HOMEWORK-4 SOLUTION

1. The convergent serieses in Problem 5 of Homework 3 are $1)\sum \frac{(-1)^{n(n-1)/2}}{2^n}$, $2)\sum \frac{(-1)^n\sqrt{n}}{n+100}$,

3)
$$\sum \frac{\sin(1/n)}{n}$$
.

The first series converges absolutely beacause $\left|\frac{(-1)^{n(n-1)/2}}{2^n}\right| = \frac{1}{2^n}$ and the series $\sum \frac{1}{2^n}$ is convergent. The second series is not absolutely convergent. To see that notice $\frac{n}{n+100} > \frac{1}{2}$, $\forall n > 100$. Hence $\frac{\sqrt{n}}{n+100} > \frac{1}{2\sqrt{n}}$, $\forall n > 100$. Now use comparison test and the fact that $\sum \frac{1}{\sqrt{n}}$ diverges to conclude that the series does not converge absolutely.

The third series is absolutely convergent. Note that $|\sin\frac{1}{n}| \le \frac{1}{n}$, $\forall n \in \mathbb{N}$. Hence $|\frac{\sin\frac{1}{n}}{n}| \le \frac{1}{n^2}$. Now use comparison test and the fact that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent to deduce that the series is absolutely convergent.

- 2. 2(a). $b_n \frac{b_{n+1}a_{n+1}}{a_n} \ge r \, \forall \, n \ge N$ which implies $a_nb_n b_{n+1}a_{n+1} \ge ra_n$. For every $k \ge N$ we have $r\Sigma_{j=N}^k a_j < \Sigma_{j=N}^k (a_jb_j a_{j+1}b_{j+1}) = a_Nb_N a_{k+1}b_{k+1} < a_Nb_N$. Hence the partial sums are bounded and they form an increasing sequence.
- 2(b). As $c_n \leq 0$ we have $a_n b_n a_{n+1} b_{n+1} \leq 0$, $\forall n \geq N$. Again taking the partial sum we get $a_N b_N a_{k+1} b_{k+1} \leq 0$, $\forall k \geq N$. So $a_{k+1} \geq \frac{a_N b_N}{b_{k+1}}$. Now take the partial sum both side and using comparison test and the fact that $\sum \frac{1}{b_k}$ diverges we are done.
- 3. The series $\sum a_n$ converges absolutely. Hence $\sum |a_n|$ converges. So $\lim |a_n| = 0$. Choose $\epsilon = 1 > 0$, then $\exists N \in \mathbb{N}$ such that $|a_n| < 1 \ \forall n \geq N$. So for all $n \geq N$ we have $a_n^2 \leq |a_n|$. Now using comparison test we conclude that $\sum a_n^2$ converges.

The converse is not true. Consider the sequence $a_n = 1/n$ and the corresponding series.

4. Suppose $\lim_{x\to p^+} f(x) = a$ and $\lim_{x\to p^-} f(x) = b$, where $a\neq b$. Also suppose $\lim_{x\to p} f(x) = l$ for some finite number l and $l\neq a$ (WLOG). Then for a given $\epsilon>0$ there exists $\delta>0$ such that

$$|f(x) - a| < \epsilon$$
 whenever $p < x < p + \delta$
 $|f(x) - l| < \epsilon$ whenever $p - \delta < x < p + \delta$

and hence

$$|f(x) - a| + |f(x) - l| < 2\epsilon$$
 whenever $p < x < p + \delta$.

Observe that for any $p < x < p + \delta$

$$|l - a| \le |f(x) - a| + |f(x) - l|$$

$$< 2\epsilon$$

and hence l = a, which is a contradiction to the assumption that $l \neq a$.

5. Let $\epsilon > 0$ be given

a. Choose $\delta = \frac{\epsilon}{1+\epsilon}$, then

$$\begin{split} |x-1| &< \delta \\ \Rightarrow 1 - \delta < x < 1 + \delta \\ \Rightarrow 1 - \frac{\epsilon}{1+\epsilon} < x < 1 + \frac{\epsilon}{1+\epsilon} \\ \Rightarrow \frac{1}{1+\epsilon} < x < \frac{1+2\epsilon}{1+\epsilon} \\ \Rightarrow \frac{1+\epsilon}{1+2\epsilon} < \frac{1}{x} < 1 + \epsilon \\ \Rightarrow -\epsilon < -\frac{\epsilon}{1+2\epsilon} < \frac{1}{x} - 1 < \epsilon \\ \Rightarrow |\frac{1}{x} - 1| < \epsilon \end{split}$$

b. Choose $\delta = \min\{2 - \frac{1}{\sqrt{\frac{1}{4} + \epsilon}}, \frac{1}{\sqrt{\frac{1}{4} - \epsilon}} - 2\}$ (here $\epsilon < 1/4$), then

$$\begin{aligned} |x-2| &< \delta \\ \Rightarrow 2 - \delta &< x < 2 + \delta \\ \Rightarrow \frac{1}{\sqrt{\frac{1}{4} + \epsilon}} &< x < \frac{1}{\sqrt{\frac{1}{4} - \epsilon}} \\ \Rightarrow \frac{1}{\frac{1}{4} + \epsilon} &< x^2 < \frac{1}{\frac{1}{4} - \epsilon} \\ \Rightarrow \frac{1}{4} - \epsilon &< \frac{1}{x^2} < \frac{1}{4} + \epsilon \\ \Rightarrow |\frac{1}{x^2} - \frac{1}{4}| &< \epsilon. \end{aligned}$$

c. Choose $\delta = \min\{1 - (1 - \epsilon)^2, (1 + \epsilon)^2 - 1\}$, then

$$|x - 1| < \delta$$

$$\Rightarrow 1 - \delta < x < 1 + \delta$$

$$\Rightarrow (1 - \epsilon)^2 < x < (1 + \epsilon)^2$$

$$\Rightarrow (1 - \epsilon) < \sqrt{x} < (1 + \epsilon)$$

$$\Rightarrow |\sqrt{x} - 1| < \epsilon.$$

d. Choose any $\delta > 0$, then

$$\begin{aligned} |x| &< \delta; \ x \neq 0 \\ \Rightarrow &- \delta < x < \delta; \ x \neq 0 \\ \Rightarrow &|1 - 1| < \epsilon (\ because \ \frac{x}{x} = 1 \ \forall x \neq 0). \end{aligned}$$