Solution Of Homework 12

1.

- 2) Set of all rational functions form a vector space. The given set W(say) is non-empty as the constant function $0 \in W$. Let $\frac{f_1}{g_1}$ and $\frac{f_2}{g_2}$ be in W, i.e. $deg(f_i) \leq deg(g_i)$, i = 1, 2. Their sum is $\frac{f_1g_2 + f_2g_1}{g_1g_2}$. Now see that $deg(f_1) \leq deg(g_1)$ which implies $deg(f_1).deg(g_2) \leq deg(g_1).deg(g_2)$. Similarly we have $deg(f_2).deg(g_1) \leq deg(g_1).deg(g_2)$. Hence W is closed under addition. It's clear that it is closed under scalar multiplication. Hence W is a subspace, so a vector space.
- 4) Set of all real valued functions having a common domain forms a vector space over \mathbb{R} . Let W be the set of all functions satisfying 2f(0)=f(1). Clearly $W \neq \phi$ as the constant $0 \in W$. If $f,g \in W$ then 2(f+g)(0)=2f(0)+2g(0)=f(1)+g(1)=(f+g)(1), i.e. $f+g \in W$. Let $c \in \mathbb{R}$ and $f \in W$ then 2(cf)(0)=c(2f)(0)=cf(1)=(cf)(1), i.e. $cf \in W$. So W is a subspace hence a vector space.
- 6) You have already seen while learning integration that sum of two step functions is a step function. It's clear that it is closed under scalar multiplication. Hence a subspace of the vector space of all real valued functions defined on [0, 1].
- 9) Let f and g be odd functions. Then (f+g)(-x)=f(-x)+g(-x)=-f(x)-g(x)=-(f+g)(x), i.e. f+g is also odd. If $c\in\mathbb{R}$ and f is odd then (cf)(-x)=cf(-x)=c(-f(x))=-cf(x)=-(cf)(x), i.e. cf is also odd. So it's a vector space.
- 11) This set is not closed under scalar multiplication. If f is increasing (non constant) function then (-1)f is decreasing and does not lie in the set of all increasing functions. Hence not a vector space.

2 .

13) If f and g are in the given concerned set (see that the set is non empty) then f+g is also integrable on [0,1] and $\int_0^1 (f+g)(x)dx = \int_0^1 f(x)dx + \int_0^1 g(x)dx = 0 + 0 = 0, \text{ hence } f+g \text{ is in the concerned set. Similarly one can show that } \int_0^1 (cf)(x)dx = 0 \text{ where } c \in \mathbb{R} \text{ and } \int_0^1 f(x)dx = 0.$ 14) See that the set is not closed under scalar multiplication. Multiplication by any negative real would create problem. hence not a vector space.

3 .

- 18) The set is non empty. Think it as a subset of the vector space containing all real sequences. It is obvious that sum of two bounded sequence is also bounded. A bounded sequence multiplied by a real scalar is also bounded. Hence a vector space.
- 21) Consider the vector space V(say) consisting of all convergent real series. The set W(say) of all absolutely convergent series is a non empty subset of V. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be in W. Then by using triangle inequality we can show that the series $\sum_{n=1}^{\infty} (a_n + b_n)$ is absolutely convergent. Also it is easy to see that W is closed under scalar multiplication. Hence W is a vector space.

4.

- 23) $W = \{(x, y, z) \in \mathbb{R}^3 : x = 0 \text{ or } y = 0\}$. See that (0, 1, 0) and (1, 0, 0) are in W but (0, 1, 0) + (1, 0, 0) = (1, 1, 0) is not W. Hence not a vector space.
- 24) $W = \{(x, y, z) \in \mathbb{R}^3 : y = 5x\}$. Clearly W is non empty and closed under addition and scalar multiplication. Hence a subspace of \mathbb{R}^3 . Hence a vector space.
- 25) $W=\{(x,y,z)\in\mathbb{R}^3:3x+4y=1,z=0\}$. Clearly the (0,0,0) is not in W, hence not a vector space.
- 27) $W = \{(x, y, z) \in \mathbb{R}^3 : a_{11}x + a_{12}y + a_{13}z = 0, a_{21}x + a_{22}y + a_{23}z = 0, a_{31}x + a_{32}y + a_{33}z = 0\}$. Clearly W is non empty as $(0, 0, 0) \in W$. It is easy to see that W is closed under addition and scalar multiplication. Hence a subspace of \mathbb{R}^3 . So it is a vector space.

