Quiz - 3

.

Question: Determine all nonnegetive values of x for which the series $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n3^n}$ converges.

Solution: Suppose $a_n := \frac{x^{n-1}}{n3^n} \, \forall n \in \mathbb{N}$. We need to determine all nonnegetive values of x for which the series $\sum_n a_n$ converges. First note that for x = 0 the series converges trivially. Assume x > 0. Observe that

$$\frac{a_{n+1}}{a_n} = \frac{nx}{3(n+1)} \to \frac{x}{3} \ as \ n \to \infty. \Big(\ since \ \lim_{n \to \infty} \frac{n}{1+n} = 1 \Big)$$

Now using ratio test we can say that the above series converges when $\frac{x}{3} < 1$ i.e., when x < 3 and diverges when $\frac{x}{3} > 1$ i.e., when x > 3. Note that for x = 3 we have $a_n = \frac{1}{3n} \ \forall n \in \mathbb{N}$. But we know that the harmonic series $\sum_n \frac{1}{n}$ diverges. So, $\sum_n \frac{1}{3n}$ diverges. Hence the given series converges for $x \in [0,3)$.