

SOLUTION OF QUIZ-9

Note: The question in the quiz was not correct. We will prove the following inequality instead $\frac{\sqrt{2}}{3} \leq \int_0^1 \sqrt{\frac{x}{1+x}} dx \leq \frac{2}{3}$.

Solution:

Weighted Mean-Value Theorem For Integrals : Assume f and g are continuous on $[a, b]$. If g never changes sign in $[a, b]$ then, for some c in $[a, b]$ we have

$$\int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx.$$

Moreover, if $m = \min f(x)$ and $M = \max f(x)$ on $[a, b]$ and g non-negative, then we have

$$m \int_a^b g(x)dx \leq \int_a^b f(x)g(x)dx \leq M \int_a^b g(x)dx.$$

We choose $f(x) = \frac{1}{\sqrt{1+x}}$ and $g(x) = \sqrt{x}$. It is easy to see that f, g satisfies the conditions of the above theorem on $[0, 1]$ and f is monotonically decreasing. The minimum of f is $\frac{1}{\sqrt{2}}$ and maximum is 1. Hence we have

$$\frac{1}{\sqrt{2}} \int_0^1 g(x)dx \leq \int_0^1 f(x)g(x)dx \leq \int_0^1 g(x)dx$$

But $\int_0^1 \sqrt{x}dx = \frac{2}{3}$. So, we have

$$\frac{1}{\sqrt{2}} \frac{2}{3} \leq \int_0^1 f(x)g(x)dx \leq \frac{2}{3}$$

$$\implies \frac{\sqrt{2}}{3} \leq \int_0^1 \sqrt{\frac{x}{1+x}} dx \leq \frac{2}{3}$$