Homework 1

Analysis and Linear Algebra I Autumn 2018 Indian Institute of Science

Instructor: Arvind Ayyer

August 6, 2018

- 1. From first principles, prove the following:
 - (a) $A \subseteq A \cup B$
 - (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 2. Prove that one of the following formulas is always right and that the other is sometimes wrong.
 - (a) $A \setminus (B \setminus C) = (A \setminus B) \cup C$
 - (b) $A \setminus (B \cup C) = (A \setminus B) \setminus C$
- 3. Using only the field axioms for \mathbb{R} , prove that a(b-c)=ab-ac for $a,b,c\in\mathbb{R}$ and $\frac{b}{a}=ba^{-1}$ for $a,b\in\mathbb{R},a\neq0$.
- 4. Using the field axioms and order axioms for \mathbb{R} , prove that, for $a, b, c \in \mathbb{R}$, if a > b and c > 0, then ac > bc.
- 5. Using the field axioms and order axioms for \mathbb{R} , prove that there is no $x \in \mathbb{R}$ which satisfies $x^2 + 1 = 0$.
- 6. Prove that if $a, x, y \in \mathbb{R}$ satisfy

$$a \le x \le a + \frac{y}{n}$$

for every integer $n \geq 1$, then x = a.

- 7. If $x, y \in \mathbb{R}$ such that x < y, then prove that there exists $z \in \mathbb{R}$ such that x < z < y.
- 8. If $x \in \mathbb{Q}$, $x \neq 0$ and $y \in \mathbb{R} \setminus \mathbb{Q}$, then prove that x + y, $\frac{x}{y}$, $\frac{y}{x} \in \mathbb{R} \setminus \mathbb{Q}$.
- 9. Prove that there is no rational number whose square is 2.