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Abstract

This thesis studies mixing times for three random walk models. Specifically these are ran-
dom walks on the alternating group, the group of signed permutations and the complete
monomial group. The details for the models are given below:

The random walk on the alternating group: We investigate the properties of a random
walk on the alternating group An generated by 3-cycles of the form (i, n − 1, n) and
(i, n, n− 1). We call this the transpose top-2 with random shuffle. We find the spectrum
of the transition matrix of this shuffle. We obtain the sharp mixing time by proving the
total variation cutoff phenomenon at

(
n− 3

2

)
log n for this shuffle.

The random walk on the group of signed permutations: We consider a random walk
on the hyperoctahedral group Bn generated by the signed permutations of the form (i, n)
and (−i, n) for 1 ≤ i ≤ n. We call this the flip-transpose top with random shuffle on
Bn. We find the spectrum of the transition probability matrix for this shuffle. We prove
that this shuffle exhibits the total variation cutoff phenomenon with cutoff time n log n.
Furthermore, we show that a similar random walk on the demihyperoctahedral group Dn

generated by the identity signed permutation and the signed permutations of the form
(i, n) and (−i, n) for 1 ≤ i < n also has a cutoff at

(
n− 1

2

)
log n.

The random walk on the complete monomial group: Let G1 ⊆ · · · ⊆ Gn ⊆ · · ·
be a sequence of finite groups with |G1| > 2. We study the properties of a random
walk on the complete monomial group Gn o Sn generated by the elements of the form
(e, . . . , e, g; id) and (e, . . . , e, g−1, e, . . . , e, g; (i, n)) for g ∈ Gn, 1 ≤ i < n. We call this
the warp-transpose top with random shuffle on Gn o Sn. We find the spectrum of the
transition probability matrix for this shuffle. We prove that the mixing time for this
shuffle is of order n log n+ 1

2n log(|Gn|−1). We also show that this shuffle satisfies cutoff
phenomenon with cutoff time n log n if |Gn| = o(nδ) for all δ > 0.
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Chapter 1

Introduction

In this thesis we study the sharp mixing time (also known as the cutoff phenomenon;
the precise definitions will be given in Chapter 2) of certain random walks on some finite
groups, using non-commutative Fourier analysis techniques. Roughly, the mixing time
determines the number of transitions required for a convergent Markov chain to get close
to the stationary distribution. We have used the total variation distance as the distance
function between probability measures (or distributions) throughout this thesis. Similar
convergence rate related questions on finite Markov chains have caught considerable
attention of many probabilists, viz. random walks on combinatorial objects, random
walks on algebraic structures [3, 8, 9, 10, 12, 11, 13, 14, 21, 25, 37, 49, 68]. The random
walk we consider in this thesis can be described by the shuffle of some combinatorial
objects (viz. cards, oriented cards).

We start with a survey of related results in Section 1.1. In Section 1.2 we describe
some use of random walks on finite groups. Finally, we end this chapter by discussing
the organization of this thesis in Section 1.3.

1.1 Brief literature review

In this section we briefly recall some landmark results related to the random walk prob-
lems considered in this thesis. We split this section into two subsections in order to
present the card shuffling problems separately. First in Subsection 1.1.1, we introduce
the card shuffling problems and describe the riffle shuffle. Then in Subsection 1.1.2, we
discuss mixing time related known results for the random walks on some finite groups.
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2 1. Introduction

1.1.1 The card shuffling problems

Shuffling a deck of cards is used to randomize the arrangement of the cards in the deck.
This randomization process is important for card players to avoid bias. In general casi-
nos use shuffling machines as it gives them a few advantages (viz. increase difficulties
for players to make predictions even if they are collaborating with the croupiers). The
shuffling machines are carefully designed by using various complex shuffling schemes. Ef-
ficiency of a shuffling machine depends on the shuffling time of a deck. The shuffling time
depends on the number of times the deck is required to shuffle for mixing up the cards.
Mathematically, an arrangement of a deck of cards can be thought of as a permutation
of the cards and shuffling is just permuting the cards. Thus the card shuffling problems
can be modeled by considering them as random walks on the symmetric group. Indeed,
card shuffling appears as one of the few examples given by Markov [69]. It then appears
in the works of Émile Borel [23], and Kosambi and Rao [63]. In particular one can see
the excellent historical discussion in [57]. In practice, card players mostly use the riffle
shuffle, we give a brief description of this shuffle in the next paragraph. Also, there are
many other shuffling schemes studied in the literature (ref. [23, 38, 39, 79]).

A model for the riffle shuffle or dovetail shuffle was introduced by Gilbert and Shan-
non and later independently by Reeds. In this model a deck of n cards is cut into two
piles viz. pile A and pile B according to a binomial distribution with parameters (n, 1

2).
Then the two piles are riffled together by the following rule: If pile A has a cards and
pile B has b cards, drop the next card from pile A with probability a

a+b and from pile B
with probability b

a+b . The dropping continues until both piles have been run through,
using a new a and b at each stage. In 1992, Bayer and Diaconis [17] showed that the
riffle shuffle of n cards satisfies cutoff phenomenon with cutoff time 3

2 log2 n.

1.1.2 Known results for random walks on some finite groups

We have already seen that the card shuffling problems can be described by consider-
ing them as random walks on symmetric group. The theory of random walks on finite
groups took a new direction in 1981, when Diaconis and Shahshahani [40] introduced
the use of non-commutative Fourier analysis techniques. Afterwards, some other tech-
niques emerged to deal with random walks on finite groups, e.g., the coupling argument
(Aldous [2] used this argument to give good bounds for random walks on the symmetric
group generated by adjacent transpositions), the strong stationary time approach [70]
(introduced by Aldous and Diaconis [4, 5]). A nice survey article for random walks on
finite groups is [89]. Below, we note down mixing time related known results of random
walks on some finite groups.



1.1. Brief literature review 3

• Random walk on n-cycle: Diaconis [32, 33] studied the random walk on the additive
group Zn, driven by the uniform measure on {1,−1} i.e., a particle at any node
of the n-cycle can move forward or backward with probability 1

2 each. If n is odd,
he showed that O(n2) steps are necessary and sufficient for the random walk to
be within a fixed distance from the stationary distribution. But there is no cutoff
phenomenon. He also proved that, without any condition on n, similar result holds
for two lazy variants of this random walk given as follows: (i) The particle at any
node of the n-cycle can stay at its position with probability 1

2 and jump forward
or backward with probability 1

4 each. (ii) The particle at any node of the n-cycle
can stay at its position with probability 1

2 and jump forward with probability 1
2 .

• Simple random walk on hypercube: The elements of the additive group Zn
2 form the

vertices of the n-dimensional hypercube. Let ei = (0, . . . , 0, 1, 0, . . . , 0) be the ver-
tex with a 1 in the ith position and zero elsewhere, 1 ≤ i ≤ n and e0 = (0, . . . , 0).
The random walk on the n-dimensional hypercube is the random walk on the addi-
tive group Zn

2 driven by the probability measure defined uniformly on {e0, e1, . . . en}
i.e., particle at any vertex of the hypercube can stay at its position with probability

1
n+1 and jump towards any neighbour with probability 1

n+1 each [32, 33]. Random
walk on the hypercube projects to the Ehrenfest model of diffusion [26, 41]. Both
the random walk on the hypercube and Ehrenfest’s diffusion model are well stud-
ied. It is known that 1

4n log n steps are necessary and sufficient to reach uniformity
for the above mentioned random walk on the hypercube [36].

• Random walks on symmetric group: Many random walk models have been consid-
ered on the symmetric group Sn. We list some notable ones below:

1. Random transposition: This was considered by Diaconis and Shahshahani.
Under this random walk, a permutation in Sn can either go to itself with
probability 1

n
or be multiplied by a transposition on the right with probability

2
n2 . This can also be described as a shuffle of a deck of n cards. The shuffling
scheme is the following: Either keep the deck as it is with probability 1

n
or

transpose two randomly chosen (distinct) cards from the deck with probability
2
n2 . Diaconis and Shahshahani [40] showed that this random walk satisfies
cutoff phenomenon with cutoff time 1

2n log n.

2. Random-to-top: This model is an example of the Tsetlin library problem [97]
when the probability of choosing any book is equally likely. We describe the
Tsetlin library problem after describing this model. Under this random walk,
a permutation in Sn is multiplied on the right by a permutation of the form



4 1. Introduction

(1, . . . , i), 1 ≤ i ≤ n, with probability 1
n

each. As a card shuffling problem,
this can be explained as follows: Choose a random card from the deck of
n cards with probability 1

n
and place it on the top of the deck. Aldous and

Diaconis [4] showed that O(n log n) steps are sufficient for this random walk to
reach near uniformity. Later Diaconis, Fill and Pitman [35], refined the earlier
result [4] and showed cutoff at n log n. A similar shuffle called top-to-random
has also been studied in the literature.

3. Tsetlin library problem: This has arisen from the work of Tsetlin in [97]. The
model is the following: Suppose a single self of a library contains n books
B1, . . . , Bn. A reader can choose only one book at a time and after reading it,
the reader places the book at the end of the self. The probability of book Bi

to be selected and placed at the end of the self is pi. Given π ∈ Sn, if π1 . . . πn

denotes π in its one line notation, then under this random walk π can go to π ·
(k, k+1, . . . , n) with probability pπk for 1 ≤ k ≤ n. The stationary distribution
(ω(π))π∈Sn of this model and is given by ω(π) = ∏n

i=1
pπi

pπ1+···+pπi
. Hendricks

[53, 54] studied this in the seventies. The eigenvalues of the transition matrix
for the Tsetlin library problem is well studied. Donnelly [43], Kapoor and
Reingold [60] and, Phatarfod [80] studied the convergence to stationarity for
this random walk.

4. Random-to-random: In this shuffle, a random card is chosen from the deck
with probability 1

n
and place it in a random position chosen with probability

1
n
. Therefore under this shuffle a permutation in Sn can be multiplied on the

right by a permutation of the form (j, j−1, . . . , 1)(1, . . . , i), 1 ≤ i, j ≤ n, with
probability 1

n2 . This was first considered by Diaconis and Saloff-Coste [38].
They proved that the mixing time is O(n log n). Dieker and Saliola [42], used
representation theoretic arguments to find the eigenvalues and eigenvectors of
this card shuffle. Some notable references on the bounds of the mixing time
for this shuffle are the work of Qin and Morris [84], Saloff-Coste and Zúñiga
[88], and Subag [95]. In a recent work, Bernstein and Nestoridi [20] proved
cutoff for this shuffle with cutoff time 3

4n log n− 1
4n log log n.

