

SOLUTION OF HOMEWORK-9

$$(1) (20) \int_{-2}^{-4} (x+4)^{10} dx = \int_2^0 x^{10} dx \quad (\text{using theorem 1.18 and taking } c=4)$$

$$\text{So, } \int_{-2}^{-4} (x+4)^{10} dx = -\frac{2^{11}}{11}$$

Similarly the others can be done!

(2) A cubic polynomial P satisfying $P(0)=P(-2)=0$ has to be in the form

$$P(x) = x(x+2)(ax+b)$$

And it also has the property that $P(1)=15$, $\int_{-2}^0 P(x) dx = 4$

From the above two equations we will get $a+b=5$ and $a-b=1$.

By solving them we will get $a=3$ and $b=2$.

Hence the polynomial is $x^3 + 6x^2 + 8x$ and it is unique.

(3) If $a < b < c < d$ and f is integrable on $[a,d]$ then for each $\epsilon > 0 \exists s \leq f \leq t \exists$

$$\int_a^d t(x) dx - \int_a^d s(x) dx < \epsilon.$$

Since $s \leq t$ on $[a,d]$ therefore $t-s \geq 0$ on $[a,d]$.

So, $\int_a^b t - \int_a^b s$, $\int_b^c t - \int_b^c s$ and $\int_c^d t - \int_c^d s$ all are non-negative.

And also, $\int_a^d g = \int_a^b g + \int_b^c g + \int_c^d g$

Hence $\int_b^c t - \int_b^c s < \epsilon$. So, f is integrable on $[b,c]$.

(4) Let f be defined on $[-a,a]$ for $a > 0$ and f is integrable on $[0,a]$.

Then $\int_{-a}^0 f(x) dx = - \int_a^0 f(-x) dx$ (by using Theorem 1.19 from Apostol)

And $\int_a^0 f(x) dx = - \int_0^a f(x) dx$ (by definition)

Hence we have $\int_{-a}^0 f(x) dx = \int_0^a f(-x) dx$

So $\int_{-a}^0 f(x) dx = \int_0^a f(x) dx$ (for even functions) and $\int_{-a}^0 f(x) dx = - \int_0^a f(x) dx$ (for odd

functions)

Since the existence of one integral implies the existence of other, therefore $\int_{-a}^0 f$ exists.

And we know, $\int_{-a}^a f(x)dx = \int_{-a}^0 f(x)dx + \int_0^a f(x)dx$

So, for even functions $\int_{-a}^a f(x)dx = 2 \int_0^a f(x)dx$ and for odd functions $\int_{-a}^a f(x)dx = 0$.

(5) Let f is integrable on $[a,b]$.

Then $\int_a^b f = \sup \left\{ \int_a^b s : s \leq f \text{ and } s \text{ is a step function} \right\}$.

By definition of supremum for each $\epsilon > 0 \exists$ a step function $s \ni \int_a^b f - \epsilon < \int_a^b s$.

Hence $\int_a^b f - \int_a^b s < \epsilon$.

(Harder variant): Now for $\epsilon > 0 \exists$ a step function $\exists \int_a^b f - \int_a^b s < \frac{\epsilon}{2}$

For the step function $s \exists$ a partition $P := \{a = x_0, x_1, x_2, \dots, x_{n+1} = b\} \ni s(x) = s_i$ on $[x_{i-1}, x_i]$ for $1 \leq i \leq n+1$

Consider $\alpha := \max_{1 \leq i \leq n+1} |s_i|$

Now consider the two points $(x_1 - \frac{\epsilon}{4n\alpha}, s_1)$, $(x_1 + \frac{\epsilon}{4n\alpha}, s_2)$ and join the straight line passing through this two points.

The equation of the straight line is

$$y = \frac{2n\alpha}{\epsilon} (s_2 - s_1)x + s_2 - \frac{2n\alpha}{\epsilon} (x_1 + \frac{\epsilon}{4n\alpha})(s_2 - s_1)$$

Again consider the two points $(x_2 - \frac{\epsilon}{4n\alpha}, s_2)$, $(x_2 + \frac{\epsilon}{4n\alpha}, s_3)$ and join the straight line passing through this two points.

