
SOLUTIONS FOR
HOMEWORK 2

1. We only have to show that a convergent sequence of real numbers is bounded.
Assume (xn)n>0 is a convergent sequence, converging to y ∈ R. Then by defi-
nition there is an N ∈ N such that for all n > N one has |xn − y| 6 1. Now for
all such n,

|xn| − |y| 6 |xn − y| 6 1,

whence |xn| 6 |y|+ 1. Put M := max
(
{|x0| , |x1| , . . . , |xN−1| , |y|+ 1}

)
. Then,

obviously, |xn| 6M (∀n ∈ N), which means (xn)n>0 is bounded.

2. It is enough to show that if (xn)n>0 is a sequence of real numbers which
converges to both c ∈ R and d ∈ R, then c = d. Suppose, to get a contradiction
that c 6= d; suppose, without loss of generality, that c < d. Choose an ε > 0
such that c + ε < d − ε (for example, ε := d−c

3 will do). Then obviously
]c− ε, c+ ε[ ∩ ]d− ε, d+ ε[ = ∅. By the assumption that (xn)n>0 converges to
c, we get an N1 ∈ N such that for all n > N1 one has xn ∈ ]c− ε, c+ ε[; and by
the assumption that (xn)n>0 converges to d, we get an N2 ∈ N such that for all

n > N2 one has xn ∈ ]d− ε, d+ ε[. In particular, if N := max
(
{N1, N2}

)
, then

xN ∈ ]c−ε, c+ε[ and xN ∈]d−ε, d+ε[. But since ]c−ε, c+ε[ ∩ ]d−ε, d+ε[ = ∅,
this is a contradiction, which finishes the proof.

3.(a) Assume ε > 0. Using the fact that (an)n>0 converges to A, choose N1 ∈ N
such that for all n > N1 one has |an −A| 6 ε

2 ; and using the fact that (bn)n>0

converges to B, choose N2 ∈ N such that for all n > N2 one has |bn −B| 6 ε
2 .

If we put N := max
(
{N1, N2}

)
, then clearly, for every n > N one has

|(an + bn)− (A+B)| 6 |an −A|+ |bn −B| 6 ε
2 + ε

2 = ε,

which proves that limn→∞ (an + bn) = A+B.

(b) This will follow from (a) and (c) (proved below.)

(c) If c = 0, the (can)n>0 is the constant sequence 0, which converges to 0 = 0·A,
so in this case there is nothing to prove. So suppose c 6= 0, and assume ε > 0.
Choose N ∈ N such that for all n > N one has |an −A| 6 ε

|c| . Then for n > N

one also has
|can − cA| = |c| |an −A| 6 |c|

ε

|c|
= ε,

which shows that limn→∞ (can) = cA.
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(d) Note that, for n ∈ N arbitrary, one has

|anbn −AB| = |anbn − anB + anB −AB|
6 |anbn − anB|+ |anB −AB|
= |an| |bn −B|+ |an −A| |B|. (1)

Now choose M > 0 such that |an| 6 M for all n ∈ N. Assume ε > 0. Then
choose N1 ∈ N such that for all n > N1 one has |an −A| 6 ε

2(|B|+1) ; also

choose N2 ∈ N such that for all n > N2 one has |bn −B| 6 ε
2M . Put N :=

max
(
{N1, N2}

)
. Then for all n > N one has, by (1),

|anbn −AB| 6M
ε

2M
+

ε

2(|B|+ 1)
|B| 6 ε

2
+
ε

2
= ε.

This shows that limn→∞ (anbn) = AB.

(e) Note that, by (d) above, it is sufficient to show that if (an)n>0 is a sequence

of real numbers converging to a ∈ R, and if a 6= 0, then
(

1
an

)
n>k

(defined for

sufficiently large n) is convergent, and converges to 1
a . We may suppose, without

loss of generality, that an 6= 0 for all n ∈ N. Note that, for n ∈ N arbitrary, one
has ∣∣∣∣ 1

an
− 1

a

∣∣∣∣ =

∣∣∣∣a− anana

∣∣∣∣ =
1

|an|
1

|a|
|a− an| . (2)

Now as an → a, there is an N ∈ N such that for all n > N one has |a− an| 6 |a|
2 .

So for all such n, |a| − |an| 6 |a− an| 6 |a|
2 , and so |an| > |a|

2 . Now assume
ε > 0 and choose M ∈ N such that M > N and such that for all n > M one

has |a− an| 6 |a|2ε
2 . Then for all n >M one has, by (2),∣∣∣∣ 1

an
− 1

a

∣∣∣∣ 6 2

|a|2
|a|2ε

2
= ε.

This means limn→∞

(
1
an

)
= 1

a .

4.(a) The given sequence converges to 0; indeed, it is a sequence of positive
real numbers which decreases to 0. The fact that each term of the sequence is
positive follows from the fact that since(
−1

2

)(
−1

2
− 1

)
· · ·
(
−1

2
− (n− 1)

)
= (−1)n

(
1

2

)(
1

2
+ 1

)
· · ·
(

1

2
+ (n− 1)

)
,

therefore

(−1)n
(
− 1

2

) (
− 1

2 − 1
)
· · ·
(
− 1

2 − (n− 1)
)

n!
=

(
1
2

) (
1
2 + 1

)
· · ·
(
1
2 + (n− 1)

)
n!