5. Transpose top with random: Under this random walk, a permutation in Sn

can be multiplied on the right by a transposition of the form (i, n), 1 ≤ i ≤ n,
with probability 1

n
each. Thus this shuffle choose a random card from a deck

of n cards with probability 1
n

and transpose it with the top card of the deck.
This shuffle was first studied by Flatto, Odlyzko and Wales [46]. This shuffle
exhibits the total variation cutoff phenomenon with cutoff time n log n [32, 33].
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6. Adjacent transposition: This shuffle sends a permutation π of Sn to itself with
probability 1

2 or to π · (i, i + 1), 1 ≤ i ≤ n − 1 with probability 1
2(n−1) . As

a card shuffling problem this suggests to transpose a pair of adjacent cards
with probability 1

2 or do nothing with probability 1
2 . Aldous [2], showed that

O(n3 log n) steps are sufficient to mix the deck of n cards whereas Ω(n3)
steps are necessary. In 2004, Wilson [99] proved that 1

π2n
3 log n steps were

necessary and that 2
π2n

3 log n were sufficient, and conjectured that the first
was the correct answer. Lacoin [64] has proved this conjecture by showing
that the deck is mixed after 1

π2n
3 log n(1 + o(1)) shuffles.

• Random walks on hyperoctahedral group: Let Bn be the set of all arrangements of
n distinct objects such that each object has two orientations viz. up and down.
This set Bn forms a group under the composition of bijections, known as the
hyperoctahedral group (Formal definition will be given in Chapter 4). We now
describe two random walk models on the hyperoctahedral group Bn as follows:

1. The paired flip random walk: Suppose we have n oriented (distinct) cards
arranged in a row such that each card has two orientations viz. face up and
face down. Then the paired flip random walk does one of the following:

(a) Choose two cards randomly from the arrangement and transpose them
after a random decision of changing their orientations or not with prob-
ability 1

n2 .
(b) Choose a card and change its orientation with probability 1

2n2 .
(c) Do nothing with probability 1

2n .

This can be thought of as a generalization of the random transposition model.
Schoolfield has shown that n log n steps are sufficient for this walk to reach
near uniformity [90, 91].

2. The arc reversal random walk: Suppose we have an arrangement of n (distinct)
labeled markers on a circle such that each marker has two orientations viz.
up and down. The markers are placed in equally spaced positions on the
circle. For 1 ≤ i, j ≤ n, we write [i,j_] to denote the arc starting at the marker
at position i and ending at the marker at position j in clockwise direction.
In particular, when i = j, then [i,j_] denotes the marker at position i (or
j). At every step this walk does the following: First choose integers i and j

independently and uniformly from the set {1, . . . , n}. Then detach the arc [i,j_]
and reattach it after a random decision of reversing it or not. By reversing an
arc we mean the following: The labeling of the markers are reversed in that arc
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and their orientations are changed. Schoolfield proved that O(n log n) steps
are necessary and sufficient for this walk to reach near uniformity [90, 91].

• Random transvection walk on SLn(Fq): Let Fq be the finite field with q elements.
SLn(Fq) is the group of n× n matrices with elements in Fq and determinant 1. A
transvection [96] is a non-identity element of SLn(Fq), which fixes all the points
in a hyperplane of (Fq)n. An example of a transvection is I + aEij, where I is
the identity matrix of SLn(Fq), a ∈ F∗q (the multiplicative group of Fq) and Eij

is the element of SLn(Fq) with the only non-zero entry 1 at the (i, j)th position.
Hildebrand [55] proved cutoff for the random walk on SLn(Fq) generated by random
transvections with cutoff time n.

1.2 Applications of random walks on finite groups

In general, random walks on finite groups randomize the elements of the group. The
convergence rate related questions for random walks on finite groups are useful in ran-
domization algorithms. This has applications in many subjects including mathematics,
computer science, biology, statistical physics and more. Some of them are listed below:

• Application in mathematics: The randomization processes and their convergent
rate related questions are used in many areas of mathematics viz. number theory
[61] (primality testing [30, 94]), data structure [44], algebraic identities [76] (poly-
nomial [61] and matrix identity verification [98, 48], interactive proof systems [19]),
mathematical programming (faster algorithms for linear programming [76], round-
ing linear program solutions to integer program solutions [61]), graph algorithms
[76], counting and enumeration [78, 67], parallel and distributed computing [76],
probabilistic existence proofs [6, 76] (existence ensured by the arrival of a com-
binatoral object with non-zero probability among objects drawn from a suitable
probability space) and many other places.

• Application in computer science: Applications of randomization process in com-
puter science includes Google page-rank algorithm [24, 65], load balancing pro-
cedure [15, 16] (e.g. distributing uniform load on the servers of a heavy traffic
website), randomized binary searching [61, 93], network designing [1, 31, 62, 85],
generating OTP (one time password), generating CAPTCHA (completely auto-
mated public Turing test to tell computers and humans apart), strong password
suggester algorithm and more.
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• Application in statistical physics: Metropolis Hastings, Glauber dynamics, Markov
chain Monte Carlo statistical methods are based on the convergent rate related
results of finite Markov chains [7, 66, 74]. There are rigorous connections of the
models of finite Markov chain (which includes random walks on finite groups) with
other models in statistical physics. Some examples of such models are the following:
Ising model [28, 66, 82], random-cluster model [47, 52, 82], ice and dimer model
[82], random graph models [6], models related to exclusion processes [28, 66] (in
particular some card shuffling problems can be related to the exclusion process via
a natural projection, see [64] for details), reconstruction problems on trees [72, 75],
non-equilibrium particle systems [28].

• Application in biology: The mixing time for random walks on finite groups has many
applications in biology viz. population genetics [18, 51], DNA shuffling [29, 100],
chromosomes shuffling [45].

1.3 Organization of the thesis

Our models are inspired by the transpose top with random shuffle on the symmetric group
Sn [32, 33, 46]. The models we consider in this thesis, are variants of the transpose top
with random shuffle for the group of even permutations, signed permutations and the
complete monomial group. Our goal is to study the mixing times for these random
walk models. Our method connects these models to the Young-Jucys-Murphy elements
for the underlying group. The other motivation is the landmark work of Diaconis and
Shahshahani [40], which connects representation theory of finite group to probability via
non-commutative Fourier analysis techniques.

In this thesis, we use the Young-Jucys-Murphy elements and the representation theory
of the underlying group to find the spectrum of the transition matrix for the correspond-
ing model. Then we make use of the upper bound lemma [32, Lemma 4.2] to find the
sufficient number of transitions required to reach near stationary distribution. To find
the number of transitions necessary to get close to the stationarity, we consider the num-
ber of fixed points of an action of the underlying group. The organization of this thesis
is the following:

In Chapter 2, we discuss the background theory necessary for this thesis. Starting
with a brief description of representation theory of finite group we discuss basic theory of
discrete time Markov chain on finite state space and other relevant topics in this chapter.

Chapter 3 describes the transpose top-2 with random shuffle on the alternating group
An (group of even permutations of Sn). Suppose we have a deck of cards labelled from 1
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to n, such that the arrangement of the deck is a permutation in An. Then the transpose
top-2 with random shuffle on An is a lazy variant of the following: First transpose the top
two cards, then choose one of them and interchange it with a card randomly chosen from
the remaining (n− 2) cards. In this chapter, we have shown that the cutoff phenomenon
for the transpose top-2 with random shuffle on An, with cutoff time

(
n− 3

2

)
log n.

In Chapter 4, we consider the flip-transpose top with random shuffle on the group
of signed permutations. First we consider this shuffle on the hyperoctahedral group Bn

and then on the demihyperoctahedral group Dn. Both Bn and Dn will be defined in
Chapter 4. Now we describe the flip-transpose top with random shuffle. Suppose there
are n cards labelled from 1 to n and each card has two orientations namely ‘face up’
and ‘face down’. Each arrangement of these cards can be thought of as an element of Bn

(sometimes Dn too, details will be given in Chapter 4). Given a deck of n oriented cards,
the flip-transpose top with random shuffle on Bn is the following: Choose a random card
from the deck and transpose it with the last card after a random decision of flipping both
the cards or not. The flip operation is independent of the choice of the random card.
In this chapter we prove the cutoff phenomenon for the flip-transpose top with random
shuffle on Bn with cutoff time n log n. The flip-transpose top with random shuffle on Dn

is a lazy variant of the following: Choose a random card from the first n − 1 cards of
the deck and transpose it with the last card after a random decision of flipping both the
cards or not. The flip operation is independent of the choice of the random card in this
case also. Furthermore we have shown that the flip-transpose top with random shuffle
on Dn exhibits cutoff phenomenon with cutoff time

(
n− 1

2

)
log n.

We consider the warp-transpose top with random shuffle in Chapter 5. This general-
izes the flip-transpose top with random shuffle (see Remark 5.17). Let G1 ⊆ · · · ⊆ Gn ⊆
· · · be a sequence of finite groups such that |G1| > 2. We consider the complete mono-
mial groups Gn := Gn oSn for each positive integer n, where o denotes the wreath product.
Let e be the identity element of G1 and hence it is the identity element of Gi for all i.
Then the warp-transpose top with random shuffle is a shuffle on the complete monomial
group given as follows: An element of Gn can be multiplied on the right by an element
of the form (e, . . . , e, g; id) or (e, . . . , e, g−1, e, . . . , e, g; (i, n)) for g ∈ Gn, 1 ≤ i < n, with
probability 1

n|Gn| each. In this chapter, we have proved that the mixing time for the
warp-transpose top with random shuffle on Gn is O

(
n log n+ 1

2n log(|Gn| − 1)
)
. More-

over, the warp-transpose top with random shuffle on Gn exhibits cutoff phenomenon with
cutoff time n log n if |Gn| = o(nδ) for all δ > 0.



Chapter 2

Preliminaries

In this chapter, we develop the necessary background to explain the main objective of
this thesis. We begin with the (complex) representation theory of finite groups, with
special focus on symmetric group representations in Section 2.1. In Section 2.2, the
basics of discrete time Markov chains on finite state spaces is discussed. Furthermore,
the mixing time and cutoff phenomenon for finite Markov chain have been introduced in
this section. At the end of this chapter, we discuss the non-commutative Fourier analysis
and the random walks on finite groups in Section 2.3.

