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1.
A function s(x) on a closed interval [a, b] is called a step function if there
is a partition P = {x0, x1, · · · , xn} of [a, b] such that s is constant on each
open subinterval of P . That is to say, for each k = 1, 2, ..., n there is a real
number sk, such that s(x) = sk whenever xk−1 < x < xk.

Let s be a step function on [a, b] and let P = {x0, x1, · · · , xn} be a
partition of [a, b] such that s is constant on the open subintervals of P . Let
s(x) = sk whenever xk−1 < x < xk. Then∫ b

a
s(x)dx =

n∑
k=1

sk · (xk − xk−1)

Let P = {x0, x1, · · · , xn} be a partition of the interval [a, b] such that s is
constant on the open subintervals of P . Assume that s(x) = si if xi−1 <
x < xi. Let t(x) = s(x/k) if ka ≤ x ≤ kb. Then t(x) = si if x lies in the
open interval (kxi−1, kxi); hence P = {kx0, kx1, · · · , kxn} is a partition of
[ka, kb] and t is constant on the open subintervals of P . Therefore t is a step
function whose integral is∫ kb

ka
t(x)dx =

n∑
i=1

si · (kxi − kxi−1) = k

n∑
i=1

si · (xi − xi−1) = k

∫ b

a
s(x)dx

Hence ∫ kb

ka
s

(
x

k

)
dx = k

∫ b

a
s(x)dx

2.
f(x) = x3 − 3x − 1 and g(x) = −2x2 − 1. The graphs of f and g meet
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whenever f(x) = g(x), i.e.

x3 − 3x− 1 = −2x2 − 1

i.e.
x3 + 2x2 − 3x = 0

i.e.
x(x− 1)(x + 3) = 0

i.e. x = −3 or x = 0 or x = 1. Notice f(x)− g(x) = x(x− 1)(x + 3).
Now, if x ∈ (−3, 0) then (x + 3) > 0 and (x − 1) < 0. So f(x) − g(x) > 0.
If x ∈ (0, 1) then (x + 3) > 0 and (x− 1) < 0. So f(x)− g(x) < 0 .
So the area of the regions enclosed by the graphs of f(x) and g(x) is∫ 1

−3
|f(x)− g(x)|dx

=

∫ 0

−3
(f(x)− g(x))dx +

∫ 1

0
(g(x)− f(x))dx

=

∫ 0

−3
(x3 + 2x2 − 3x)dx +

∫ 1

0
(3x− 2x2 − x3))dx

=

[
x4

4
+

2x3

3
− 3x2

2

]x=0

x=−3
+

[
3x2

2
− 2x3

3
− x4

4

]x=1

x=0

= 45
4 + 7

12 = 71
6

3.
Let f be a bounded function on [a, b]. Let us define

S :=

{∫ b

a
s(x)dx | s : [a, b]→ R is a step function with s(x) ≤ f(x) ∀x ∈ [a, b]

}

T :=

{∫ b

a
t(x)dx | t : [a, b]→ R is a step function with f(x) ≤ t(x) ∀x ∈ [a, b]

}
Since f is bounded, S is bounded above and T is bounded below. SupS is
called the lower integral and Inf T is called the upper integral of f on
[a, b].
f is continuous and bounded on [a, b] except at b ∈ (a, c). Hence f is con-
tinuous on [a, b) and (b,c]. So f is integrable on [a,b] and [b,c] as continuous
functions are integrable. Let us define

S :=

{∫ c

a
s(x)dx | s : [a, c]→ R is a step function with s(x) ≤ f(x) ∀x ∈ [a, c]

}
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S1 :=

{∫ b

a
s1(x)dx | s1 : [a, b]→ R is a step function with s1(x) ≤ f(x) ∀x ∈ [a, b]

}
S2 :=

{∫ c

b
s2(x)dx | s2 : [b, c]→ R is a step function with s2(x) ≤ f(x) ∀x ∈ [b, c]

}
We claim that S = S1 + S2.
Let p ∈ S. So p =

∫ c
a s(x)dx for some below step function s.

Notice that s|[a,b] and s|[b,c] are also below step functions respectively on
[a, b] and [b, c]. Now

p =
∫ c
a s(x)dx =

∫ b
a s(x)dx +

∫ c
b s(x)dx =

∫ b
a s|[a,b](x)dx +

∫ c
b s|[b,c](x)dx

Observe that
∫ b
a s|[a,b](x)dx ∈ S1 and

∫ c
b s|[b,c](x)dx ∈ S2

So, p ∈ S1 + S2 and hence S ⊂ S1 + S2.
Let q ∈ S1 + S2. Then ∃ step functions s1 : [a, b] → R with s1(x) ≤
f(x)∀x ∈ [a, b] and s2 : [b, c] → R with s2(x) ≤ f(x)∀x ∈ [b, c] satisfying

q =
∫ b
a s1(x)dx +

∫ c
b s2(x)dx.

Define s(x) = s1(x) if x ∈ [a, b)
= f(b) if x = b
= s2(x) if x ∈ (b, c]

Here s is also a below step function on [a, c] and
∫ c
a s(x)dx =

∫ b
a s(x)dx +∫ c

b s(x)dx =
∫ b
a s1(x)dx +

∫ c
b s2(x)dx. So q ∈ S and hence S1 + S2 ⊂ S.

