + \sin \psi u_2) d\mu(U_u) \\
= \frac{1}{2\pi} \int_0^{2\pi} \text{sign}(\cos \theta) \text{sign}(\cos(\theta - \psi)) d\theta \\
= 1 - \frac{2\psi}{\pi} \\
= \frac{2}{\pi} \sin^{-1} \langle x, y \rangle.
\]
evaluation of the integral
\[\frac{1}{2\pi} \int_{0}^{2\pi} \text{sign}(\cos \theta) \text{sign}(\cos(\theta - x)) d\theta \]

Integrand is +1 when \(\theta \) lies in the red regions and -1 when \(\theta \) lies in the green regions.
The hypothesis on A implies that

$$-1 \leq \sum_{i,j=1}^{n} a_{ij} \text{sign}\langle u_i, x \rangle \text{sign}\langle v_j, x \rangle \leq 1,$$

for any choice of vectors $\|u_i\|_2 = 1 = \|v_j\|_2$. The proof is then completed by integrating with respect to x.

Lemma

For each positive integer k, there is a mapping $w_k : l_2^n \to l_2^N$ such that for all x, y, $\langle w_k(x), w_k(y) \rangle = \langle x, y \rangle^k$.

For the proof, set $w_k(x)$ to be the k-fold tensor product of the vector x.
The hypothesis on A implies that

$$-1 \leq \sum_{i,j=1}^{n} a_{ij} \text{sign}\langle u_i, x \rangle \text{sign}\langle v_j, x \rangle \leq 1,$$

for any choice of vectors $\|u_i\|_2 = 1 = \|v_j\|_2$. The proof is then completed by integrating with respect to x.

Lemma

*For each positive integer k, there is a mapping $w_k : l_2^n \rightarrow l_2^N$ such that for all x, y, $\langle w_k(x), w_k(y) \rangle = \langle x, y \rangle^k$.

For the proof, set $w_k(x)$ to be the k-fold tensor product of the vector x.
sine hyperbolic

Lemma

Given $c > 0$, there exists $u : \ell_2(n) \rightarrow \ell_2$ and $v : \ell_2(n) \rightarrow \ell_2$ such that

$$\langle u(x), v(y) \rangle = \sin c \langle x, y \rangle,$$

$$\|u(x)\|^2 = \sinh (c \|x\|^2) \quad \text{and} \quad \|v(y)\|^2 = \sinh (c \|y\|^2), \ x, y \in \ell_2(n).$$

Proof. From the Taylor series expansion

$$\sin c \langle x, y \rangle = \sum_{1}^{\infty} (-1)^{k-1} c_k \langle w_{2k-1}(x), w_{2k-1}(y) \rangle,$$

where $c_k = \frac{c^{2k-1}}{(2k-1)!}$, we see that we just have to set

$$u(x) := \sum_{1}^{\infty} \sqrt{c_k} w_{2k-1}(x),$$

$$v(y) := \sum_{1}^{\infty} (-1)^{k-1} \sqrt{c_k} w_{2k-1}(y).$$
completing the proof

- Let $c = \sinh^{-1}(1) = \ln(1 + \sqrt{2})$.
 Set $u_i = u(x_i)$, $v_j = v(y_j)$, $\|x_i\|_2 = 1 = \|y_j\|_2$, and note that $\|u_i\| = 1 = \|v_j\|$.

- However, we know that
 $$c \langle x_i, y_j \rangle = \sin^{-1} \langle u_i, v_j \rangle, \quad |c \langle x_i, y_j \rangle| \leq 1$$
 and
 $$\left| \sum_{i,j=1}^{n} a_{ij} \sin^{-1} \langle u_i, v_j \rangle \right| \leq \frac{\pi}{2}.$$

So
 $$\left| \sum_{i,j=1}^{n} a_{ij} \langle x_i, y_j \rangle \right| \leq \frac{\pi}{2c} = \frac{\pi}{2 \ln(1 + \sqrt{2})}.$$
completing the proof

• Let \(c = \sinh^{-1}(1) = \ln(1 + \sqrt{2}) \).
Set \(u_i = u(x_i), \; v_j = v(y_j), \; \|x_i\|_2 = 1 = \|y_j\|_2 \), and note that \(\|u_i\| = 1 = \|v_j\| \).
• However, we know that

\[
c \langle x_i, y_j \rangle = \sin^{-1} \langle u_i, v_j \rangle,
\left| c \langle x_i, y_j \rangle \right| \leq 1
\]

and

\[
\left| \sum_{i,j=1}^{n} a_{ij} \sin^{-1} \langle u_i, v_j \rangle \right| \leq \frac{\pi}{2}.
\]

So

\[
\left| \sum_{i,j=1}^{n} a_{ij} \langle x_i, y_j \rangle \right| \leq \frac{\pi}{2c} = \frac{\pi}{2 \ln(1 + \sqrt{2})}.
\]
Theorem (Varopoulos inequality)

Suppose K^C_G denote the complex Grothendieck constant. Then

$$K^C_G \leq \sup \| p(T_1, \ldots, T_n) \| \leq 2K^C_G$$

where supremum is over all $n \in \mathbb{N}$, tuples of commuting contractions $T = (T_1, \ldots, T_n)$ and polynomial p of degree 2 with $\|p\|_\infty \leq 1$.
sharpening the Varopolous inequality

• Thus Grothendieck constant had made an unexpected appearance in the early work of Varopoulos. Setting

\[C_2(n) = \sup \left\{ \| p(T) \| : \| p \|_{\mathbb{D}^n, \infty} \leq 1, \| T \|_{\infty} \leq 1 \right\}, \]

where the supremum is taken over all complex polynomials \(p \) in \(n \) variables of degree at most 2 and commuting \(n \)-tuples \(T := (T_1, \ldots, T_n) \) of contractions, he shows that

\[\lim_{n \to \infty} C_2(n) \leq 2K_G^C, \]

where \(K_G^C \) is the complex Grothendieck constant.

• Rajeev Gupta in his PhD thesis shows that

\[\lim_{n \to \infty} C_2(n) \leq \frac{3\sqrt{3}}{4} K_G^C, \]

which is a significant improvement in the inequality of Varopoulos.
sharpening the Varopolous inequality

- Thus Grothendieck constant had made an unexpected appearance in the early work of Varopoulos. Setting

\[C_2(n) = \sup \left\{ \| p(T) \| : \| p \|_{\mathbb{D}^n, \infty} \leq 1, \| T \|_{\infty} \leq 1 \right\}, \]

where the supremum is taken over all complex polynomials \(p \) in \(n \) variables of degree at most 2 and commuting \(n \)-tuples \(T := (T_1, \ldots, T_n) \) of contractions, he shows that

\[\lim_{n \to \infty} C_2(n) \leq 2K_G^C, \]

where \(K_G^C \) is the complex Grothendieck constant.

- Rajeev Gupta in his PhD thesis shows that

\[\lim_{n \to \infty} C_2(n) \leq \frac{3\sqrt{3}}{4} K_G^C, \]

which is a significant improvement in the inequality of Varopoulos.
Thank you