SOLUTIONS(HOMEWORK 1)

1(a). Let
reA
Then,
re€Aorx€eB
=zr€AUB
Hence,
ACAUB

1(b). Let x € AU (BNC). Then
reAorxe BNC

=x€Aor(x € Bandx € C)
= (re€AorzeB)and (x € Aorx € C)
=rec€AUBandx c AUC
=ze€(AUB)N(AUC).
Hence,
AU(BNC)C(AUB)N(AUCQ).
Again, let x € (AU B) N (AUC). Then,

reAUBandz e AUC
= (x€AorzeB)and (zx€ Aorz e C)
=x € Aor (x € Bandx € C)
=zx€Aorzxe BNC
=x€AU(BNC).
Hence,
(AUB)N(AUC)CAU(BNC).
So,
AU(BNC)=(AUB)N(AUCQC).

2(a). Let A ={1,2}, B = {2,3} and C = {3,4}. Then, B\ C = {2}
and hence A\ (B \ C) = {1}. On the other hand, A\ B = {1}. So,
(A\B)uC ={1,3,4}. Thus A\ (B\C)# (A\ B)UC.

2(b). let x € A\ (BUC). This implies

re€Aandxz ¢ BUC
=zcAand (xr ¢ Band z ¢ C)
= (x€eAand x ¢ B) and x ¢ C

=zrzec€A\Bandx ¢ C
1
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ze(A\B)\C.
Hence, A\ (BUC) C (A\ B)\C.
Again, if z € (A\ B) \ C, then
=x€A\Bandz ¢ C

= (rx€Aandzr ¢ B)and x ¢ C
=z € Aand (x ¢ Band z ¢ C)
=zc€Aandzx ¢ BUC
=zcA\(BUQO).
So,(A\ B)\C C A\ (BUC). Thus, we have
(A\B)\C=A\(BUOQO).
3. Let y be such that ¢ +y = b. Then by definition y = b — ¢. Now
a(b—c) 4+ ac = ay + ac = a(y + ¢) = ab. Hence, a(b — ¢) = ab — ac.
a(ba™t) = aa=tb=1.b =b. So, g =ba" .
4.We first show that x —y = = + (—y), for all z,y € R. Note that
y+(x+(-y)) =y+ (—y) + = =0+ 2 = . Hence by definition, x — y =
z+ (—y).
Now we prove that z(—y) = —zy, for any z,y € R. In order to show that
let us notice that

zy +z(—y) =2(y + (~y)) = 2.0 =0.

Hence, z(—y) = —zy.
Finally, we are in a position to prove the statement given in the question.
If a > b, then

a—b > 0
= (a—b)c > 0 (as, ¢ > 0, by order axiom )
=a+(-bec > 0
=a+(=bec > 0
= ac—bc > 0
=ac > bc
5. If = 0, then 22 = 0. Hence,
??=0+1=1.
If z # 0, then 22 is positive ( If x is positive, then it is obvious from the order
axioms.If z < 0 then x = —y, where y is positive. Now 2% = (—y)(—y) = v?,

which is positive.). Hence 22 + 1 is also positive. So, 22 + 1 # 0.

6. Suppose x # a. Then, from the hypothesis we have a < x. i.e, x —a
is positive. So, by Archimedean property, there exists a positive integer ng
such that

no(z —a) >y

:>x>a+£
no
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which is a contradiction. So, z = a.
7. Since x < y, y — x is positive. This implies, 5% is also positive. Thus,
we have
y—x y—r yYy—
r<r+—]——<x
2 + 2 + 2

8. Let x = %, where p and ¢ are integer. Suppose x + y € Q. then there

= y. (Proved)

exists two integers p; and ¢ such that x +y = %. Now

_P_p_apopn g
q1 q qq1
a contradiction. So, x +y € R\ Q.

Again, suppose ¥ = 5—; € Q. Then, £ = 1%' Hence

Y P q2 pq2
y=x.>==.—-=—"¢€Q,
x q P2 qp2

a contradiction. So, ¥ € R\ Q.

Use similar arguments for £.

9.We first prove that the square of an odd number is odd. Let a = 2m+1,
m € Z, be an odd number. Then a? = (2m + 1)? = 4m? + 4m + 1, an odd
number.

Now, let = be a rational number whose square is 2. Let z = §> where

y=(r+y) —=x

)

p and ¢ are integer and atleast one of them is odd. As z? = 2 we have
p? = 2¢%. So p? is even which implies p is also even as square of an odd
number is always odd. Let p = 2n. Then from the relation p? = 2¢* we
have 2n? = ¢?. Thus ¢® is even and hence ¢ is also even, a contradiction.
So, there is no rational number whose square is 2.



