
Solution Set for Homework 5

1. a. Using the fact that “both multiplication and addition of two continuous functions are
continuous”, one can show that 25x2 + 2 and 75x7 − 2 are continuous. Also at x = 1,

75x7 − 2 is non-zero and hence limx→1
25x2+2
75x7−2 exists and also equal to 25+2

75−2 = 27
73 .

b. As x is tending to 0 from right side therefore |x|x is identically 1, which is a constant
function. Using the fact that limit of a constant function, at any point, is equal to that

constant itself, we conclude that limx→0+
|x|
x = 1.

c. Using the same argument as of (a), we conclude that limx→a
x2−a2

x2+2ax+a2 = 0.

d. Since (x+ t)2 − t2 = x(x+ 2t) and x 6= 0 therefore (x+t)2−t2
x = x+ 2t. Now using the fact

that sum of two continuous functions is continuous we conclude that limx→0
(x+t)2−t2

x and
equal to 0.

2.

f(x) = |x| =


x, if x > 0

0, if x = 0

−x if x < 0

Now,

lim
x→0+

f(x) = lim
x→0+

x = 0

and

lim
x→0−

f(x) = lim
x→0−

−x = 0

We get,

lim
x→0+

f(x) = lim
x→0−

f(x) = f(0) = 0

So, f is continuous at 0.
3. f : [0,∞) → R satisfies 0 ≤ f(x) ≤ x for all x in the domain of f . Taking x = 0, we get
f(0) = 0. Also we have, lim

x→0+
x = 0. So, from Sandwich Theorem, we get lim

x→0+
f(x) = 0. Hence

f is continuous at 0.
4. Let

f(x) =

{
sin( 1

x ) if x 6= 0

α if x = 0

where α is arbitrary but fixed constant. Let us define a sequence {xn} such that xn = 1
nπ for

all n ∈ N. Clearly xn → 0 as n → ∞. Also, f(xn) = sin(nπ) = 0 for all n ∈ N. Now let us
consider another sequence {yn} such that yn = 2

(4n+1)π for all n ∈ N. Clearly yn → 0 as n→∞.

But f(yn) = sin( (4n+1)π
2 ) = 1 for all n ∈ N. So, lim

x→0+
f(x) does not exist. Hence f can not be

continuous at x = 0.
Now let g(x) = x sin( 1

x ) for x 6= 0. We know that, 0 ≤ |x sin( 1
x )| ≤ |x| for all x. Also in Prob. 2,

we have seen that, lim
x→0
|x| = 0. So from Sandwitch theorem, we get lim

x→0
|x sin( 1

x )| = 0. Hence,

lim
x→0

x sin( 1
x ) = 0. So if we define g(0) = 0 then g is continuous 0.

5. To prove that sinx is continuous everywhere on R, we shall use the inequality | sinx| ≤ |x| for
all x. Let c ∈ R and ε > 0 be given. Now

| sinx− sin c| = 2

∣∣∣∣ cos

(
x+ c

2

)
sin

(
x− c

2

)∣∣∣∣ ≤ 2

∣∣∣∣ sin(x− c2

)∣∣∣∣ ≤ 2

∣∣∣∣x− c2

∣∣∣∣ = |x− c|

So, | sinx− sin c| < ε whenever |x− c| < ε. Hence sinx is continuous at c. Since c is arbitrary,
sinx is continuous on R.
Let us define a function f on R such that f(x) = x+ π

2 for all x. Clearly f is continuous on R.
Now sin(f(x)) = sin(x+ π

2 ) = cosx. Hence cosx is continuous on R.
6. a. sin(x) and cos(x) both are defined and continuous on R. Hence, f ◦ g and g ◦ f are both

defined and continuous on R.
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b. Being polynomial f and g both are defined and continuous on R. Hence, f ◦ g and g ◦ f
are both defined and continuous on R.

c. Since range of f is R+ ∪ {0} and domain of g is R+ ∪ {0}. Therefore the domain of g ◦ f
is R and g ◦ f : R→ R+ ∪ {0} is defined by

g ◦ f(x) =
√
f(x) =

√
x2 = |x| for all x ∈ R.

Since |x| is continuous on R, hence g ◦ f is continuous on R.
The range of g is R+ ∪ {0} which is subset of domain of f . Therefore f ◦ g is defined on
whole domain of g, i.e., R+ ∪ {0}. The function f ◦ g : R+ ∪ {0} → R+ is defined by

f ◦ g(x) = (g(x))2 = x for all x ∈ R+ ∪ {0}.

Since x is continuous, hence f ◦ g is continuous on R+ ∪ {0}.
d. f maps R to R+∪{0}. g is well defined on R−∪{0}. So g◦f is well defined on f−1{0} = {0}

and g ◦ f(0) = 0. Hence g ◦ f is continuous on {0}. On the other hand g maps R− ∪ {0}
to R+ ∪ {0} which is a subset of the domain of f (= R). Also, f and g are both continuous
on their respective domain. So f ◦ g is defined and continuous on R− ∪ {0}. In fact note
that f ◦ g(x) = f ◦ (

√
−x) = −x for x ∈ R− ∪ {0}.