.
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Also, (
1
2

) (
1
2 + 1

)
· · ·
(
1
2 + (n− 1)

)
n!

=

∏n
j=1

(
1
2 + (j − 1)

)∏n
j=1 j

=

n∏
j=1

2j − 1

2j
.

So finally xn =
∏n
j=1

2j−1
2j (∀n > 1), where (xn)n>1 is the given sequence.

It turns out that this form for xn is extremely convenient. For example, one

observes that xn+1 = xn

(
2n+1
2n+2

)
and since 2n+1

2n+2 < 1, therefore it follws imme-

diately that xn+1 < xn (∀n > 1), i.e., that (xn)n>1 is strictly decreasing. So
since (xn)n>1 is a sequence of positive numbers, we can conclude immediately
that it converges to some nonnegative real number L. The whole problem is to
determine what L is. We propose to show that for all n > 1 one has xn 6 1√

n+1
.

If this is shown, then it will follow trivially that limn→∞ xn = 0, because then
0 6 xn 6 1√

n+1
, and limn→∞

1√
n+1

= 0. We will prove the claim by induction

on n. For n = 1, the statement is “ 1
2 6 1√

2
”, which is true. Assume that n ∈ N

and that the statement holds for n; we have to prove that the statement holds

also for n + 1. Since xn+1 = xn

(
2n+1
2n+2

)
, and since xn 6 1√

n+1
by hypothesis,

therefore we will be done if we can prove that 2n+1
2n+2 6

√
n+1√
n+2

. But after squaring

and cross-multiplying (we are dealing with positive quantities) we see that this
last assertion is equivalent to the assertion that (2n + 1)2(n + 2) 6 4(n + 1)3,
which in turn, after expanding out, turns out to be equivalent to the assertion
that −2 6 3n, which is trivially true. So the induction step is complete, and
with it the proof.

(b) Let us prove something more general but equally simple: suppose (xn)n>0

is a bounded sequence and (yn)n>0 is a sequence that tends to 0; then (xnyn)n>0

tends to 0. First, choose M > 0 such that |xn| 6M for all n ∈ N. Then, if ε > 0,
use the convergence of (yn)n>0 to 0 to choose N ∈ N such that for all n > N
one has |yn| 6 ε

M . Then, for n > N , one also has |xnyn| = |xn| |yn| 6M ε
M = ε.

This proves that (xnyn)n>0 converges to 0. We get the result we need by taking

xn := (−1)n (∀n ∈ N) and yn := 1
n (∀n ∈ N): the given sequence converges to

0.

(c) Let us once again prove something more general. We will prove that if x
is a real number greater than 1, then limn→∞

xn

n = +∞. Since x > 1, write
x = 1 + h, with h > 0. Then, by the binomial formula,

xn = (1 + h)n = 1 + nh+
n(n− 1)

2
h2 + . . . .

(Concentrate on the case n > 2; we are in any case interested in n→∞.) Note
that each term that has been omitted is positive; when n = 2 then of course no
terms have been omitted. So one clearly has

xn

n
>
n(n− 1)

2n
h2 =

n− 1

2
h2.
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Now as h is fixed,
(
n−1
2 h2

)
n>0

obviously tends to +∞. This clearly implies

limn→∞
xn

n = +∞. In particular, limn→∞
2n

n = +∞. If the reader wants, he or
she can write out the details of the special case x = 2 to make matters clearer.

(d) The given sequence diverges to +∞. One can see this by performing some
trivial manipulations:

1√
n+ 1−

√
n

=

√
n+ 1 +

√
n

n+ 1− n
=
√
n+ 1 +

√
n,

and obviously limn→∞
(√
n+ 1 +

√
n
)

= +∞.

(e) The given sequence converges to 2
5 . We can see this by performing the

following manipulation:
2n

5n− 7
√
n

=
2

5− 7√
n

and noting that since limn→∞
7√
n

= 0, one can apply the results of problem 3

step by step to conclude that the limit of the given sequence is 2
5 .

(f) The given sequence does not converge. Indeed, it is precisely the sequence
((−1)n)n>0, which clearly does not converge. The following more general remark
holds: a sequence x is simply a mapping from N to R; if it happens that there are
a, b ∈ R such that a 6= b and such that x−1({a}) and x−1({b}) are both infinite,
then x does not converge. To prove this, suppose that x converges to c ∈ R. If
c 6= a, we can find an ε > 0 such that a /∈ ]c− ε, c+ ε[. But by the definition of
a limit, there is an N ∈ N such that for n > N one has x(n) ∈ ]c− ε, c+ ε[. In
particular, for all such n one has x(n) 6= a, so x−1({a}) ⊆ {0, . . . , N − 1}, and
is therefore finite, a contradiction. And if c = a, then we can find an ε > 0 such
that b /∈ ]a − ε, a + ε[, and by an identical argument we will get that x−1({b})
is finite, which is another contradiction. So we invariably have a contradiction,
so x cannot converge, which is what we wanted to prove.
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