The equation of the straight line is

$$y = \frac{2n\alpha}{\epsilon} (s_3 - s_2)x + s_3 - \frac{2n\alpha}{\epsilon} (x_2 + \frac{\epsilon}{4n\alpha})(s_3 - s_2)$$

Similarly, for each x_i we will get two points $(x_i - \frac{\epsilon}{4n\alpha}, s_i)$, $(x_i + \frac{\epsilon}{4n\alpha}, s_{i+1})$.

The equation of the straight line is

$$y = \frac{2n\alpha}{\epsilon} (s_{i+1} - s_i)x + s_{i+1} - \frac{2n\alpha}{\epsilon} (x_i + \frac{\epsilon}{4n\alpha})(s_{i+1} - s_i)$$

Consider,

$$g(x) = \begin{cases} \frac{2n\alpha}{\epsilon}(s_2 - s_1)x + s_2 - \frac{2n\alpha}{\epsilon}(x_1 + \frac{\epsilon}{4n\alpha})(s_2 - s_1) & \text{if } x \in [a, x_1 - \frac{\epsilon}{4n\alpha}] \\ \frac{2n\alpha}{\epsilon}(s_3 - s_2)x + s_3 - \frac{2n\alpha}{\epsilon}(x_2 + \frac{\epsilon}{4n\alpha})(s_3 - s_2) & \text{if } x \in [x_1 - \frac{\epsilon}{4n\alpha}, x_1 + \frac{\epsilon}{4n\alpha}] \\ \vdots & \text{if } x \in [x_1 + \frac{\epsilon}{4n\alpha}, x_2 - \frac{\epsilon}{4n\alpha}] \\ \frac{2n\alpha}{\epsilon}(s_{i+1} - s_i)x + s_{i+1} - \frac{2n\alpha}{\epsilon}(x_i + \frac{\epsilon}{4n\alpha})(s_{i+1} - s_i) & \text{if } x \in [x_i - \frac{\epsilon}{4n\alpha}, x_i + \frac{\epsilon}{4n\alpha}] \\ \vdots & \text{if } x \in [x_n - \frac{\epsilon}{4n\alpha}, x_n + \frac{\epsilon}{4n\alpha}] \\ s_n & \text{if } x \in [x_n + \frac{\epsilon}{4n\alpha}, b] \end{cases}$$