2.1 Representation theory background

Let V be a finite-dimensional complex vector space and GL(V ) be the group of all
invertible linear operators from V to itself under composition of linear mappings. Unless
otherwise stated, all the vector spaces considered in this chapter are finite-dimensional.
Elements of GL(V ) can be thought of as invertible matrices over C. Let G be a finite
group. Let I denote the identity element of GL(V ) (i.e. the identity operator on V ) and
1G denote the identity element of G. A (complex) linear representation (ρ, V ) of G is a
homomorphism ρ : G → GL(V ), i.e., ρ(g1g2) = ρ(g1)ρ(g2) for all g1, g2 ∈ G. Therefore
in particular, ρ(1G) = I and ρ(g−1) = ρ(g)−1, g ∈ G. The representation space V is
called the G-module corresponding to the representation ρ. Given ρ, we simply say V is
a representation of G. Two useful examples are given below:

1. Let V be one-dimensional. Then 1 : G → GL(V ) defined by 1(g) 7→ (v 7→ v) for
all v ∈ V and g ∈ G is a representation of G, known as the trivial representation of
G. In fact V one-dimensional implies that GL(V ) is isomorphic to C∗ (the group
of non-zero complex numbers under usual multiplication). Therefore the trivial
representation 1 : G→ C∗ can also be defined by 1(g) = 1 for all g ∈ G.

9
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2. Let C[G] be the group algebra of all formal linear combinations of the elements of
G with complex coefficients, i.e. C[G] =

{∑
g

cgg | cg ∈ C, g ∈ G
}

. Then the right

regular representation R : G −→ GL(C[G]) of G is defined by

R(g)
∑
h∈G

Chh

 =
∑
h∈G

Chhg, Ch ∈ C.

i.e., R(g) is an invertible matrix over C of order |G| × |G|. The left regular repre-
sentation can be defined in a similar fashion.

The dimension of the vector space V is said to be the dimension of the representation
ρ and is denoted by dρ. The trace of the matrix ρ(g) is said to be the character value
of ρ at g and is denoted by χρ(g). A vector subspace W of V is said to be stable (or
invariant) under ρ if ρ(g) (W ) ⊂ W for all g in G. If W is a stable subspace of V under
ρ, then there exists a complement W 0 of W in V which is stable under ρ ([92, Theorem
1]). The representation ρ is irreducible if V has no non-trivial proper stable subspace.
For example the trivial representation defined above is irreducible. Two representations
(ρ1, V1) and (ρ2, V2) of G are are said to be isomorphic if there exists an invertible linear
map T : V1 → V2 such that T ◦ρ1(g) = ρ2(g)◦T for all g ∈ G. i.e., the following diagram
commutes for all g ∈ G:

V1 V1

V2 V2

ρ1(g)

T T

ρ2(g)

Let H be a subgroup of G. The restriction of the representation ρ to H is denoted by
ρ ↓GH and is defined by ρ ↓GH (h) := ρ(h) for all h ∈ H. If χρ is the character of ρ, then
the character of the restriction ρ ↓GH is denoted by χρ ↓GH .

Definition 2.1. Let H be a subgroup of the finite group G and g1H, . . . , g`H be all
the distinct left cosets of H in G. Let ρ be a representation of H. Then the induced
representation ρ ↑GH can be defined in matrix form, as follows:

ρ ↑GH (g) =


ρ(g−1

1 gg1) ρ(g−1
1 gg2) . . . ρ(g−1

1 gg`)
ρ(g−1

2 gg1) ρ(g−1
2 gg2) . . . ρ(g−1

2 gg`)
... ... . . . ...

ρ(g−1
` gg1) ρ(g−1

` gg2) . . . ρ(g−1
` gg`)

 ,

where ρ(g) is the zero matrix if g /∈ H. We denote the character of the induced repre-
sentation ρ ↑GH by χρ ↑GH , where χρ is the character of ρ. Note that the dimension of the
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induced representation ρ ↑GH is [G : H]dρ.

If V1⊗ V2 denotes the tensor product of the (complex) vector spaces V1 and V2, then
the tensor product of two representations ρ1 : G → GL(V1) and ρ2 : G → GL(V2) is a
representation denoted by (ρ1 ⊗ ρ2, V1 ⊗ V2) and defined by,

(ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) = ρ1(g)(v1)⊗ ρ2(g)(v2) for v1 ∈ V1, v2 ∈ V2 and g ∈ G.

Also the direct sum of the representations (ρ1, V1) and (ρ2, V2) is the representation
(ρ1 ⊕ ρ2) : G→ GL(V1 ⊕ V2) defined by,

(ρ1 ⊕ ρ2)(g)(v1 ⊕ v2) = ρ1(g)(v1)⊕ ρ2(g)(v2) for v1 ∈ V1, v2 ∈ V2 and g ∈ G.

Every (complex) linear representation is a direct sum of irreducible representations ([92,
Theorem 1]). Moreover this decomposition is unique up to isomorphism of representation.
Now we state some properties of the character of a representation without proof [81, 87,
92].

Lemma 2.2. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two representations of the
finite group G. Also let χρ1 and χρ2 be their characters respectively. Then we have the
following:

1. The character χρ1⊕ρ2 of the direct sum representation is equal to χρ1 + χρ2.

2. The character χρ1⊗ρ2 of the tensor product representation is equal to χρ1χρ2.

Lemma 2.3. Let G be a finite group. Given the representation (ρ, V ) of G and its
character χρ, one can easily verify the following:

1. If 1G denotes the identity element of G and dρ denotes the dimension of the repre-
sentation (i.e. of V ), then χρ(1G) = dρ.

2. If χρ(g) denote the complex conjugate of χρ(g), then χρ(g−1) = χρ(g) for all g ∈ G.

3. The character values are constants on conjugacy classes. Hence characters are
class functions.

Lemma 2.4 (Schur’s lemma [92, Proposition 5]). Let (ρ1, V1) and (ρ2, V2) be two (com-
plex) irreducible representations of the finite group G. If a linear mapping Φ : V1 → V2

satisfies ρ2(g) ◦ Φ = Φ ◦ ρ1(g) for all g ∈ G, then

1. Φ = 0, when ρ1 and ρ2 are non-isomorphic.
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2. Φ is a scalar multiple of the identity, when V1 = V2 and ρ1 = ρ2.

Definition 2.5. Let G be a finite group and C (G) be the complex vector space of class
functions of G. Then we define the inner product 〈·, ·〉 on C (G) as follows:

〈φ, ψ〉 = 1
|G|

∑
g∈G

φ(g)ψ(g−1) for φ, ψ ∈ C (G).

Lemma 2.6. Let (ρ, V ) (respectively (ρ′, V ′)) be a representation of the finite group G

with character χ (respectively χ′). Then we have

1. (ρ, V ) and (ρ′, V ′) are isomorphic if and only if χ = χ′.

2. V is an irreducible representation of G if and only if 〈χ, χ〉 = 1.

3. If V and V ′ are irreducible, then they are non-isomorphic if and only if 〈χ, χ′〉 = 0.

4. If V = m1W1⊕· · ·⊕m`W` is the decomposition of V into irreducible representations
of ρ, then 〈χ, χ〉 = m2

1 + · · ·+m2
` . Moreover if χWi denotes the irreducible character

of Wi, 1 ≤ i ≤ `, then mi = 〈χ, χWi〉 is called the multiplicity of Wi in the
decomposition of V .

Theorem 2.7 ([92, Theorem 6]). The characters corresponding to the non-isomorphic
irreducible representations of G form an 〈·, ·〉-orthonormal basis of C (G).

Let G be a finite group and Ĝ be the set of equivalence classes (two representations
are equivalent if they are isomorphic) of irreducible representations of G. Then from
Theorem 2.7, we can conclude that |Ĝ| is the dimension of C (G) i.e., the number of
irreducible representations of a finite group is equal to the number of its conjugacy
classes. The regular (true for both left and right) representation of G decomposes into
irreducible representations with multiplicity equal to their respective dimensions [92, p.
18, Corollary 1]. Thus we have,

C[G] ∼= ⊕
ρ∈Ĝ

dρV
ρ, (2.1.1)

where V ρ is the irreducible G-module corresponding to ρ ∈ Ĝ with dimension dρ. Also
from Theorem 2.7 and [92, Proposition 5] we have, |G| =

∑
ρ∈Ĝ

d2
ρ.

Theorem 2.8 (Frobenius reciprocity [87, Theorem 1.12.6]). Let H be a subgroup of the
finite group G and suppose that ψ and χ are characters of H and G respectively. Then

〈ψ ↑GH , χ〉 = 〈ψ, χ ↓GH〉,
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where the left inner product is calculated in G and the right one in H.

2.1.1 Symmetric group representations

Recall that Sn is the group of all bijections on [n] := {1, . . . , n}. Elements of Sn are known
as permutations and the group operation is the composition of permutations. We first
define some combinatorial objects, useful in describing the representation theory of Sn.
We also prove a lemma relevant to these definitions before discussing the representation
theory of Sn.

Definition 2.9. A partition λ of a positive integer n is a weakly decreasing finite se-
quence (λ1, · · · , λr) of positive integers such that

r∑
i=1

λi = n. We write λ ` n to mean λ

is a partition of n. The set of all partitions of n is denoted by Par(n). A partition λ can
be pictorially visualised as a left-justified arrangement of r rows of boxes with λi boxes
in the ith row (English notation). This pictorial arrangement of boxes is known as the
Young diagram of λ. For example there are five partitions of the positive integer 4 viz.
(4), (3,1), (2,2), (2,1,1) and (1,1,1,1). Young diagrams corresponding to the partitions
of 4 are given in Figure 2.1. We use the same notation λ to denote partition and Young
diagram both. It will be clear from the context whether a partition or a Young diagram
is meant. The set of all Young diagrams (there is a unique Young diagram with zero
boxes) is denoted by Y and the set of all Young diagrams with n boxes is denoted by
Yn. A Young tableau of shape λ (or λ-tableau) is obtained by filling (bijectively) the

(4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

Figure 2.1: Young diagrams with 4 boxes.

numbers 1, . . . , n in the boxes of the Young diagram of λ. A λ-tableau is standard if the
entries in its boxes increase from left to right along rows and from top to bottom along
columns. The set of all standard Young tableaux of a given shape λ is denoted by tab(λ)
and the number of standard Young tableaux of shape λ is denoted by fλ. For example,
all standard Young tableaux of shape (3, 1) are listed in Figure 2.2. The content of a
box in row i and column j of a Young diagram is the integer j− i. Given T ∈ tab(λ), let
bT (i) denote the box in T , where the number i resides. Also c(bT (i)) denotes the content
of the box bT (i), 1 ≤ i ≤ n. Given a Young diagram λ, its conjugate λ′ is obtained by



14 2. Preliminaries

1 2 3
4

1 2 4
3

1 3 4
2

Figure 2.2: Standard Young tableaux of shape (3, 1).

reflecting λ with respect to the diagonal consisting of boxes with content 0. A Young
diagram λ is self-conjugate if λ′ = λ. We now prove the following lemma, which will be
useful in later chapters of this thesis.

Lemma 2.10. Let `, k be any two positive integers and a ≥ b ≥ 0 be such that b < `.
For λ ` `, if λ1 denotes the largest part of λ, then

∑
λ``

(fλ)2
(
λ1 − a
`− b

)2k

< e−
2k(a−b)
`−b e`

2e
− 2k
`−b
.

