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1.
A function s(x) on a closed interval [a, b] is called a step function if there
is a partition P = {zg, 1, -+ ,zn} of [a,b] such that s is constant on each

open subinterval of P. That is to say, for each k = 1,2, ..., n there is a real
number s, such that s(z) = s; whenever z;_1 < x < .

Let s be a step function on [a,b] and let P = {xg,z1, -+ ,2,} be a
partition of [a, b] such that s is constant on the open subintervals of P. Let
s(x) = sx whenever z;_1 < x < x. Then

b n
/ s(z)dx = Z Sk - (T — Tp—1)
a k=1

Let P = {zg,z1, -+ ,xn} be a partition of the interval [a,b] such that s is
constant on the open subintervals of P. Assume that s(x) = s; if x;_1 <
x < x;. Let t(z) = s(x/k) if ka < x < kb. Then t(x) = s; if x lies in the
open interval (kx;_1,kz;); hence P = {kxo, kx1,--- ,kx,} is a partition of
[ka, kb] and ¢ is constant on the open subintervals of P. Therefore ¢ is a step
function whose integral is

kb n n b
/ t(z)dx = Zsi (kx; — kxiq) = sti (xy —mi—1) = / s(z)dx
k i—1 a

@ i=1
kb T b
/ s()d:r = k/ s(z)dx
ka k a
2.

f(x) = 23 — 3z — 1 and g(x) = —222 — 1. The graphs of f and g meet

Hence



whenever f(z) = g(z), i.e.
2 =3z —1=-22% -1

ie.
23+ 222 — 32 =0
ie.
z(z—1)(z+3)=0
ie. z=—-3orz=0o0r z=1. Notice f(z) —g(z) =x(z — 1)(z + 3).
Now, if € (=3,0) then (z+3) >0 and (zr — 1) < 0. So f(x) — g(z) > 0.
If z € (0,1) then (z4+3) >0and (z—1) <0. So f(z) —g(z) <0 .
So the area of the regions enclosed by the graphs of f(x) and g(x) is

1
/ (@) - g()|dx

-3

0 1
_/ (f(:n)—g(x))dx—i—/ (9(z) — f(z))dz
0

-3
0 1
= / (23 + 227 — 3x)dx + / (3z — 222 — 2°))dx
-3 0

B [a;4 23 3362}’”0 [3362 23 x4r1
3

4 3 2

r=—

Let f be a bounded function on [a,b]. Let us define

b
S = { / s(z)dz | s : [a,b] — R is a step function with s(z) < f(x) Vz € [a, b]}

b
T := { / t(x)dz |t : [a,b] — R is a step function with f(z) < t(x) Vz € [a, b]}

Since f is bounded, S is bounded above and T is bounded below. Sup$ is
called the lower integral and Inf 7' is called the upper integral of f on
[a, b].

f is continuous and bounded on [a, b] except at b € (a,c). Hence f is con-
tinuous on [a, b) and (b,c]. So f is integrable on [a,b] and [b,c| as continuous
functions are integrable. Let us define

S = {/ s(z)dz | s : [a,c] — R is a step function with s(z) < f(x) Vz € [a, c]}



b
Sy = {/ si(z)dz | sy : [a,b] — R is a step function with s;(x) < f(x) Vz € [a, b]}

Sy = {/ so(x)dx | s2 : [b,c] — R is a step function with sa(x) < f(x) Vz € [b, c]}
b

We claim that S = 53 + Ss.

Let pe S. Sop = f x)dz for some below step function s.

Notice that s|[a,b and 5|[b,c] are also below step functions respectively on
[a, b] and [b, ¢]. Now

p=[Cs(@)de = [0 s(x)de + [ s(x)de = [ s|jap(@)de + [ s|pq(e)de
Observe that fa $|fap)(x)dz € Sy and [} s|p, q(x)dz € Sy

So, p € S1 + 59 and hence S C S1 + Ss.

Let ¢ € S1 + S2. Then 3 step functions s; : [a,b] — R with sj(z) <
f(z)Vx € [a,b] and sz : [b,c] — R with sa(z) < f(x)Vz € [b, ] satisfying
q= f(f si(z)dx + [, sa(a)dx

Define s(x) = s1(x) if x € [a,b)
= f(b) ife=">
= s9(x) if z € (b, ]
Here s is also a below step function on [a,c] and [ s(z)dx = fab (x)dzx +

fb dac—f 1(z da:—i—beQ x)dz. SoquandhenceSl—i—SQCS

Hence we prove our claim that S = 57 4+ S5.

