Homework 5

Analysis and Linear Algebra I (Autumn 2018) Indian Institute of Science

Instructor: Arvind Ayyer

August 31, 2018

1. Compute the limits and prove that the limits are correct using the limit theorems. Clearly state which theorem you are using.

(a)
$$\lim_{x \to 1} \frac{25x^2 + 2}{75x^7 - 2}$$

(b)
$$\lim_{x \to 0+} \frac{|x|}{x}$$

(c)
$$\lim_{x \to a} \frac{x^2 - a^2}{x^2 + 2ax + a^2}$$

(d)
$$\lim_{x\to 0} \frac{(x+t)^2 - t^2}{x}$$

2. Prove that the function f(x) = |x| is continuous at 0.

3. Suppose $f:[0,\infty)\to\mathbb{R}$ satisfies $0\leq f(x)\leq x$ for all x in the domain of f. Show that f is continuous at 0.

4. Suppose $f(x) = \sin(1/x)$ for $x \neq 0$. Prove that no matter how you define f(0), f cannot be continuous at 0. On the other hand, if $g(x) = x \sin(1/x)$ for $x \neq 0$, then prove that you can define g(0) in a way that makes g continuous at 0. What is g(0) in this case?

5. Prove that $\sin x$ and $\cos x$ are continuous everywhere. (Hints are given in Problem 26 of Section 3.6).

6. For the functions f and g below, determine the domain and region of continuity of both $u = f \circ g$ and $v = g \circ f$. Unless otherwise specified, the domains of f and g are to be considered as \mathbb{R} .

1

(a)
$$f(x) = \sin x$$
,
 $g(x) = \cos x$

(b)
$$f(x) = x^2 - 2x$$
, $g(x) = x + 1$

(c)
$$f(x) = x^2$$
,
 $g(x) = \sqrt{x}$, $x \ge 0$

(d)
$$f(x) = x^2$$
,
 $g(x) = \sqrt{-x}$, $x \le 0$

(e)
$$f(x) = \begin{cases} 1, & |x| \le 1, \\ 0, & |x| > 1, \end{cases}$$

$$g(x) = \begin{cases} 2 - x^2, & |x| \le 2, \\ 2, & |x| > 2. \end{cases}$$

$$(f) f(x) = |x|,$$

$$g(x) = \begin{cases} x, & x < 0, \\ x^2, & x \ge 0. \end{cases}$$

- 7. Let $p(x) = \sum_{k=0}^{n} c_k x^k$ be a polynomial of degree n such that $c_0 c_n < 0$. Prove that p(x) has at least one positive **root**, i.e. $\exists t > 0$ so that p(t) = 0.
- 8. If $f:[a,b] \to [a,b]$ is a continuous function, prove that f has a fixed point in [a,b].
- 9. Let $f(x) = \tan x$ be defined on $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$. Recall that $f\left(\frac{\pi}{4}\right) = 1$ and $f\left(\frac{3\pi}{4}\right) = -1$. By Bolzano's theorem, there should be a point $x \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ such that f(x) = 0. Find x.
- 10. Prove that there is some real number x so that $\sin x = x 1$.