Hence we prove our claim that S = S1 + S2.
Since f is bounded above, S, S1, S2 all are bounded above. Also SupS=SupS1+SupS2

[follows from the fact that if A,B,C ⊂ R, bounded above and A = B + C
then SupA=SupB+SupC]........................(1)
Similarly define

T :=

{∫ c

a
t(x)dx | t : [a, c]→ R is a step function with f(x) ≤ t(x) ∀x ∈ [a, c]

}

T1 :=

{∫ b

a
t1(x)dx | t1 : [a, b]→ R is a step function with f(x) ≤ t1(x) ∀x ∈ [a, b]

}
T2 :=

{∫ c

b
t2(x)dx | t2 : [b, c]→ R is a step function with f(x) ≤ t2(x) ∀x ∈ [b, c]

}
We can similarly show that T = T1 + T2

f is bounded below implies T, T1, T2 all are bounded below and Inf T=Inf
T1+Inf T2........................(2)
Now f is integrable on [a, b] and [b, c]. Hence SupS1=Inf T1 and SupS2=InfT2

From (1) and (2), we get SupS=Inf T
Hence f is integrable on [a, c].

4 a.
Let G(x) be the primitive of x6

1+x4 . Now using the second fundamental
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theorem, we get

f(x) =

∫ x2

x3

t6

1 + t4
dt =

∫ x2

0

t6

1 + t4
dt−

∫ x3

0

t6

1 + t4
dt = G(x2)−G(x3)

Hence

f ′(x) = G′(x2) · 2x−G′(x3) · 3x2 [ Chain rule ]

=
(x2)6

1 + (x2)4
· 2x− (x3)6

1 + (x3)4
· 3x2

=
2x13

1 + x8
− 3x20

1 + x12

4 b. ∫ x

0
f(t)dt = f(x)2 + C

Taking derivative on both sides w.r.t. x and using the first fundamental
theorem we get,

f(x) = 2f(x)f ′(x)

=⇒ f ′(x) =
1

2

Since, f is a nonconstant function, we discard the case f ≡ 0. Let us take
f(x) = x

2 . Now∫ x

0
f(t)dt =

∫ x

0

t

2
dt =

1

2
· x

2

2
=

(
x

2

)2

= f(x)2

So, f(x) = x
2 satisfies the given condition for C = 0.

5 a.

I =

∫
1√

x + x3/2
dx =

∫
1

√
x
√

1 +
√
x
dx

Let 1 +
√
x = y. Then dx√

x
= 2dy. Substituting these, we get,

I =

∫
2dy
√
y

= 4
√
y + C = 4

√
1 +
√
x + C

where C is an arbitrary constant.
5 b.
We will use integral by parts to evaluate the integral, which says, if f and g
are two continuously differentiable function then the following holds :∫

f(x)g′(x)dx = f(x)g(x)−
∫

f ′(x)g(x)dx + C
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In our case let f(x) = x2, g(x) = − cosx. Then g′(x) = sinx and we have∫
x2 sinx · dx = −x2 cosx +

∫
2x cosxdx + C1

= −x2 cosx+2[x sinx−
∫

sinxdx] = −x2 cosx+2x sinx+2 cosx+C, where
C is an arbitrary constant. To evaluate the 2nd integral again we applied
integral by parts, taking f(x) = x and g(x) = sinx. So we get∫

x2 sinx · dx = −x2 cosx + 2x sinx + 2 cosx + C

where C is an arbitrary constant.
6.
Let f(x) = x2 − sinx
f ′(x) = 2x− cosx; f ′′(x) = 2 + sinx; f ′′′(x) = cosx; f (iv)(x) = − sinx
Taking the 3rd degree Taylor polynomial around 0, we get

T3(f(x), 0) = f(0) + f ′(0)
1! (x− 0) + f ′′(0)

2! (x− 0)2 + f ′′′(0)
3! (x− 0)3

= −x + x2 + x3

6

Now T3(f(x), 0) = 0 =⇒ −x+x2 + x3

6 = 0 =⇒ x2 +6x−6 = 0 [x 6= 0]

We get x = −6±
√
36+24
2 = ±

√
15 − 3. But (−3 −

√
15) can not be an

approximation to the root since (−3−
√

15)2 > 9 but sinx ≤ 1 ∀x ∈ R.
We know f(x) = T3(f(x), 0)+E3(x) where E3 is the error. But T3(f(x), 0) =
0 implies |f(x)| = | sinx− x2| = |E3(x)| Now,

E3(r) =
1

3!

∫ r

0
(r − x)3f (iv)(x)dx

So,

|E3(r)| = 1

3!

∣∣∣∣ ∫ r

0
(r − x)3f (iv)(x)dx

∣∣∣∣
≤ 1

6

∫ r

0
|(r − x)3f (iv)(x)|dx

≤ 1

6

∫ r

0
|(r − x)3|dx [|f (iv)(x)| = | sinx| ≤ 1]

=
1

6

∫ r

0
(r − x)3dx [r − x ≥ 0 ∀ x ∈ [0, r]]

= −1

6

[
(x− r)4

4

]x=r

x=0

=
r4

24

≤ (0.9)4

24
≤ 0.027 [Given r < 0.9]
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