Proof. For ζ ` (`− λ1), recall that ζ1 denotes the largest part of ζ. If ζ1 ≤ λ1, then we

have fλ ≤
(
`
λ1

)
f ζ . Therefore

∑
λ``

(fλ)2
(
λ1 − a
`− b

)2k

is less than or equal to

∑̀
λ1=1

∑
ζ`(`−λ1)
ζ1≤λ1

(
`

λ1

)2

(f ζ)2
(
λ1 − a
`− b

)2k

≤
∑̀
λ1=1

(
`

λ1

)2 (
λ1 − a
`− b

)2k ∑
ζ`(`−λ1)

(f ζ)2

=
`−1∑
u=0

(
`

u

)2 (
1− u+ a− b

`− b

)2k

u!. (2.1.2)

The equality in (2.1.2) is obtained by writing u = `−λ1. Using 1−x ≤ e−x for all x ≥ 0
and

(
`
u

)
≤ `u

u! , the expression in the right hand side of (2.1.2) is less than or equal to

`−1∑
u=0

`2u

u! e
− 2k
`−b (u+a−b) < e−

2k(a−b)
`−b

∞∑
u=0

1
u!
(
`2e−

2k
`−b
)u

= e−
2k(a−b)
`−b e`

2e
− 2k
`−b
.

An immediate corollary of Lemma 2.10 follows from the fact

(fλ)2
(
λ1 − a
`− b

)2k

=
(
`− a
`− b

)2k

, if λ = (`) ` `.

Corollary 2.11. Following the notations and hypothesis of Lemma 2.10, we have

∑
λ``
λ 6=(`)

(fλ)2
(
λ1 − a
`− b

)2k

< e−
2k(a−b)
`−b e`

2e
− 2k
`−b −

(
`− a
`− b

)2k

.

We are now in a position to discuss the representation theory of the symmetric group
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Sn. Unless otherwise stated the field of scalars is considered to be C. The irreducible rep-
resentations of Sn are indexed by the partitions of n [87, Theorem 2.4.6]. The irreducible
Sn-modules are called Specht modules. The Specht module indexed by λ ` n is denoted
by Sλ. The basis vectors of Sλ are indexed by the standard Young tableaux of shape λ [87,
Theorem 2.5.2] and hence dim(Sλ) = fλ. An important property of symmetric group
representation is the simple branching of the restriction (using Theorem 2.8 (Frobenius
Reciprocity) simple branching can be proved for the induced representation also). The
restriction of an irreducible Sn-module to Sn−1 has a multiplicity-free decomposition into
irreducible Sn−1-module [87, Theorem 2.8.3]. For example taking n = 15, the restriction
of S(5,4,4,2) to S14 is given by the following:

S(5,4,4,2) ↓S15
S14= S(4,4,4,2) ⊕ S(5,4,3,2) ⊕ S(5,4,4,1).

Let λ− be a partition of n− 1 obtained by removing a single inner corner (a corner box
in the Young diagram whose removal leaves a valid Young diagram of some partition)
from the Young diagram of λ ` n. Then the precise statement of the branching rule is
the following:

Sλ ↓SnSn−1= ⊕
λ−
Sλ
−
.

A different approach to the representation theory of Sn has been initiated by Okounkov
and Vershik [77] using the simple branching property. We give a brief description of their
approach because that is relevant for this thesis.

A direct argument shows that the branching from Sn to Sn−1 is multiplicity-free. Now
start with an irreducible Sn-module V . The restriction of V to Sn−1 has multiplicity-
free decomposition into irreducible Sn−1-modules. Again, restriction of each of these
irreducibles to Sn−2 has a multiplicity-free decomposition into irreducible Sn−2-modules.
Iterating this, we get a canonical decomposition of V into irreducible S1-modules i.e.,
one-dimensional subspaces [77, Theorem 2.9]. Thus there is a canonical basis of V . This
basis is named the Gelfand-Tsetlin basis of V . The Gelfand-Tsetlin basis vectors are the
simultaneous eigenvectors of the elements of a maximal commuting subalgebra of C[Sn]
when they act on V . This subalgebra is known as the Gelfand-Tsetlin subalgebra of C[Sn].
Let Zi denote the center of C[Si], 1 ≤ i ≤ n. Then the Gelfand-Tsetlin subalgebra is
defined to be the subalgebra of C[Sn] generated by Z1∪· · ·∪Zn and its dimension is equal
to the sum of dimensions of distinct non-isomorphic irreducible Sn-modules. It follows
that any vector in the Gelfand-Tsetlin basis is uniquely (up to scalar factor) determined
by the eigenvalues of the elements of the Gelfand-Tsetlin algebra on this vector. Thus the
eigenvalues of the elements of a generating set of the Gelfand-Tsetlin algebra determine
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the Gelfand-Tsetlin vectors. The Young-Jucys-Murphy elements (YJM-elements)

Y1 = 0 and Yi = (1, i) + (2, i) + · · ·+ (i− 1, i), 1 < i ≤ n (2.1.3)

form a generating set for the Gelfand-Tsetlin algebra of C[Sn]. Now we give the action
of the Young-Jucys-Murphy elements on the Gelfand-Tsetlin (basis) vectors of the irre-
ducible Sn-module Sλ for λ ` n. The Gelfand-Tsetlin vectors of Sλ are indexed by the
standard Young tableaux of shape λ and let {sT : T ∈ tab(λ)} denotes the Gelfand-
Tsetlin basis of Sλ. Then the action of the Young-Jucys-Murphy elements are given as
follows:

Y1(sT ) = 0 and Yi(sT ) = c(bT (i))sT , 1 < i ≤ n for all T ∈ tab(λ). (2.1.4)

Special importance is given to a particular representation, known as the defining
representation of Sn. We will prove some results for the defining representation of Sn,
which will be useful in the later chapters of this thesis.

Definition 2.12. Let C[n] := {c11+c22+ · · ·+cnn | ci ∈ C for all i}. Then the defining
representation ρdef : Sn → GL(C[n]) of Sn is defined by

ρdef(π) (c11 + c22 + · · ·+ cnn) = c1π(1) + c2π(2) + · · ·+ cnπ(n) for π ∈ Sn.

Throughout this thesis the character of the defining representation of Sn is denoted
by χdef. The defining representation of Sn splits into two irreducible Specht modules S(n)

and S(n−1,1) with multiplicity one each [87, Example 2.1.8 and Theorem 2.11.2], i.e.,

C[n] = S(n) ⊕ S(n−1,1). (2.1.5)

We also recall that ρdef⊗ ρdef : Sn → GL(C[n]⊗ C[n]) is defined as follows:

(ρdef⊗ ρdef)(π) (v1 ⊗ v2) = ρdef(π)(v1)⊗ ρdef(π)(v2) for π ∈ Sn, v1 ⊗ v2 ∈ C[n]⊗ C[n].

From now on, the character of ρdef⊗ ρdef is denoted by χdef⊗χdef. The decomposition
of ρdef⊗ ρdef into irreducible Sn-modules is given below (see [87, Example 2.1.8] and [59,
Lemma 2.9.16]):

C[n]⊗ C[n] = 2S(n) ⊕ 3S(n−1,1) ⊕ S(n−2,2) ⊕ S(n−2,1,1). (2.1.6)

Lemma 2.13. The eigenvalues of
n−1∑
u=1

ρdef((u, n)) are given below:
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Eigenvalues: n− 1 n− 2 −1
Multiplicities: 1 n− 2 1

Proof.
n−1∑
u=1

ρdef((u, n)) is the nth Young-Jucys-Murphy element Yn (see (2.1.3)) of C[Sn].

Therefore the lemma follows from (2.1.5), (2.1.4) and straightforward calculations.

Lemma 2.14. The eigenvalues of
n−1∑
u=1

(
ρdef((u, n))⊗ ρdef((u, n))

)
are given as follows:

Eigenvalues: n− 1 n− 2 −1 0 −2 n− 3
Multiplicities: 2 3(n− 2) 3 n− 2 n− 2 n2 − 5n+ 5

Proof. The matrix
n−1∑
u=1

(
ρdef((u, n))⊗ ρdef((u, n))

)
is the image of Yn (see (2.1.3)) under

the diagonal action of Sn on C[n] ⊗ C[n]. Therefore the lemma follows from (2.1.6),
(2.1.4) and straightforward calculations.

Lemma 2.15. Let βi denote the matrix
n−1∑
u=1

ρdef((u, n)) − ρdef((i, n)) for all 1 ≤ i < n.

Then we have the following:

1. The matrices βi and βj are similar for i 6= j and i, j ∈ {1, . . . , n− 1}.

2. For each i ∈ {1, . . . , n− 1}, the eigenvalues of βi are the following:

Eigenvalues: n− 2 n− 3 −1
Multiplicities: 2 n− 3 1

Proof. We have
(
ρdef((i, j))

)−1
= ρdef((i, j)) as the transposition (i, j) ∈ Sn is self-inverse.

Thus the first part of the lemma follows from the following fact:

ρdef((i, j))βi
(
ρdef((i, j))

)−1

= ρdef((i, j))βi ρdef((i, j))

= ρdef((i, j))
(
n−1∑
u=1

ρdef((u, n))
)
ρdef((i, j))− ρdef((i, j)) ρdef((i, n)) ρdef((i, j))

=
n−1∑
u=1

ρdef((i, j)(u, n)(i, j))− ρdef((i, j)(i, n)(i, j)) =
n−1∑
u=1

ρdef((u, n))− ρdef((j, n)) = βj.

The eigenvalues of β1, β2, . . . , βn−1 are the same by the first part of this lemma. Therefore
to prove the second part it is enough to find the eigenvalues of β1. Let us consider the
linearly independent vectors v1, v2, v3, . . . , vn−1, vn of C[{1, . . . ,n}]. The eigenvalues of
β1 are obtained from Table 2.1.
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Eigenvector Action of β1 on eigenvector Eigenvalues
v1 = 1 + 2 + · · ·+ n β1(v1) = (n− 2)v1 n− 2

v2 = 1 β1(v2) = (n− 2)v2 n− 2
vi = i−2 β1(vi) = (n− 3)vi n− 3

for 3 ≤ i ≤ n− 1 for 3 ≤ i ≤ n− 1 for 3 ≤ i ≤ n− 1
vn = v1 − v2 − (n− 1) n β1(vn) = (−1)vn −1

Table 2.1: Eigenvectors and eigenvalues of β1.

2.2 Probabilistic background

In this section we discuss discrete time Markov chain with finite state space. We state
the results which will be useful in the later chapters. Most of the notations of this section
are borrowed from [66].