5.

$$V = \mathbb{R}_+ = \{x \in \mathbb{R} : x > 0\}$$
 and $F = \mathbb{R}$. Now see that

Closure Axioms

- Let $x, y \in V$. See that $x \oplus y = x.y$ is positive as x, y > 0.
- $c \in \mathbb{R}$ and $x \in V$. See that $c \otimes x = x^c$ is positive as x > 0.

Axioms for addition

- Commutative Law : Since multiplication is commutative we have $x \oplus y = y \oplus x$ for all $x,y \in V$.
- Associative Law : Since multiplication is associative we have $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ for all $x, y, z \in V$.
- Existence of zero element : See that $1 \in V$ and $x \oplus 1 = x.1 = x$ for all $x \in V$.
- Existence of negatives : For given $x \in V$ see that $x \oplus ((-1) \otimes x) = x.x^{-1} = 1$.

Axioms for multiplication by numbers

- Associative Law: See that $a \otimes (b \otimes x) = a \otimes x^b = x^{ab} = (ab) \otimes x$
- Distributive Law For addition in V: See that $a \otimes (x \oplus y) = a \otimes xy = (xy)^a = x^a y^a = x^a \oplus y^a = a \otimes x \oplus a \otimes y$.
- Distributive Law For Addition of Numbers : See that $(a+b) \otimes x = x^{a+b} = x^a x^b = x^a \oplus x^b = (a \otimes x) \oplus (b \otimes x)$.
 - Existence of Identity: See that $1 \otimes x = x^1 = x$ for all $x \in V$.

Hence V turns out be a vector space over F. And from the proof we see that the role of 0 in V is played by 1 and the role of 1 in F is played 1.

6.

- 2) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0\}$. It is easy to see that this set(clearly non empty) is closed under addition and scalar multiplication. Hence it is a subspace of \mathbb{R}^3 . So is a vector space. See that S is spanned by the independent set $\{(1, -1, 0), (0, 0, 1)\}$, hence dim(S) = 2.
- 5) $S = \{(x, y, z) \in \mathbb{R}^3 : x = y = z\}$. Clear that S is subspace of \mathbb{R}^3 . See that S is spanned by $\{(1, 1, 1)\}$, so dim(S) = 1.
- 7) $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 y^2 = 0\}$ See that $(1, -1, 0), (1, 1, 0) \in S$ but their sum (1, 0, 0) is not in S. S is not closed under addition, hence not a vector space.
- 8) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y = 1\}$. Clearly (0, 0, 0) does not belong to S. Hence S is not a vector space.
- 11) $S = \{ f \in P_n : f(0) = 0 \}$. See that the set $S(\neq \phi)$ is closed under addition and scalar multiplication. Here a subspace of P_n , So is a vector

space. See that S is generated by the independent set $\{x, x^2, x^3, ..., x^n\}$, hence is of dimension n.

16) $S = \{f \in P_n : f(0) = f(2)\}$. This set is non empty and closed under addition and multiplication, hence a subspace of P_n , so is a vector space. Let us define the linear map $L: P_n \to \mathbb{R}$ such that L(f) = f(0) - f(2), hence we see that S = ker(L), therefore by Rank-Nullity theorem we can conclude that dim(S) = n.

7.

Let the vectors be linearly dependent for some t, i.e. there exists $c \in \mathbb{R}$ such that (1+t,1-t)=c(1-t,1+t) which further implies 1+t=c-ct and 1-t=c+ct. Solving we get c=1 and t=0. That means if they are dependent then t has to be 0, which means if $t \neq 0$ they can't be linearly dependent, hence they must linearly independent. Therefore (1+t,1-t) and (1-t,1+t) are linearly independent iff $t \neq 0$.

8.

Let S be a vector subspace of a vector space V over a field F. Clearly $S \subseteq L(S)$. Now let $v \in L(S)$, i.e. $v = \sum_{k=1}^m c_k x_k$ for some $c_k \in F$ and $x_k \in S$ where k = 1, 2, ..., m. Since S is a subspace S is closed under addition and scalar multiplication. Hence $v \in S$ as $x_k \in S$ for all k = 1, 2, ..., m. Hence $L(S) \subseteq S$. So L(S) = S. Conversely if L(S) = S, then S is a subspace of V as L(S) is a subspace of V by definition.

9.

