
Solutions of mid-sem examination

(1) Since X is non-empty and bounded above, X has the supremum in R. Let sup(X)
be the supremum of X. Therefore,

x ≤ sup(X), ∀x ∈ X

i.e.,−x ≥ −sup(X), ∀x ∈ X

hence for any a ∈ R,

a− x ≥ a− sup(X), ∀x ∈ X. ...(1)

Since X is non-empty, therefore a − X is non-empty. And also by the equation (1)
above, a−X has the infimum in R and a− sup(X) ≤ inf(a−X).

Let M ∈ R be such that M > a − sup(X). Therefore sup(X) > a−M.
Now by the definition of sup(X), there exists a x ∈ X such that x > a −M, i.e.,
a − x < M. Therefore M is not a lower bound of a −X. Which gives a − sup(X) is
the infimum of a−X.

(2) Given a > 1, the sequence an

n is divergent.
To prove this, we will use problem no. 1 of Homework-2: An unbounded sequence
can not have a limit i.e., divergent.
∃ h > 0 such that a = 1 + h. Now using binomial expansion(for n ≥ 3) we have

an

= (1 + h)n

= 1 + nh+
n(n− 1)h2

2
+ ...

≥ n(n− 1)h2

2

So we have an

n ≥
(n−1)h2

2 for n ≥ 3. Now the R.H.S( (n−1)h
2

2 ) is unbounded because

h2/2 is fixed(positive) and N is unbounded. So the given sequence is unbounded and
we are done by problem no. 1 of Homework-2.

(3)
∑∞

n=1
(2−x)n
n(x+1)n .

We will use Dirichlet test to show that the series is absolutely convergent and hence
convergent when x ∈ (1/2,∞).
Note that bn = 1/n is a monotonically decreasing sequence which converges to 0.

Also, for x ∈ (1/2,∞), | (2−x)(x+1) | < 1. Hence, for an = (2−x)n
n(x+1)n ,

∑∞
n=1 an is bounded.

So, from Dirichlet test, the series converges absolutely.
When x = 1/2, the series is

∑ 1
n which we know is divergent. For x ∈ (0, 1/2),

(2−x)
(x+1) > 1. So, (2−x)n

n(x+1)n >
1
n . Hence, by comparison test, the series diverges.

Therefore, (1/2,∞) is the set of all non-negative values of x for which the above series
converges.

Remark: One can use the ratio test or root test to prove convergence in (1/2, 2]
and divergence in (0, 1/2). Then use Alternating test to show convergence in (2,∞)
and argue the divergence at 1/2 as above.
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(4) Given that {an} and {bn} are two sequences such that an > 0, bn > 0 and
anbn+1 > an+1bn for all n ≥ 1. So, we have

an
bn

>
an+1

bn+1
∀n ≥ 1.

Hence {anbn } is a strictly decreasing sequence of positive real numbers. So,

c :=
a1
b1
>
an
bn
∀n > 1.

i.e., bn >
1

c
an ∀n > 1.

Hence if
∑
an diverges, then by comparison test

∑
bn diverges.

(5)

Guess: limx→0
x2−2x

x = −2.
Proof (using definition): Let ε > 0 be given. Take δ = ε. Now see that whenever
0 < |x− 0| = |x| < δ, we have∣∣∣∣∣x2 − 2x

x
− (−2)

∣∣∣∣∣ = |x− 2 + 2| [since x 6= 0]

= |x| < δ = ε.

Hence our guess is correct.

Problem 6 : Define continuity of a function f at a point a. If the function is
continuous at a then prove that so is |f |.

Solution : A function f is said to be continuous at a point a if for any given ε > 0
there exists a δ > 0 (depending upon the given ε) such that

|f(x)− f(a)| < ε whenever |x− a| < δ

• It is given that the function f is continuous at a, we have to show that the
function |f | is continuous at a. Let ε > 0 be given. Using the continuity of f we can
say that there exists a δ > 0 such that

|f(x)− f(a)| < ε whenever |x− a| < δ (1)

Also by Triangle inequality we have the following∣∣|f(x)| − |f(a)|
∣∣ ≤ |f(x)− f(a)| (2)

Therefore by (1) and (2) we have∣∣|f(x)| − |f(a)|
∣∣ ≤ |f(x)− f(a)| < ε whenever |x− a| < δ

i.e. ∣∣|f(x)| − |f(a)|
∣∣ < ε whenever |x− a| < δ

Therefore we have shown that |f | is continuous at a.

(7) We know that polynomials are continuous. Hence, as cosx is continuous, so is
1 + x2 + cosx. Now, for x 6= 0, x2 > 0. Also, 1 + cosx ≥ 0. So, 1 + x2 + cosx > 0.
For x = 0, 1 + x2 + cosx = 2 > 0. Hence, 103

1+x2+cosx
is continuous. (Since, f(x) and
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g(x) being continuous, f(x)
g(x) is continuous whenever g(x) 6= 0). Hence, x5 + 103

1+x2+cosx

is continuous.
Now, observe that for x = 0, x5 + 103

1+x2+cosx
= 103

2 > 4. For x = −2, x5 + 103
1+x2+cosx

=

−32 + 103
1+4+cos(−2) ≤ −32 + 103

4 < 4. (Since cos(−2) ≥ −1).

