Homework 7

Analysis and Linear Algebra I (Autumn 2018) Indian Institute of Science

Instructor: Arvind Ayyer

September 17, 2018

1. Determine g'(x) in terms of f'(x) when

(a)
$$g(x) = f(x^2)$$
,

(c)
$$g(x) = (f \circ f)(x)$$
,

(b) $g(x) = f(\tan x)$, (d) $g(x) = (f \circ f)(x^2)$.

- 2. Exercises 20, 23, 26, 29, 30 and 33 of Section 4.12 in the textbook.
- 3. Verify the mean value theorem for $f(x) = 2x^2 7x + 10$ in the interval [2, 5].
- 4. For a quadratic polynomial, prove that the tangent at the midpoint of the interval [a, b]has the same slope as the chord joining the endpoints of the graph.
- 5. Let $c_0, c_1, \ldots, c_n \in \mathbb{R}$ such that $\sum_{k=0}^n \frac{c_k}{k+1} = 0$. Prove that the equation $c_0 + c_1 x + \cdots + c_n x^n = 0$ has at least one real root.

- 6. Use the mean value theorem to conclude that $|\sin x \sin y| \le |x y|$ for all $x, y \in \mathbb{R}$.
- 7. Let f be a function continuous on a closed interval [a, b]. Assume that f''(x) exists at each $x \in (a,b)$. Suppose the line segment in the plane joining (a,f(a)) to (b,f(b))intersects the graph of f at a third point (c, f(c)), where $c \in (a, b)$. Show that $f''(x_0) = 0$ for some point $x_0 \in (a, b)$.
- 8. Suppose f is twice differentiable on [a, b] and satisfies

$$f''(x) + f'(x)g(x) - f(x) = 0$$

for some function g. Prove that if f(a) = f(b) = 0, then f(x) = 0 for all $x \in (a, b)$.

9. Exercises 1, 8, 9, 12, 14 of Section 4.19 in the textbook.