Since f is bounded above, S, S1, S5 all are bounded above. Also SupS=Sup.S;+Sup.So
[follows from the fact that if A, B,C' C R, bounded above and A = B + C

then SupA=SupB+SupC....ccccccevvrernrenn. (1)

Similarly define

T:= { / t(z)dz |t [a,c] — R is a step function with f(z) < t(x) Vz € [a, c]}

b
T, = {/ t1(x)dx | t1 : [a,b] — R is a step function with f(x) < t1(x) Vz € [a, b]}

Ty := { / to(x)dx | ta : [b,c] — R is a step function with f(x) < ta(x) Vz € [b, c]}
b

We can similarly show that T' =T} + T5
f is bounded below implies T',T7,T5 all are bounded below and Inf T'=Inf

Now f is integrable on [a, b] and [b, c|. Hence SupS1=Inf T} and SupSe=InfTs
From (1) and (2), we get SupS=Inf T’
Hence f is integrable on [a, c|.

4 a.
Let G(z) be the primitive of % Now using the second fundamental



theorem, we get

2 2 3

€T t6 T t6 T tﬁ 9 3
— — _dt = — dt — —dt=G -G
f(x) A31+# A — A St = GE) - GG

fl(x) = G'(2?) - 22 — G'(23) - 322 [ Chain rule |
_ @, @)
1+ (22)4 14 (x3)4
21,13 3$20

1+28 1412
4 b.

L[}mwzf@f+c

Taking derivative on both sides w.r.t. z and using the first fundamental
theorem we get,

f(@) =2f(x)f (x)

— @)=}

Since, f is a nonconstant function, we discard the case f = 0. Let us take
f(z) = 5. Now

[roa= [ =3 5= ) -ser

So, f(x) = § satisfies the given condition for C' = 0.
5 a.

1= [ == | e

Let 1+ /x = y. Then % = 2dy. Substituting these, we get,

2dy
I= | —=Z=4/y+C=4/1+Vz+C
NG v

where C' is an arbitrary constant.

5 b.

We will use integral by parts to evaluate the integral, which says, if f and g
are two continuously differentiable function then the following holds :

/ F@)d (@)de = F(2)g(x) — / F(2)g(@)dz + C

4



In our case let f(x) = 22, g(x) = — cosz. Then ¢/(x) = sinx and we have

/1'2 sing -dr = —z%cosz +/2:Ecoswdx + C4
= —2%cosz+2[zsinz — [sinzdr] = —2% cosz+2x sinx +2 cos £+ C, where
C is an arbitrary constant. To evaluate the 2nd integral again we applied
integral by parts, taking f(z) = z and g(x) = sinz. So we get

/1‘281111' cdr = —x%cosx + 2xsing + 2cosx + C

where C' is an arbitrary constant.

6.

Let f(x) = 2% —sinz

f'(x) =2z — cosx; f"(x) =2+sinz; f"(x)=cosz; fi)(z)=—sinx

Taking the 3rd degree Taylor polynomial around 0, we get

Ty(f(2).0) = £(0) + 5P (& —0) + Ty (x = 02 + T (2 — 0
=—x+2°+ %3

Now T3(f(2),0) =0 = —a+22+% =0 = 22462-6=0  [x# 0]

We get @ = —0Ev30+2 V236+24 = 415 — 3. But (-3 — v/15) can not be an

approximation to the root since (—3 — 1/15)2 > 9 but sinx < 1 Vo € R.

We know f(x) = T5(f(x),0)+ Es(x) where E3 is the error. But T5(f(x),0) =

0 implies |f(z)| = |sinz — 22| = |E3(x)| Now,

Br) = g | =0 @)
So,
250 = 1| [ =25 e
1" 8w
<5 [ 1 =ap @)
<5 [ =alie (@) = [sinal <1
= (1;/0 (r—xz)de [r—z>0Vzel0,r]
1 (x—7r)t I:T_ rt
- _6 4 :|:p=0 N ﬂ
< (0.9)* <0.027 [Given r < 0.9]

)
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