Homework 2

Analysis and Linear Algebra I (Autumn 2018) Indian Institute of Science

Instructor: Arvind Ayyer

August 10, 2018

- 1. Prove that an unbounded sequence cannot have a limit.
- 2. Prove that the limit of a sequence, if it exists, is unique.
- 3. Suppose $\{a_n\}$ and $\{b_n\}$ are two convergent sequences, such that $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$. Then prove the following:
 - (a) $\lim_{n\to\infty} (a_n + b_n) = A + B$
 - (b) $\lim_{n \to \infty} (a_n b_n) = A B$
 - (c) For $c \in \mathbb{R}$, show that $\lim_{n \to \infty} (ca_n) = cA$
 - (d) $\lim_{n\to\infty} a_n b_n = A B$
 - (e) Assuming further that $b_n \neq 0$ for all $n \in \mathbb{N}$ and $B \neq 0$, $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$
- 4. For the following sequences, prove either that they have a limit (in which case determine the limit) or that they do not.
 - (a) $\left\{ (-1)^n \binom{-1/2}{n} \right\}$, where $\binom{a}{n} = \frac{a(a-1)\cdots(a-n+1)}{n!}$ for $a \in \mathbb{R}, n \in \mathbb{N}$.
 - (b) $\left\{\frac{(-1)^n}{n}\right\}$
 - (c) $\left\{\frac{2^n}{n}\right\}$
 - (d) $\left\{ \frac{1}{\sqrt{n+1} \sqrt{n}} \right\}$
 - (e) $\left\{ \frac{2n}{5n 7\sqrt{n}} \right\}$
 - (f) $\{\cos n\pi\}$
- 5. Prove that any convergent sequence is bounded.