Definition 2.16. Let Ω be a finite set. A sequence of random variables X0, X1, . . . is
said to be a discrete time Markov chain with state space Ω if for all x, y ∈ Ω, all k ≥ 1,
and all events Hk−1 := ∩

0≤s<k
{Xs = xs} satisfying P(Hk−1 ∩ {Xk = x}) > 0, we have

P(Xk+1 = y | Hk−1 ∩ {Xk = x}) = P(Xk+1 = y | Xk = x). (2.2.1)

This Markov chain is said to be time-homogeneous if

P(Xk+1 = y | Xk = x) = P(Xk = y | Xk−1 = x) for all k ≥ 1.

The matrix M whose rows and columns are indexed by Ω and entries are given by

M(x, y) := P(Xk+1 = y | Xk = x) for all x, y ∈ Ω,

is said to be the (one-step) transition matrix of this Markov chain.

Equation (2.2.1) says that given the present, the future is independent of the past. We
note that the Markov chains appearing throughout this thesis are time-homogeneous. Let
Dk denote the distribution after k transitions, i.e., Dk is the row vector (P(Xk=x))x∈Ω.
Then Dk = Dk−1M for all k ≥ 1, which implies Dk = D0M

k. In particular if the chain
starts at x ∈ Ω, then its distribution after k transitions is Dk = δxM

k, where δx is defined
on Ω as follows:

δx(u) =

1 if u = x,

0 if u 6= x.

i.e., P(Xk = y | X0 = x) = Mk(x, y). A Markov chain is said to be irreducible if it is
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possible for the chain to reach any state starting from any state using only transitions of
positive probabilities. The period of a state x ∈ Ω is defined to be the greatest common
divisor of the set of all times when it is possible for the chain to return to the starting
state x. The period of all the states of an irreducible Markov chain are the same (see [66,
Lemma 1.6]). An irreducible Markov chain is said to be aperiodic if the common period
for all its states is 1. A probability distribution Π is said to be a stationary distribution
of the Markov chain if ΠM = Π. Any irreducible Markov chain possesses a unique
stationary distribution Π with Π(x) > 0 for all x ∈ Ω [66, Proposition 1.14]. Moreover
if the chain is aperiodic then Dk −→ Π as k −→ ∞ [66, Theorem 4.9]. An irreducible
and aperiodic Markov chain with transition matrix M and stationary distribution Π is
said to be time reversible if Π(x)P (x, y) = Π(y)P (y, x) for all states x, y ∈ Ω. We now
define the total variation distance between two probability measures and prove a lemma,
which is useful for the upcoming chapters.

Definition 2.17. Let µ and ν be two probability measures on Ω. The total variation
distance between µ and ν is defined by

||µ− ν||TV := sup
A⊂Ω
|µ(A)− ν(A)|.

It can be easily seen that ||µ− ν||TV = 1
2

∑
x∈Ω
|µ(x)− ν(x)| (see [66, Proposition 4.2]).

We now recall the definitions of expectation and variance of a random variable with
respect to a probability measure for the shake of clarity and completeness.

Definition 2.18. Let (Ω,F , µ) be a probability space, X be a real valued random
variable defined on Ω, and f : R→ R be a continuous function. Then the expectation of
f(X) with respect to the probability measure µ is denoted by Eµ(f(X)), and is defined
as follows:

Eµ(f(X)) :=
∫

Ω
f(X)dµ, provided the integral exists (i.e., finite). (2.2.2)

Therefore the expectation Eµ(X) of X with respect to the probability measure µ is
defined by setting f(x) = x, x ∈ R in (2.2.2). The variance of X with respect to the
probability measure µ is denoted by Varµ(X), and is defined by

Varµ(X) := Eµ(X2)− (Eµ(X))2 .

In particular if Ω is countable (finite or countably infinite), the σ-algebra F consists of
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all subsets of Ω, and µ is the discrete measure on Ω, then (2.2.2) turns out to be

Eµ(f(X)) :=
∑
x∈Ω

f(x)µ(x), provided the series converges. (2.2.3)

Lemma 2.19. Let µ and ν be two probability measures on Ω, and X be a non-negative
random variable on Ω. Also let Eµ(X) (respectively Eν(X)) denote the expectation of X
with respect to the probability measure µ (respectively ν) and Varµ(X) denote the variance
of X with respect to the probability measure µ. If Eµ(X) > 0, then

||µ− ν||TV ≥ 1− 4 Varµ(X)
(Eµ(X))2 −

2Eν(X)
Eµ(X) .

Proof. For any positive constant a, by Chebychev’s inequality, we have

µ
(
{ω ∈ Ω : |X(ω)− Eµ(X)| ≤ a

√
Varµ(X)}

)
≥ 1− 1

a2 . (2.2.4)

Now we choose a positive constant a such that Eµ(X)−a
√

Varµ(X) > 0. Then by using
Markov’s inequality, we have

ν
(
{ω ∈ Ω : X(ω) ≥ Eµ(X)− a

√
Varµ(X)}

)
≤ Eν(X)
Eµ(X)− a

√
Varµ(X)

(2.2.5)

Now from the definition of total variation distance, we have

||µ− ν||TV = sup
A⊂Ω
|µ(A)− ν(A)|

≥ µ
(
{ω ∈ Ω : |X(ω)− Eµ(X)| ≤ a

√
Varµ(X)}

)
− ν

(
{ω ∈ Ω : |X(ω)− Eµ(X)| ≤ a

√
Varµ(X)}

)
≥ µ

(
{ω ∈ Ω : |X(ω)− Eµ(X)| ≤ a

√
Varµ(X)}

)
− ν

(
{ω ∈ Ω : X(ω) ≥ Eµ(X)− a

√
Varµ(X)}

)
≥ 1− 1

a2 −
Eν(X)

Eµ(X)− a
√

Varµ(X)
. (2.2.6)

The inequality (2.2.6) follows by using (2.2.4) and (2.2.5). Therefore the lemma follows
by choosing a = Eµ(X)

2
√

Varµ(X)
> 0 in (2.2.6).

Remark 2.20. If the positive constant a is such that Eµ(X) − a
√

Varµ(X) > 0, then
the inequality (2.2.6) constitutes a generalize version of Lemma 2.19.
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For an irreducible and aperiodic Markov chain, an interesting quantity is the mini-
mum number of transitions required to reach the stationary distribution Π up to a certain
level of tolerance ε > 0. We first define the maximal distance (over x0 ∈ Ω) between
Mk(x0, ·) and Π as follows:

d(k) := max
x∈Ω
||Mk(x, ·)− Π||TV.

Also for ε > 0, the ε-mixing time is defined by

tmix(ε) := min {k : d(k) ≤ ε}.

Definition 2.21. Given a sequence of discrete time Markov chains with finite state
spaces, if t(n)

mix(ε) denote the ε-mixing time for the nth chain, then we say that the
sequence satisfies the cutoff phenomenon if for all ε ∈ (0, 1) the following holds:

1. lim
n→∞

t
(n)
mix =∞,

2. lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1.

In this case the cutoff time τn is defined to be t(n)
mix(ε).

This says that for sufficiently large n the mixing time does not depend on the tolerance
level ε. In other words the distribution after k transitions is very close to the stationary
distribution if k = τn but too far from the stationary distribution if k < τn. We follow
an equivalent definition for cutoff phenomenon, which will be given in Section 2.3.

2.3 Non-commutative Fourier analysis and random
walks on finite groups

Let p and q be two probability measures on a finite group G. We define the convolution
p ∗ q of p and q by

(p ∗ q)(x) :=
∑
y∈G

p(xy−1)q(y).

Let (ρ, V ) be a (complex) linear representation of G. Then the Fourier transform p̂ of p
at ρ is defined by the following matrix

p̂(ρ) :=
∑
x∈G

p(x)ρ(x).



22 2. Preliminaries

It can be easily seen that (̂p ∗ q)(ρ) = p̂(ρ)q̂(ρ). In particular for the right regular
representation R of G, the matrix p̂(R) can be thought of as the action of the group
algebra element

∑
g∈G

p(g)g on C[G] by multiplication on the right.

A random walk on a finite group G driven by a probability measure p is a Markov
chain with state space G and transition probabilities Mp(x, y) = p(x−1y), x, y ∈ G.
It can be easily seen that the transition matrix Mp is the transpose of p̂(R) and the
distribution after kth transition will be p∗k (convolution of p with itself k times) i.e., the
probability of getting into state y starting at state x after k transitions is p∗k(x−1y).

Proposition 2.22 ([89, Proposition 2.3]). The random walk on G driven by p is irre-
ducible if and only if the support of p generates G.

Proof. Let Γ be the support of p. Suppose that Γ generates G. Therefore given any
two arbitrary elements x, y ∈ G, x−1y can be written as γ1γ2 . . . γt for γ1, γ2, . . . , γt ∈ Γ.
Thus p∗t(x−1y) ≥ p(γ1)p(γ2) . . . p(γt) > 0 and the random walk is irreducible.

Conversely let g ∈ G be chosen arbitrarily. Suppose that the random walk on G

driven by p is irreducible. Then there exists a positive integer s such that M s
p (x, xg) =

p∗s(g) > 0 for x ∈ G. This implies that, there exist g1, . . . , gs in the support of p such
that g = g1 . . . gs. Hence the proposition follows.

Proposition 2.23 (see, for instance [89]). The stationary distribution for an irreducible
random walk on G driven by p, is the uniform distribution UG on G.

Proof. The random walk on G driven by p in irreducible. Thus it possesses a unique
stationary distribution. Therefore the proposition follows from the following fact.

∑
x∈G

Mp(x, y) =
∑
x∈G

p(x−1y) = 1, for all y ∈ G.

The irreducible random walk on G driven by p is time reversible if and only if
Mp(x, y) = Mp(y, x) for all x, y ∈ G i.e., if and only if p(x) = p(x−1) for all x in G

(this condition is also known as symmetry of p). From now on, the uniform distribution
on group G will be denoted by UG. For the random walk on G driven by p, it is enough
to focus on ||p∗k − UG||TV because,

||Mk
p (x, ·)− UG||TV = ||Mk

p (y, ·)− UG||TV

for any two elements x, y ∈ G. We now state the Diaconis-Shahshahani upper bound
lemma [32, Lemma 4.2]. This lemma has been used in the upcoming chapters, to find
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the sufficient number of transitions required for our random walk models to reach the
stationary distribution.

Lemma 2.24 (Upper bound lemma, [32, Lemma 4.2]). Let p be a probability measure
on a finite group G such that p(x) = p(x−1) for all x ∈ G. Suppose the random walk on
G driven by p is irreducible and aperiodic. Then we have the following

||p∗k − UG||2TV ≤
1
4
∑
ρ 6=1

dρ Tr
(
(p̂(ρ))2k

)
,

where the sum is over all non-trivial irreducible representations ρ of G and dρ is the
dimension of ρ.