Hence, by intermediate value theorem, the given equation admits a solution in the
interval (−2, 0)

8.

f(x) = x
√
x+
√
x

d
dxf(x) = d

dx(x
√
x+
√
x)

= x · d
dx(
√
x+
√
x) +

√
x+
√
x · dxdx [ Multiplicative rule:

d
dx (u(x)v(x)) = u(x) · d

dx v(x) + v(x) · d
dxu(x) ]

= x · d
d(x+

√
x)

(
√
x+
√
x) · d

dx(x+
√
x) +

√
x+
√
x [ chain rule: d

dx f(g(x)) = f ′(g(x)) · g′(x) ]

= x · 1

2
√

x+
√
x
(1 + 1

2
√
x
) +

√
x+
√
x [ d

dx

√
x = d

dxx1/2 = 1
2x
−1/2 = 1

2
√

x
]

=
√
x(2
√
x+1)

4
√

x+
√
x

+
√
x+
√
x

= 2x+
√
x+4x+4

√
x

4
√

x+
√
x

= 6x+5
√
x

4
√

x+
√
x

(9) A particle is constrained to move along the parabola y = x2

2 .

Moving at the same rate means dx
dt = dy

dt . From the given equation we have dy
dt = xdx

dt .

If the same rate is not Zero(i.e., dy
dt = dx

dt 6= 0), then we have x = 1 which gives y = 1
2 .

So the coordinate of the(we will consider the rate zero case later) point is (1, 12).

If the motion of the particle is such that x(t) = t3. then we have

x = 1

=⇒ t3 = 1

=⇒ t = 1

Now dx
dt = 3t2 means the same rate is dx

dt = dy
dt = 3(we are not mentioning any unit

because no unit were provided in the question).
The rate zero case is trivial. In that case the point is (0, 0) and the rate is zero.

(10) Notice for any m ∈ R,

p′(x) 6= 0, ∀x ∈ (0, 1).

By Rolle’s theorem, p can not have two distinct roots in (0, 1). p can not have a dou-
ble root in (0, 1) because at the double root, the derivative of the polynomial vanishes.



4

(11)

f(x) = x3 − 4x2 + 4x+ 1; f(0) = 1

f ′(x) = 3x2 − 8x+ 4 = 3x2 − 6x− 2x+ 4 = 3x(x− 2)− 2(x− 2) = (x− 2)(3x− 2)

Now f ′(x) = 0 =⇒ x = 2, 23 . So, x = 2 and x = 2
3 are the critical points of the

function f .

f ′′(x) = 6x−8 ; f ′′(x) = 0 =⇒ x = 4
3 . It is the point of inflection of f. f ′′(2) = 4 > 0

and f ′′(2/3) = −4 < 0, So f has a local minima at x = 2 and local maxima at x = 2/3.

Also f ′′(x) > 0 for x > 4
3 and f ′′(x) < 0 for x < 4

3 . So f is concave down in (−∞, 43)
and

concave up in (43 ,+∞). f(2/3) = 59
27 , f(2) = 1 and f(4/3) = 43

27 . Also f(0) =
1, f(−1) = −8. Using Bolzano’s theorem we get, there is a root of f between −1 and
0.

graph of f(x) = x3 − 4x2 + 4x+ 1

Problem 12 : Define the Taylor polynomial Tnf(x; a) of a function f at a point a

of degree n. If f is n-times differentiable, then prove that (Tnf(x; 0))
′

= Tn−1f
′
(x; 0).

Solution : The n-degree Taylor polynomial of a function f (atleast n-times dif-
ferentiable) at a point a is a polynomial which takes the same value as f at a and the
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derivatives of both at a coincide upto order n. It turns out that

Tnf(x; a) =

n∑
k=0

fk(a)

k!
(x− a)k

• So we have

Tnf(x; 0) =
n∑

k=0

fk(0)

k!
xk

Therefore

(Tnf(x; 0))
′

= (f(0) +
∑n

k=1
fk(0)
k! xk)

′

= 0 +
∑n

k=1
fk(0)
k! kxk−1

=
∑n

k=1
fk(0)
(k−1)!x

k−1

=
∑n−1

m=0
fm+1(0)

m! xm

The second step follows from the fact (g + h)
′

= g
′

+ h
′
, where g and h both are

differentiable. And in the last step we replace k − 1 by m. See that

Tn−1f
′
(x; 0) =

∑n−1
m=0

(f
′
)m(0)
m! xm

=
∑n−1

m=0
fm+1(0)

m! xm

Therefore we have shown that (Tnf(x; 0))
′

= Tn−1f
′
(x; 0).