- a) V be the vector space of polynomials of degree at most 5. Given $S = \{1, x^2, x^5\}$. For any $c_i \in \mathbb{R}$ where i = 1, 2, 3 the polynomial $c_1 + c_2 x^2 + c_3 x^5$ has at most 5 roots when not all c_i 's are 0. Hence for the polynomial to be the zero polynomial all c_i 's must be zero. Hence S is linearly independent. So dim(L(S)) = 3.
- b) If the set S is linearly dependent then there exists $c \in \mathbb{R}$ such that $(1+x) = c(1+x)^2$ for all $x \in \mathbb{R}$. Comparing the coefficients x^2 at both sides we get c = 0 and this further gives x + 1 = 0 for all $x \in \mathbb{R}$, i.e. we arrive at a contradiction. Hence S is linearly independent, so dim(L(S)) = 2.
- c) If possible let the set S be linearly dependent. Then there exists $c_1, c_2, c_3 \in \mathbb{R}$ not all zero such that $c_1 + c_2 e^{ax} + c_3 x e^{ax} = 0$ for all $x \in \mathbb{R}$. Putting x = 0 gives $c_1 + c_2 = 0$, hence we have $c_1 c_1 e^{ax} + c_3 x e^{ax} = 0$ for

all $x \in \mathbb{R}$. Consider the case when $c_3 = 0$. Then $c_1(1 - e^{ax}) = 0$ for all $x \in \mathbb{R}$. Hence $c_1 = 0$, so $c_2 = 0$. Hence $c_1 = c_2 = c_3 = 0$. So we arrive at a contradiction. Now if $c_3 \neq 0$ then we have $c_1 - e^{ax}(c_1 - c_3x) = 0$ for all $x \in \mathbb{R}$. Putting $x = \frac{c_1}{c_3}$ we get $c_1 = 0$ and hence we have $c_2 = 0$. This further implies $c_3xe^{ax} = 0$ for all $x \in \mathbb{R}$, but this implies c_3 must be 0. Hence we again arrive at a contradiction. Therefore the set is linearly independent. Hence dim(L(S)) = 3.

d) Let the set S be linearly dependent. Then there exist $c_1, c_2, c_3 \in \mathbb{R}$ not all zero such that $c_1 + c_2 cos 2x + c_3 cos 3x = 0$ for all $x \in \mathbb{R}$. Putting x = 0 we get $c_1 + c_2 = 0$ and putting $x = \frac{\pi}{4}$ we get $c_1 + \frac{c_2}{\sqrt{2}} = 0$ and putting $x = \frac{\pi}{2}$ we get $c_1 - c_2 + c_3 = 0$. Solving these three equations we get $c_1 = c_2 = c_3 = 0$. We arrive at a contradiction, as according to our assumption c_1, c_2, c_3 were not all zero.

10.

Solution 1: (countablity argument) If V is a finite dimensional(say n) vector space over a field F then there is a bijective correspondence between V and F^n , i.e. there cardinality is same. Now if \mathbb{R} has dimension n over the field \mathbb{Q} , then \mathbb{R} and \mathbb{Q}^n have the same cardinality. But we know that \mathbb{R} is uncountable and \mathbb{Q}^n being a finite product of a countable set is countable. Hence we arrive at a contradiction. So the dimension of \mathbb{R} over \mathbb{Q} is infinite.

Solution 2: (existence of an infinite linearly independent set) Let $\mathbb{P} = \{P_i : P_i \text{ is a prime number}\}$ be the set of all prime numbers. Consider the set $A = \{log(P_i) : P_i \in \mathbb{P}\}$. We claim that W is a linearly independent subset. Basically we will show that every finite subset of A is linearly independent. Consider the set $\{log(p_1), log(P_2), ..., log(P_k)\}$. Suppose $c_1log(p_1) + c_2log(P_2) + ... + c_klog(P_k) = 0$ for some $c_i \in \mathbb{Q}$ where i = 1, 2, ..., k. After multiplying by a large integer we can have $d_1log(p_1) + d_2log(P_2) + ... + d_klog(P_k) = 0$ where $d_i \in \mathbb{Z}$ for all i = 1, 2, ..., k. This implies $P_1^{d_1}.P_2^{d_2}....P_k^{d_k} = 1$. Since P_i 's are all distinct primes we must have $d_i = 0$ for all i = 1, 2, ..., k. Hence $\{log(p_1), log(P_2), ..., log(P_k)\}$ is linearly independent $\forall k \in \mathbb{N}$, so the set A is linearly independent. (see that A is infinite as there are infinitely many primes)

11 .
$$V = \mathbb{R}^2 \;,\; S = \{(x,y) \in \mathbb{R}^2 : x = y\} \text{ and } B = \{(1,0),(0,1)\}$$