Definition 2.25. Let {Gn}∞0 be a sequence of finite groups and pn be a probability
measure on Gn for each n. Consider the sequence of irreducible and aperiodic random
walks on Gn driven by pn. We say that the total variation cutoff phenomenon holds for
the family {(Gn, pn)}∞0 if there exists a sequence {τn}∞0 of positive real numbers such
that the following hold:

1. lim
n→∞

τn =∞,

2. For any ε ∈ (0, 1) and kn = b(1 + ε)τnc, lim
n→∞

||p∗knn − UGn||TV = 0 and

3. For any ε ∈ (0, 1) and kn = b(1− ε)τnc, lim
n→∞

||p∗knn − UGn||TV = 1.

Here bxc denotes the floor of x (the largest integer less than or equal to x).

Informally, we will say that {(Gn, pn)}∞0 has a total variation cutoff at time τn.
Roughly the cutoff phenomenon depends on the multiplicity of the second largest eigen-
value of the transition matrix [34].

Proposition 2.26. Following the notations of Definition 2.25, let t(n)
mix(ε) be the ε-mixing

time for the random walk on Gn driven by pn (ε ∈ (0, 1) is arbitrary). Then the conditions
of Definition 2.25 are equivalent to the following conditions:

lim
n→∞

t
(n)
mix(ε) =∞ and lim

n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1.

Proof. Let us choose ε ∈ (0, 1) arbitrarily and assume the conditions of Definition 2.25.
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Then for ε = 1
n
, there exists positive integers N0, N1, N2 such that

n ≥ N0 =⇒ τn > 1 > 0,
n ≥ N1 =⇒ − ε < ||p∗b(1+ε)τnc

n − UGn||TV < ε

=⇒ t
(n)
mix(ε) ≤ b(1 + ε)τnc ≤ (1 + ε)τn,

n ≥ N2 =⇒ ε < ||p∗b(1−ε)τncn − UGn||TV < 2− ε
=⇒ t

(n)
mix(ε) > b(1− ε)τnc > (1− ε)τn − 1.

Therefore we have the following:

1− 1
n
− 1
τn

<
t
(n)
mix(ε)
τn

≤ 1 + 1
n

for all n ≥ max{N0, N1, N2} =⇒ lim
n→∞

t
(n)
mix(ε)
τn

= 1.

Hence the conditions given in the statement hold because of the arbitrariness of ε.
Conversely, assume the conditions given in the statement are true. Now choose

ε, ε ∈ (0, 1) arbitrarily. Then

b(1 + ε)t(n)
mix(ε)c ≥ t

(n)
mix(ε) =⇒ ||p∗b(1+ε)t(n)

mix(ε)c
n − UGn||TV < ε for all n ≥ 1.

Since ε ∈ (0, 1) was chosen arbitrarily, we can conclude that,

lim
n→∞

||p∗b(1+ε)t(n)
mix(ε)c

n − UGn||TV = 0.

Again lim
n→∞

t
(n)
mix(ε) = ∞ and lim

n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1 implies lim
n→∞

b(1− ε)t(n)
mix(ε)c

t
(n)
mix(1− ε)

= 1 − ε.

Therefore there exists positive integer N such that

n ≥ N =⇒ (1− 2ε)t(n)
mix(1− ε) < b(1− ε)t(n)

mix(ε)c < t
(n)
mix(1− ε)

=⇒ ||p∗b(1−ε)t
(n)
mix(ε)c

n − UGn||TV > 1− ε.

Thus arbitrariness of ε ∈ (0, 1) implies the following:

lim
n→∞

||p∗b(1−ε)t
(n)
mix(ε)c

n − UGn||TV = 1.

Thus the conditions of Definition 2.25 hold by choosing τn = t
(n)
mix(ε).

Remark 2.27. Proposition 2.26 shows that Definition 2.21 and Definition 2.25 are equiv-
alent.



Chapter 3

The transpose top-2 with random
shuffle

In this chapter we study the transpose top-2 with random shuffle on An. We introduce
the transpose top-2 with random shuffle in Section 3.1 and study its basic properties. We
find the spectrum of the transition matrix of this shuffle in Section 3.2. In Section 3.3, we
give an upper bound for the total variation distance of the distribution after k transitions
from the stationary distribution and prove that the mixing time is O

((
n− 3

2

)
log n

)
. In

Section 3.4, we obtain a lower bound for the total variation distance of the distribution
after k transitions from the stationary distribution and prove the cutoff phenomenon.

3.1 Introduction

Recall that the symmetric group, denoted Sn, is the set of all bijections of the set [n]. The
set Sn forms a group under composition. Elements of Sn are also known as permutations.
A permutation in Sn which interchanges two elements of [n] and fixes the rest is called
a transposition. A permutation in Sn is said to be an even permutation if it can be
expressed as a product of an even number of transpositions (not necessarily disjoint).
The set of all even permutations in Sn forms a subgroup of the symmetric group, known
as the alternating group and is denoted by An. The transpose top-2 with random shuffle
on An is a random walk on An driven by a probability measure PA on An defined as
follows:

PA(π) =



1
2n−3 , if π = id, the identity permutation,

1
2n−3 , if π = (i, n− 1, n) for i ∈ {1, . . . , n− 2},

1
2n−3 , if π = (i, n, n− 1) for i ∈ {1, . . . , n− 2},

0, otherwise.

(3.1.1)

25
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This shuffle can also be described as a card shuffling problem. Suppose we have a deck
of cards labelled from 1 to n such that the arrangement of the deck is a permutation
in An. Then the transpose top-2 with random shuffle on An is a lazy variant of the
following: First transpose the top two cards, then choose one of them and interchange
it with a card randomly chosen from the remaining (n − 2) cards. More formally, any
permutation in An can either go to itself or be multiplied on the right by a 3-cycle of
the form (i, n− 1, n) or (i, n, n− 1) with probability 1

2n−3 .

Proposition 3.1. The transpose top-2 with random shuffle on An is irreducible and
aperiodic.

Proof. We know that the 3-cycles generate An. Let a, b, c be any three distinct integers
from {1, 2, . . . , n}. If none of a, b, c is (n− 1) or n, we have,

(a, b, c) = (c, n, n− 1)(a, b, n− 1)(c, n− 1, n)
= (c, n, n− 1)(b, n, n− 1)(a, n− 1, n)(b, n− 1, n)(c, n− 1, n).

If one of a, b, c is (n− 1) or n, without loss of any generality we may assume c is either
(n− 1) or n and we have the following,

(a, b, n− 1) = (b, n, n− 1)(a, n− 1, n)(b, n− 1, n), and
(a, b, n) = (b, n− 1, n)(a, n, n− 1)(b, n, n− 1).

If any two of a, b, c are (n − 1) and n, then (a, b, c) takes the form ( · , n − 1, n) or
( · , n, n−1). Therefore the support of the measure PA generates An and hence the chain
is irreducible (Proposition 2.22). Given any π ∈ An, the set of all times when it is possible
for the chain to return to the starting state π contains the integer 1 (∵ PA(id) 6= 0).
Therefore the period of the state π is 1 and hence from irreducibility all the states of
this chain have period 1. Thus this chain is aperiodic.

We have seen in Chapter 2 that there exists a unique stationary distribution for an
irreducible Markov chain. Moreover if the chain is aperiodic then the distribution af-
ter the kth transition converges to the stationary distribution as k → ∞ [66, Theorem
4.9]. Therefore, Proposition 3.1 gives an affirmative answer to the question of existence
and uniqueness of a stationary distribution. It also says that after a large number of
transitions the distribution of the chain behaves like the stationary distribution. The sta-
tionary distribution for the random walk on An driven by PA is the uniform distribution
on An (Proposition 2.23). Thus the distribution after kth transition for the transpose
top-2 with random shuffle converges to UAn as k →∞.
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3.2 Spectrum for the transpose top-2 with random
operator

Let P = id +
n−2∑
i=1

((i, n− 1, n) + (i, n, n− 1)) ∈ C[An]. Recall that P̂A(R) is the Fourier

transform of the probability measure PA at the right regular representation R of An,
and can be written as P̂A(R) = 1

2n−3P . Here we consider the action of the operator
P on C[An] by multiplication on the right. To obtain the eigenvalues of P , we use the
representation theory of An. Most of the notations here are borrowed from Ruff [86]. We
now define the Young-Jucys-Murphy elements for An and establish its connection to P .

Definition 3.2 (Ruff [86]). The Young-Jucys-Murphy elements XA
1 , . . . , X

A
n ∈ C[An] are

defined by XA
1 = 0, XA

2 = id and XA
i = (1, 2)Yi for i ≥ 3, where Y1, Y2, . . . Yn are the

usual Young-Jucys-Murphy elements (defined in (2.1.3)) for Sn.

Let us denote si = (i, i+ 1) for 1 ≤ i < n. Then {s1, . . . , sn−1} is a set of generators
of the symmetric group Sn. An is generated by t2, . . . , tn−1, where ti = (1, 2)si for
i ∈ {2, . . . , n − 1} [86, Remark 2.3]. As the generators s1, . . . , sn−1 of the symmetric
group satisfy

siYj = Yjsi, siYi = Yi+1si − id for all 1 ≤ i < n with |i− j| > 1,

we have the following:

tiX
A
i = XA

i+1ti − id for all 3 ≤ i < n.

Lemma 3.3. P = id if n = 2, P = id +XA
3 if n = 3 and for n > 3, we have

P = tn−1
(
XA
n +XA

n−1

)
.

Proof. The cases of n = 2, 3 are just verification. We prove this lemma for n > 3.

P = id +
n−2∑
i=1

((i, n− 1, n) + (i, n, n− 1))

= id +
n−2∑
i=1

((n, n− 1)(n, i) + (n− 1, n)(n− 1, i))

= (n, n− 1)
(
n−1∑
i=1

(n, i) +
n−2∑
i=1

(n− 1, i)
)

= sn−1 (Yn + Yn−1) = (1, 2)sn−1(1, 2) (Yn + Yn−1) = tn−1
(
XA
n +XA

n−1

)
.
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Remark 3.4. We note that XA
i X

A
j = XA

j X
A
i for all 1 ≤ i, j ≤ n and the common

eigenvectors for XA
i ’s form a basis for the irreducible representations of An.

Let us recall that Par(n) denotes the set of all partitions of n. Let λ ` n. Also recall
that λ′ is the conjugate of the partition λ and tab(λ) denotes the set of all standard
Young tableaux of shape λ. A standard Young tableau T is said to be an upper standard
Young tableau if c(bT (2)) = 1, where we recall that c(bT (2)) is the content of the box
in T containing 2. The collection of all upper standard tableaux of a given shape λ is
denoted by UStd(λ).

Lemma 3.5. For n > 1, the cardinality of ∪
λ`n

UStd(λ) is half the cardinality of ∪
λ`n

tab(λ).
Moreover, for self-conjugate λ ` n we have, |UStd(λ) | = 1

2 | tab(λ)|.

