Homework 8

Analysis and Linear Algebra I (Autumn 2018) Indian Institute of Science

Instructor: Arvind Ayyer

October 4, 2018

- 1. Exercises 5, 8, 10 of Section 7.4 in the textbook.
- 2. Show that $r = \sqrt{15} 3$ is an approximation to the non-zero solution of the equation $x^2 = \sin x$ by using $T_3(\sin x)$.
- 3. Draw the graphs of the following step functions, where [x] is the greatest integer $\leq x$.

(a)
$$[x] + [2x]$$
 in $[-1, 2]$

(b)
$$[x] \cdot [2x]$$
 in $[-1, 2]$

(c)
$$[2x] \cdot [x/2]$$
 in $[-1, 2]$

(d)
$$[\sqrt{x}]$$
 in $[0, 10]$

(e)
$$\sqrt{|x|}$$
 in $[0, 10]$

4. Evaluate the following integrals of step functions

(a)
$$\int_{-1}^{3} [2x] dx$$

(b)
$$\int_0^n [x] dx$$
, where $n \in \mathbb{N}$

(c)
$$\int_a^b [x] dx + \int_a^b [-x] dx$$
 for $a, b \in \mathbb{R}$

(d)
$$\int_0^{n^2} [\sqrt{x}] dx$$

- 5. Prove Theorems 1.2 1.8 (see the hints in exercises 12-17 in Section 1.15)
- 6. Prove that if f and g are integrable on [a, b] such that $f(x) \ge g(x)$ for all $x \in [a, b]$, then

$$\int_a^b f(x) \, \mathrm{d}x \ge \int_a^b g(x) \, \mathrm{d}x.$$

7. If $a, b \in \mathbb{R}$ and a < b such that $f : [a, b] \to \mathbb{R}$ is integrable, prove that

$$\int_{a}^{b} f(x) \, dx = (b - a) \int_{0}^{1} f(a + (b - a)x) \, dx.$$