e. f : R −→ {1, 0} is defined by

f(x) =

{
1 when |x| ≤ 1
0 when |x| > 1

and g : R −→ [−2, 2] is defined by

g(x) =

{
2− x2 when |x| ≤ 2
2 when |x| > 2

hence g ◦ f : R −→ {1, 2} is

g ◦ f(x) =

{
g(1) = 1 when |x| ≤ 1
g(0) = 2 when |x| > 1

Clearly g ◦ f is not continuous on {−1, 1}. But g ◦ f is constant in a small neighbourhood
of every point in R \ {−1, 1}, so it is clearly continuous on R \ {−1, 1}.
Note that f ◦ g is well defined on the following domain.
f ◦ g : R −→ {0, 1} is

f ◦ g(x) =

{
f(2− x2) when |x| ≤ 2
f(2) = 0 when |x| > 2

f ◦ g(x) =

{
0 when |x| >

√
3 and x ∈ (−1, 1)

1 when x ∈ [−
√

3,−1] ∪ [1,
√

3]

Clearly f ◦ g is not continuous on {−
√

3,−1, 1,
√

3}. But f ◦ g is constant in a small

neighbourhood of every point in R \ {−
√

3,−1, 1,
√

3}, so it is clearly continuous on R \
{−
√

3,−1, 1,
√

3}.
f. Note that range of f is R+ ∪ {0} and domain of g is R. So g ◦ f is well defined on R. And
g ◦ f is

g ◦ f(x) = (f(x))2 = (|x|)2 = x2, for all x ∈ R
. Therefore g ◦ f is continuous on R.
The range of g is R which is domain of f . Therefore f ◦ g is defined on whole domain of g,
i.e., R. The function f ◦ g : R→ R+ ∪ {0} is defined by

f ◦ g(x) = |g(x)| =
{
|x| = −x when x < 0
x2 when x ≥ 0

Note that x, x2 is everywhere continuous function and also observe that limx→0+ f ◦g(x) =
limx→0− f ◦ g(x) = f ◦ g(0) = 0. So f ◦ g is continuous on whole domain R
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7. Given that pn(x) =
n∑
k=0

Ckx
k is a nth degree polynomial with the property C0Cn < 0. Now

there are two way in which C0Cn could be negative.
Case 1: C0 < 0, Cn > 0.

Note that pn(0) = C0 < 0. Now suffices to show pn(t) > 0 for some t ∈ R+ In that case, pn
being a continuous function on R, we can apply Bolzano’s theorem to get a point c ∈ (0, t) so
that pn(c) = 0. Note that

pn(x) = xn
(
Cn +

Cn−1
x

+ · · ·+ C1

xn−1
+
C0

xn

)
for all x > 0.

⇐⇒ pn(x) = xnrn(x) for all x > 0.

where rn(x) is given by the following equation

rn(x) =

(
Cn +

Cn−1
x

+ · · ·+ C1

xn−1
+
C0

xn

)
for all x > 0.

Note that for j = 1, 2, ..., n;

|Cn−j |
xj

<
Cn
2n

whenever x >

(
2n|Cn−j |

Cn

) 1
j

.

Now take R = max{
(

2n|Cn−j |
Cn

) 1
j

: j = 1, 2, ..., n}.

For x > R, we have |rn(x)− Cn| ≤
n∑
j=1

|Cn−j |
xj ≤ Cn

2 .

So rn(x) > Cn
2 for all x > R. Also we know xn > 1 for all x > 1.

Now Take M =max{R, 1}, Then for x > M we have

pn(x) = xnrn(x) >
Cn
2
> 0.

So we have pn(t) > 0 for all t > M .
Case 2: C0 > 0, Cn < 0.
Consider qn(x) = −pn(x). Then apply case 1 to qn(x) to get a point c ∈ R+ so that

qn(c) = 0 which gives pn(c) = 0.
8. Given that f : [a, b] −→ [a, b] is a continuous function. Now Consider the function g : [a, b] −→ R

defined by
g(x) = f(x)− x; for all x ∈ [a, b].

Note that g is a continuous function on [a, b]. Also note that as

a ≤ f(x) ≤ b for all x ∈ [a, b], we have

g(a) = f(a)− a ≥ 0; g(b) = f(b)− b ≤ 0

Now if g(a) = 0 then a is a fixed point of f . Similarly if g(b) = 0 then b is a fixed point for f .
And if neither g(a) nor g(b) is zero then we have g(a) > 0 and g(b) < 0. Also g is continuous
on [a, b]. Hence using Bolzano’s theorem we will have a point c ∈ (a, b) such that g(c) = 0. In
this case c is a fixed point for f . Hence f has a fixed point.

9. Note that f(x) = tan(x) for x ∈ [π4 ,
3π
4 ] is not a continuous function on the interval [π4 ,

3π
4 ]. Note

sin(x) is continuous bounded function with sin(π2 ) = 1 and cos(x) is continuous everywhere
with cos(π2 ) = 0. Also observe cos(π2 + h) < 0 and cos(π2 − h) > 0 for sufficiently small h > 0,
we then have limx→π

2 +tan(x) = −∞ and limx→π
2−tan(x) = +∞. So f is not continuous at π

2 .
Hence Bolzano theorem is not applicable to the given function on the given interval.

10. Let us define a function f on R such that f(x) = sin(x)−x+1 for all x. Clearly f is continuous
everywhere on R. Now f(0) = 1 > 0 and f(3) = sin(3) − 3 + 1 < 0. By Bolzano’s theorem,
there exists a real number c such that f(c) = 0 i.e. sin(c) = c− 1.
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