Proof. Let us consider the set LStd(λ) := {T ∈ tab(λ) | c(bT (2)) = −1}. Then by
sending each element of ∪

λ`n
UStd(λ) to its transpose (i.e. reflecting it with respect to the

diagonal containing boxes with content 0), we have a one to one correspondence between
∪
λ`n

UStd(λ) and ∪
λ`n

LStd(λ). Thus
∣∣∣∣ ∪
λ`n

UStd(λ)
∣∣∣∣ = 1

2

∣∣∣∣ ∪
λ`n

tab(λ)
∣∣∣∣ follows from

(
∪
λ`n

UStd(λ)
)
∩
(
∪
λ`n

LStd(λ)
)

= φ and
(
∪
λ`n

UStd(λ)
)
∪
(
∪
λ`n

LStd(λ)
)

= ∪
λ`n

tab(λ).

Also, for self-conjugate λ ` n, UStd(λ)∪LStd(λ) = tab(λ) and the same map as above
gives a bijection from LStd(λ) to UStd(λ)). Therefore, |UStd(λ)| = 1

2 |tab(λ)|.

We now describe all the irreducible representations of An (for more details, see [86]).
Corresponding to each non-self-conjugate partition λ of n, there is an irreducible rep-
resentation Dλ of An. Given any non-self-conjugate partition λ of n, the irreducible
representations Dλ and Dλ′ of An are isomorphic. For each self-conjugate partition λ

of n, there are two non-isomorphic irreducible representations D+
λ and D−λ of An. All

the irreducible representations of An are given by Dλ, λ ` n non-self-conjugate and
D±λ , λ ` n self-conjugate. The basis elements of Dλ are identified by the elements of
UStd(λ)∪UStd(λ′) for non-self-conjugate λ ` n and that of D±λ are identified by the
elements of UStd(λ) for self-conjugate λ ` n. Therefore we have the following:

dim(Dλ) = |UStd(λ)|+ |UStd(λ′)| = |tab(λ)| = fλ, for non-self-conjugate λ ` n and

dim(D+
λ ) = dim(D−λ ) = |UStd(λ)| = 1

2 |tab(λ)| = 1
2f

λ, for self-conjugate λ ` n.
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Let us consider two subsets CPar(n) and NCPar(n) of Par(n) defined as follows:

CPar(n) = {λ ∈ Par(n) | λ = λ′} and

NCPar(n) =
{
λ ∈ Par(n)

∣∣∣∣∣λ 6= λ′,
λ contains more boxes of positive
content than that of λ′

}
.

Recall from (2.1.1) that, in the regular representation of a finite group G, each irreducible
representation of G occurs with multiplicity equal to its dimension. Therefore from the
above discussion, we have the following:

C[An] ∼=
(

⊕
λ∈NCPar(n)

fλDλ

)
⊕
(

⊕
λ∈CPar(n)

fλ

2 D+
λ

)
⊕
(

⊕
λ∈CPar(n)

fλ

2 D−λ

)
. (3.2.1)

Now we discuss the actions of the generators ti, 3 ≤ i ≤ n − 1 and the Young-Jucys-
Murphy elements on the irreducible representations of An (we don’t need the action of
t2 on irreducible representations of An in this work). Given any partition λ of n, let us
define α = (a1, . . . , an) := (c(bTα(1)), . . . , c(bTα(n))), where Tα ∈ UStd(λ)∪UStd(λ′) (=
UStd(λ), if λ is self-conjugate) and c(bTα(i)) denotes the content of the box containing i in
Tα. Ruff [86] showed that for λ ∈ NCPar(n), if vα is the basis element ofDλ corresponding
to Tα ∈ UStd(λ)∪UStd(λ′), then XA

i vα = aivα for all 1 ≤ i ≤ n. Moreover for 3 ≤ i < n,
the action of ti on vα is given as follows:

tivα = 1
ai+1 − ai

vα +
√
−1 (−1)α,i

√
1− 1

(ai+1 − ai)2 vtiα, (3.2.2)

where

(−1)α,i =

1 if ai < ai+1,

−1 if ai > ai+1,
and

tiα := (a1, . . . , ai−1, ai+1, ai, ai+2, . . . an) if ai+1 6= ai ± 1. We don’t need tiα when ai+1 =
ai ± 1, because the coefficient of vtiα in the expression (3.2.2) is zero in that case.

Also for λ ∈ CPar(n), if v+
α (respectively v−α ) is the basis element of D+

λ (respectively
D−λ ) corresponding to Tα ∈ UStd(λ), then the actions of XA

i , 1 ≤ i ≤ n and ti, 3 ≤ i < n

on v±α are same as their respective actions on vα in case of λ ∈ NCPar(n). Now we are
in a position to find the eigenvalues of P .

Theorem 3.6. For a non-self-conjugate partition λ ` n, each Tα ∈ UStd(λ)∪UStd(λ′)
provides an eigenvalue of P. Let α = (a1, . . . , an) := (c(bTα(1)), . . . , c(bTα(n))). Then

1. 2an − 1 is an eigenvalue of P, if an = an−1 + 1.

2. −(2an + 1) is an eigenvalue of P, if an = an−1 − 1.
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3. ±(an + an−1) are eigenvalues of P, if an 6= an−1 ± 1 and an−1 < an.

Moreover, each eigenvalue has multiplicity fλ.

Proof. The theorem is trivially true for n = 2, 3. Now we prove the theorem for n > 3.
For any non-self-conjugate λ ` n, we can choose a basis element vα of Dλ corresponding
to Tα ∈ UStd(λ)∪UStd(λ′) such that XA

i vα = aivα for all i = 1, . . . , n. Now a basis B
of Dλ is the union of the following three sets:

B1 := {vα | an = an−1 + 1}, B2 := {vα | an = an−1 − 1}, B3 := {vα | an 6= an−1 ± 1}.

For any upper standard Young tableau Tα ∈ B3, we have another upper standard Young
tableau Ttn−1α ∈ B3. Therefore, the cardinality of B3 is even and B3 = {vα, vtn−1α | an 6=
an−1 ± 1, an−1 < an}. Again for an 6= an−1 ± 1, from (3.2.2), we have

C-Span {vα, vtn−1α} = C-Span {vα, tn−1vα}.

Therefore B1 ∪ B2 ∪ {vα, tn−1vα | an 6= an−1 ± 1, an−1 < an} is a basis for Dλ. Let
us consider the ordered basis B′ of Dλ in which we first collect all the vectors from
B1. Then all the vectors from B2 and finally the pair of vectors (vα, tn−1vα) from
{vα, tn−1vα | an 6= an−1 ± 1, an−1 < an}. For vα ∈ B1,

Pvα = tn−1
(
XA
n−1 +XA

n

)
vα, by Lemma 3.3

= (an−1 + an)tn−1vα

= (an−1 + an)vα, by (3.2.2)
= (2an − 1)vα.

Again for vα ∈ B2,

Pvα = tn−1
(
XA
n−1 +XA

n

)
vα, by Lemma 3.3

= (an−1 + an)tn−1vα

= −(an−1 + an)vα, by (3.2.2)
= −(2an + 1)vα.

Therefore P acts on B1 and B2 diagonally. Now for vα ∈ B3, using tn−1X
A
n−1 = XA

n tn−1−
id and t2n−1 = id, the matrix for the action of P on {vα, tn−1vα} is given below,

 0 an−1 + an

an−1 + an 0

 . (3.2.3)
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The eigenvalues of the above 2×2 matrix (given in (3.2.3)) are ±(an−1 +an). Therefore,
the matrix of P with respect to the ordered basis B′ , is a block diagonal matrix, where
first |B1| blocks are the 1 × 1 matrix (2an − 1) corresponding to each α in {α | an =
an−1 + 1}, next |B2| blocks are the 1× 1 matrix −(2an + 1) corresponding to each α in
{α | an = an−1−1} and last |{α : an 6= an−1 ± 1, an−1 < an}| blocks are the 2×2 matrix
(3.2.3) corresponding to each α in {α : an 6= an−1 ± 1, an−1 < an}. The argument for
the multiplicity of the eigenvalues follows from (3.2.1). Thus the theorem follows.

Remark 3.7. Let λ be a non-self-conjugate partition of n. Then Theorem 3.6 shows
that the sets of eigenvalues obtained by considering the partitions λ and λ′ are the same.

Theorem 3.8. For a self-conjugate partition λ ` n, each Tα ∈ UStd(λ) provides an
eigenvalue of P. If α = (a1, . . . , an) := (c(bTα(1)), . . . , c(bTα(n))), then the eigenvalue
corresponding to Tα is given as follows:

1. 2an − 1 is an eigenvalue of P, if an = an−1 + 1.

2. −(2an + 1) is an eigenvalue of P, if an = an−1 − 1.

3. ±(an + an−1) are eigenvalues of P, if an 6= an−1 ± 1 and an−1 < an.

Moreover, each eigenvalue has multiplicity | tab(λ)| = dim(D+
λ ) + dim(D−λ ).

Proof. The proof is similar to the proof of Theorem 3.6. Proof of this theorem follows by
replacing Dλ, vα and fλ by D±λ , v±α and fλ

2 respectively, in the proof of Theorem 3.6.

Corollary 3.9. For a partition λ ` n, each Tα ∈ UStd(λ)∪UStd(λ′) provides an eigen-
value of P. If α = (a1, . . . , an) := (c(bTα(1)), . . . , c(bTα(n))), then the eigenvalue corre-
sponding to Tα is given as follows:

1. 2an − 1 is an eigenvalue of P, if an = an−1 + 1.

2. −(2an + 1) is an eigenvalue of P, if an = an−1 − 1.

3. ±(an + an−1) are eigenvalues of P, if an 6= an−1 ± 1 and an−1 < an.

Moreover, each eigenvalue has multiplicity fλ := |tab(λ)|.

Proof. If λ ` n is non-self-conjugate, then the result follows directly from Theorem 3.6.
Now if λ ` n is self-conjugate, then we have UStd(λ) = UStd(λ)∪UStd(λ′). Therefore,
in the case of self-conjugate λ, this result follows from Theorem 3.8.

Remark 3.10. Corollary 3.9, together with (3.2.1), determines the spectrum of P and
hence that of P̂A(R).
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Remark 3.11. The Cayley graph of An with generating set {(1, 2, i), (1, i, 2) | 3 ≤ i ≤ n}
is well studied in the graph theory literature. Let A denote the adjacency matrix of
this graph. The second largest eigenvalue of A has been computed by Xueyi Huang
and Qiongxiang Huang [58]. Our result provides an alternative method to obtain the
eigenvalues of A . The matrix A is the matrix of the right multiplication action of
(1, n)(2, n− 1) (P − id) (2, n− 1)(1, n) on C[An]. Thus A is similar to the matrix P − I,
where I is the identity matrix of order n!

