

Homework 4

Analysis and Linear Algebra I (Autumn 2018)
Indian Institute of Science

Instructor: Arvind Ayyer

August 24, 2018

1. Determine whether the convergent series in Problem 5 of Homework 3 converge conditionally or absolutely.
2. If $\{a_n\}$ and $\{b_n\}$ are two sequences such that $a_n > 0$ and $b_n > 0$ for all $n \geq N$, and $c_n = b_n - \frac{b_{n+1}a_{n+1}}{a_n}$, then prove that
 - (a) If $\exists r > 0$ such that $c_n \geq r > 0$ for all $n \geq N$, then $\sum a_n$ converges, and
 - (b) If $c_n \leq 0$ for all $n \geq N$ and if $\sum 1/b_n$ diverges, then $\sum a_n$ diverges.
3. If $\sum_n a_n$ converges absolutely, then prove that $\sum_n a_n^2$ converges. Is the converse true?
4. If the left hand limit and the right hand limit of f at p are not equal, prove that the limit does not exist.
5. Compute the limits and prove that the limits are correct from first principles for the following problems.

$$(a) \lim_{x \rightarrow 1} \frac{1}{x} \qquad (b) \lim_{x \rightarrow 2} \frac{1}{x^2}$$

$$(c) \lim_{x \rightarrow 1} \sqrt{x} \qquad (d) \lim_{x \rightarrow 0} \frac{x}{x}$$