Solution Of Quiz 6

Question: Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable everywhere. Suppose f(x) = 0 for exactly three different values, namely, x_1, x_2 and x_3 . Prove that there exists a point $c \in \mathbb{R}$ such that f''(c) = 0

Solution : First of all, without loss of generality we can assume that $x_1 < x_2 < x_3$. It is given that $f(x_1) = f(x_2) = f(x_3) = 0$. Now consider the closed interval $[x_1, x_2]$. By Rolle's Theorem there exists $y_1 \in (x_1, x_2)$ such that $f'(y_1) = 0$ (since $f(x_1) = f(x_2)$). Similarly considering the interval $[x_2, x_3]$ we can say that there exists $y_2 \in (x_2, x_3)$ such that $f'(y_2) = 0$. Clearly $y_1 < y_2$ as $y_1 < x_2 < y_2$. We consider the function $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = f'(x) for all $x \in \mathbb{R}$. Since the function f is twice differentiable the function g becomes a differentiable function and g'(x) = f''(x) for all $x \in \mathbb{R}$. Observe that $g(y_1) = g(y_2) = 0$. Therefore again by Rolle's Theorem there exists $c \in (y_1, y_2)$ such that g'(c) = 0, i.e. f''(c) = 0. Hence proved.