SOLUTIONS FOR HOMEWORK 13

1. Exercise 1 of Section 15.12

- (a) The given formula does *not* define an inner product. For example, it is not symmetric; $\langle x,y\rangle=1\neq -1=\langle y,x\rangle$, where $x:=(1,0,\ldots,0),\ y:=(-1,0,\ldots,0)$.
- (c) The given formula does *not* define an inner product. It is not positive-definite: $\langle x,x\rangle=0$, where $x:=(1,-1,0,\dots,0)$ (we are of course assuming $n\geqslant 2$). We note that the product given here is linear in the first input, symmetric, and even satisfies $\langle x,x\rangle\geqslant 0$ for all $x\in V=\mathbb{R}^n$.

Exercise 4 of Section 15.12

Assume $||x + y||^2 = ||x||^2 + ||y||^2$. Expanding out the LHS, we see that we have $||x||^2 + 2\langle x, y \rangle + ||y||^2 = ||x||^2 + ||y||^2$, so $\langle x, y \rangle = 0$. Conversely, if $\langle x, y \rangle = 0$, then, again expanding using the definition, $||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2 = ||x||^2 + ||y||^2$.

2. We simply expand the LHS out using the definition. One has

$$||x + y||^2 + ||x - y||^2 = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle$$

$$= ||x||^2 + 2\langle x, y \rangle + ||y||^2 + ||x||^2 - 2\langle x, y \rangle + ||y||^2$$

$$= 2||x||^2 + 2||y||^2,$$

as required.

3. Exercise 18 of Section 16.4

$$T(x, y, z) = (x, 2y, 3z).$$

Check it is closed under addition and scalar multiplication to conclude it is a linear transformation.

Now, $(x, 2y, 3z) = (0, 0, 0) \implies x = y = z = 0$. Thus null space of T is $\{(0, 0, 0)\}$. So, nullity of T is o. Hence, by rank nullity theorem, rank of T is a. Hence, range of a is a.

Exercise 20 of Section 16.4

T(x,y,z)=(x+1,y+1,z-1). We know that, if S is a linear transformation on \mathbb{R}^3 then S(0,0,0)=(0,0,0). But T(0,0,0)=(1,1,-1). Hence, T is not a linear transformation.

4. Exercise 15 of Section 16.4

 $T(r,\theta)=(r,2\theta).$ Suppose T is a linear transformation. It is easy to see that null space of T is $\{(0,0,0)\}$. Thus, T is invertible. So, $\{T(1,0),T(1,\frac{\pi}{2})\}$ is a basis for \mathbb{R}^2 . But, $T(1,0)+T(1,\frac{\pi}{2})=(1,0)+(1,\pi)=0$. Hence, T is not a linear transformation.

5. Exercise 24 of Section 16.4

We need to show that T(p(x)+q(x))=T(p(x))+T(q(x)) and $T(c.p(x))=c.T(p(x))\ \forall p,q\in V$ and $\forall c\in\mathbb{R}$. Let h(x)=p(x)+q(x). Then, h(x+1)=p(x+1)+q(x+1). Thus, $T(p(x)+q(x))=T(p(x))+T(q(x))\ \forall p,q\in V$. Now, let g(x)=c.p(x). So, g(x+1)=c.p(x+1). Thus, $T(c.p(x))=c.T(p(x))\ \forall c\in\mathbb{R}$. Hence, $T\in\mathcal{L}(V)$.

6. Exercise 11 of Section 16.8

 $T(x,y)=(x-y,x+y)=(0,0) \implies x=y=0$. Hence, T is injective. So, $T(V_2)=V_2$.

Let $(x,y)=T^{-1}(u,v)$. Then u=x-y and v=x+y. This gives $T^{-1}(u,v)=(\frac{u+v}{2},\frac{v-u}{2})$.

7. Multiplication of transformations is defined as $T^{m+1} = T^m \cdot T$. We show that $T^{m+n} = T^m \cdot T^n \ \forall m,n$. We proceed by induction on n. For n=1, it follows from definition. Suppose, $T^{m+k} = T^m \cdot T^k$. Then $T^{m+k+1} = T^{m+k} \cdot T = (T^m \cdot T^k) \cdot T = T^m \cdot T^{k+1}$ (Since composition operation is associative). Hence, the result follows.

Check
$$T^n \cdot (T^{-1})^n = (T^{-1})^n \cdot T^n = id$$
.

- 9. Let I be the transformation that takes a vector v to itself. It is easy to see that composition with I is commutative. Also, $S^{-1} \cdot S = I$ and $T^{-1} \cdot T = I$. Thus, $T^{-1}S^{-1} \cdot ST = T^{-1} \cdot (S^{-1} \cdot S) \cdot T = T^{-1} \cdot I \cdot T = (T^{-1} \cdot T) \cdot I = I$. Similarly, show that $ST \cdot T^{-1}S^{-1} = I$ to conclude the result.
- 10. S(x, y, z) = (z, y, x) and T(x, y, z) = (x, x + y, x + y + z).

 $S(x,y,z)=0 \implies x=y=z=0$. Also, from T(x,y,z)=0, we get x=0, x+Y=0, x+y+z=0, i.e. x=y=z=0. Since, nullity of S and T are 0, we can conclude that S and T are injective.

Check that $S^{-1}(x,y,z)=(z,y,x),\ T^{-1}(x,y,z)=(x,y-x,z-y),\ ST(x,y,z)=(x+y+z,x+y,x),\ TS(x,y,z)=(z,y+z,z+y+x),\ (ST)^{-1}(x,y,z)=(z,y-z,x-y),$ and $TS^{-1}(x,y,z)=(z-y,y-x,x).$

11. Exercise 4 of Section 16.12

Reflection about y-axis gives $(x,y) \longrightarrow (-x,y)$ and doubling length means $(-x,y) \longrightarrow (-2x,2y)$. Thus, T(x,y) = (-2x,2y). So, T(1,0) = (-2,0) and T(0,1) = (0,2). So. $m(T) = \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix}$. Check that $m(T^2) = (m(T))^2 = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$.