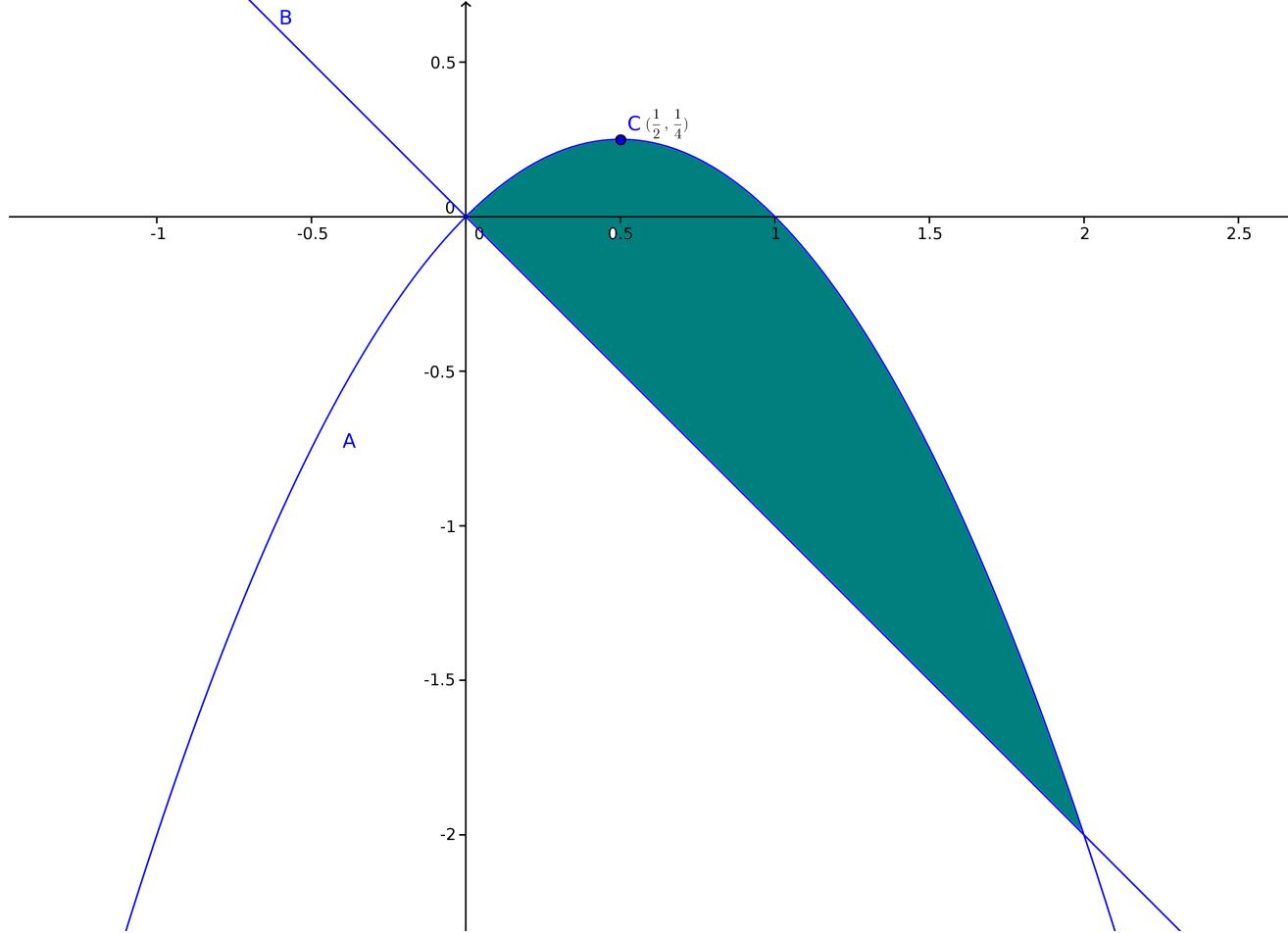
It can be easily seen that g is a continuous function on $[a, b]$.

$$\begin{aligned} \text{Consider } \int_a^b s - \int_a^b g &= \sum_{i=1}^n \left\{ \int_{x_i - \frac{\epsilon}{4n\alpha}}^{x_i + \frac{\epsilon}{4n\alpha}} s - \int_{x_i - \frac{\epsilon}{4n\alpha}}^{x_i + \frac{\epsilon}{4n\alpha}} g \right\} = \sum_{i=1}^n \left\{ (s_i + s_{i+1}) \frac{\epsilon}{4n\alpha} - (s_{i+1} - s_i) \frac{\epsilon}{4n\alpha} \right\} \\ &= \sum_{i=1}^n \frac{s_i \epsilon}{2n\alpha} \leq \sum_{i=1}^n \frac{\epsilon}{2n} = \frac{\epsilon}{2} \end{aligned}$$

$$\text{Therefore } \int_a^b f - \int_a^b g = \int_a^b f - \int_a^b s + \int_a^b s - \int_a^b g < \epsilon.$$

Hence we are done.

(6) 2.4.4



We need to find the area of the region S between the graphs of f and g over the interval $[0, 2]$ where f and g are given by $f(x) = x - x^2$ and $g(x) = -x$. Since $f \geq g$ over the interval $[0, 2]$ we use Theorem 2.1 (from the book) to write

$$\begin{aligned} a(S) &= \int_0^2 [f(x) - g(x)]dx = \int_0^2 (2x - x^2)dx \\ &= 2\frac{2^2}{2} - \frac{2^3}{3} = \frac{4}{3}. \end{aligned}$$

(7) The area enclosed by the ellipse is

$$2b \int_{-a}^a \sqrt{1 - \frac{x^2}{a^2}} dx.$$

Since, $\sqrt{1 - \frac{x^2}{a^2}}$ is continuous the area is measurable. After calculation, the area of the given ellipse is πab .

(8) 2.17.1

$$\mathcal{A}(f) = \frac{1}{b-a} \int_a^b x^2 dx = \frac{1}{3}(b^2 + ab + a^2)$$

Similarly the others.