2 . Hence A and P − I have the same spectrum.
Thus Corollary 3.9, together with (3.2.1), determines all the eigenvalues of A .

Example 3.12. If n = 4, then eigenvalues of P̂A(R) are the following:

Eigenvalues: 1 3
5

1
5 −1

5

Multiplicities: 1 3 3 5

For the only element T(0,1,2,3) = 1 2 3 4 of UStd((4))∪UStd((1, 1, 1, 1)) we have,
a3 = 2, a4 = 3. Hence a4 = a3 + 1 and the eigenvalue of P̂A(R) corresponding to T(0,1,2,3)

is 1 with multiplicity 1. The elements of UStd((3, 1)) ∪ UStd((2, 1, 1)) are listed below:

T(0,1,2,−1) =
1 2 3
4 , T(0,1,−1,2) =

1 2 4
3 , T(0,1,−1,−2) =

1 2
3
4

.

Now a3 = 2, a4 = −1 for T(0,1,2,−1) and a3 = −1, a4 = 2 for T(0,1,−1,2). Thus for both
T(0,1,2,−1) and T(0,1,−1,2) we have a4 6= a3 ± 1. In order to satisfying a3 < a4 we choose
T(0,1,−1,2) and the eigenvalues of P̂A(R) in this case are ±1

5 with multiplicity 3 each. Again
for T(0,1,−1,−2) we have a3 = −1, a4 = −2 which satisfies a4 = a3−1. Thus the eigenvalue
of P̂A(R) corresponding to T(0,1,−1,−2) is 3

5 with multiplicity 3. Finally considering the
only element

T(0,1,−1,0) =
1 2
3 4

of UStd((2, 2)) we have a3 = −1, a4 = 0 and thus a4 = a3 + 1. Therefore the eigenvalue
of P̂A(R) corresponding to T(0,1,−1,0) is −1

5 with multiplicity 2.

Proposition 3.13. Given n ≥ 4, the eigenvalues of P̂A(R) for the (n− 1)-dimensional
irreducible representation D(n−1,1) (or D(2,1n−2)) are given as follows:

Eigenvalues: n−3
2n−3 − n−3

2n−3
2n−5
2n−3

Multiplicities: n− 1 n− 1 (n− 3)(n− 1)
Proof. First consider the elements

1 2 ··· n-1 n

i , 3 ≤ i ≤ n− 2
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of UStd((n− 1, 1)). Each of these elements satisfies an = an−1 + 1 as an−1 = n− 3, an =
n − 2. Therefore the eigenvalues of P̂A(R) corresponding to each of these elements are
2n−5
2n−3 with multiplicity n − 1 each. There are n − 4 such upper standard tableaux, thus
multiplicity of the eigenvalue 2n−5

2n−3 is (n− 4)(n− 1). Now considering the element

1 2 ··· n-1
n

of UStd((n−1, 1)), we have an−1 = n−2, an = −1 and thus an 6= an−1±1 but an−1 ≮ an.
Therefore we do not select this upper standard tableaux. For the element

1 2 ··· n

n-1

of UStd((n−1, 1)), we have an−1 = −1, an = n−2. Hence this upper standard tableaux
satisfies an 6= an−1± 1 and an−1 < an. Therefore the eigenvalues of P̂A(R) corresponding
to this upper standard tableaux are ± n−3

2n−3 with multiplicity n − 1 each. Finally we
consider the only element

1 2
3
4...
n-1
n

of UStd(2, 1n−2). This upper standard tableaux satisfies an = an−1 − 1 as an−1 =
−(n − 3), an = −(n − 2). Thus the eigenvalue of P̂A(R) corresponding to this upper
standard tableaux is 2n−5

2n−3 with multiplicity n− 1.

3.3 Upper bound of the mixing time

In this section we find an upper bound of ||P ∗kA −UAn||TV for k ≥
(
n− 3

2

)
(log n+c), c > 0.

This gives an upper bound for the mixing time. The main theorem of this section is the
following.

Theorem 3.14. For the random walk on An driven by PA, we have the following:

1. ||P ∗kA − UAn||TV < 1√
2e
−c, for k ≥ (n− 3

2)(log n+ c) and c > 0.

2. lim
n→∞

||P ∗knA − UAn||TV = 0, for any ε ∈ (0, 1) and kn = b(1 + ε)(n− 3
2) log nc.
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Proof. We know that the trace of the (2k)th power of a matrix is the sum of (2k)th
powers of its eigenvalues. Now for λ ` n we can say by Corollary 3.9, as Tα ranges over
UStd(λ)∪UStd(λ′), the eigenvalues of P̂A(R) are

• 2an−1
2n−3 = an+an−1

2n−3 , if an = an−1 + 1,

• − (2an+1)
2n−3 = −an+an−1

2n−3 , if an = an−1 − 1,

• ± (an+an−1)
2n−3 = ±an+an−1

2n−3 if an 6= an−1 ± 1 and an−1 < an,

where an−1 (respectively an) is the content of (n−1) (respectively n) in Tα. Lemma 2.24
implies:

4 ||P ∗k − UAn||2TV ≤
∑

λ∈NCPar(n)\{(n)}

fλ ∑
Tα∈UStd(λ)∪UStd(λ′)

(
an + an−1

2n− 3

)2k


+
∑

λ∈CPar(n)

fλ
2

∑
Tα∈UStd(λ)

(
an + an−1

2n− 3

)2k
+ fλ

2
∑

Tα∈UStd(λ)

(
an + an−1

2n− 3

)2k
 .

(3.3.1)

Before coming to the main part of the proof, let us consider the leading term in (3.3.1),
which corresponds to the partition λ = (n − 1, 1) or equivalently its conjugate. For
the partition λ = (n − 1, 1), the eigenvalues are 2n−5

2n−3 , −
n−3
2n−3 and n−3

2n−3 with algebraic
multiplicities n− 3, 1 and 1, respectively. Therefore, the term in

∑
λ∈NCPar(n)\{(n)}

is

(n− 1)
(

(n− 3)
(2n− 5

2n− 3

)2k
+
(
− n− 3

2n− 3

)2k
+
(
n− 3
2n− 3

)2k)

= (n− 1)
(

(n− 3)
(

1− 2
2n− 3

)2k
+ 2

(
n− 3
2n− 3

)2k)
= O

(
e−

4k
2n−3 +2 logn

)
.

Now, if k = (n− 3
2)(log n+ c), then e−

4k
2n−3 +2 logn is e−2c, c > 0. We show that this is the

largest term, other terms being smaller.
For any upper standard Young tableau Tα of shape λ, if λ = (λ1, . . . , λr), then

an−1 + an ≤ 2λ1 − 3. Then the right hand side of (3.3.1) is less than or equal to

∑
λ∈NCPar(n)\{(n)}

fλ ∑
Tα∈UStd(λ)∪UStd(λ′)

(
2λ1 − 3
2n− 3

)2k


+
∑

λ∈CPar(n)

fλ
2

∑
Tα∈UStd(λ)

(
2λ1 − 3
2n− 3

)2k

+ fλ

2
∑

Tα∈UStd(λ)

(
2λ1 − 3
2n− 3

)2k
 . (3.3.2)

The summands in
∑

Tα∈UStd(λ)∪UStd(λ′)
and

∑
Tα∈UStd(λ)

are independent of the index of the
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sum. Therefore, the expression in (3.3.2) becomes

∑
λ∈NCPar(n)\{(n)}

(fλ)2
(

2λ1 − 3
2n− 3

)2k
+

∑
λ∈CPar(n)

(fλ
2 + fλ

2

)
fλ

2

(
2λ1 − 3
2n− 3

)2k


=
∑

λ∈NCPar(n)\{(n)}

(
fλ
)2
(

2λ1 − 3
2n− 3

)2k

+
∑

λ∈CPar(n)

(
fλ
)2

2

(
2λ1 − 3
2n− 3

)2k

. (3.3.3)

Now adding the non-negative quantities

∑
λ`n

λ/∈NCPar(n)∪CPar(n)

(
fλ
)2
(

2λ1 − 3
2n− 3

)2k

and
∑

λ∈CPar(n)

(
fλ
)2

2

(
2λ1 − 3
2n− 3

)2k

to (3.3.3), we obtain
∑
λ`n
λ6=(n)

(
fλ
)2
(

2λ1 − 3
2n− 3

)2k

. Therefore, the expression in (3.3.3) is less

than or equal to ∑
λ`n
λ 6=(n)

(
fλ
)2
(
λ1 − 3

2
n− 3

2

)2k

< en
2e
− 2k
n−1.5 − 1. (3.3.4)

Here (3.3.4) follows from Corollary 2.11 by taking ` = n and a = b = 3
2 . Therefore we

have
4 ||P ∗kA − UAn||2TV < en

2e
− 2k
n−1.5 − 1. (3.3.5)

Now for c > 0 and k ≥ (n− 3
2)(log n+ c), we have

4 ||P ∗kA − UAn||2TV <en
2e
− 2k
n−1.5 − 1

≤ee−2c − 1 ≤ 2e−2c.

Therefore, ||P ∗kA − UAn||TV < 1√
2e
−c. This proves the first part of this theorem.

Now let ε ∈ (0, 1) and kn = b(1 + ε)(n− 3
2) log nc. Then kn + 1 ≥ (1 + ε)(n− 3

2) log n.
Therefore (3.3.5) implies,

0 ≤ 4 ||P ∗knA − UAn||2TV < en
2e
− 2kn
n−1.5 − 1 ≤ en

−2εe
2

n−1.5 − 1, (3.3.6)

the last inequality of (3.3.6) holds because of kn + 1 ≥ (1 + ε)(n − 3
2) log n. Thus the

second part follows from the fact

lim
n→∞

en
−2εe

2
n−1.5 − 1 = 0.
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3.4 Lower bound of the mixing time

In this section, we find a lower bound of the total variation distance ||P ∗kA − UAn||TV

when k = (n− 3
2)(log n + c) for c� 0. To prove the results, we consider the slow term

in the upper bound lemma [32]. The slow term comes from the (n − 1)-dimensional
irreducible representation of An. In particular, we define a random variable on An

giving the number of fixed points of even permutations. This random variable can be
viewed as the character of the restriction of defining representation ρdef (recall Definition
2.12 from Chapter 2) to An. The restriction of defining representation decomposes into
two irreducible representations of An namely the trivial representation and the (n− 1)-
dimensional representation. Thus the character of the (n − 1)-dimensional irreducible
representation plays an important role in this section.

We have seen all the irreducible representations of An in Section 3.2. Let us recall
from Chapter 2 that the irreducible representations of Sn are indexed by the partitions
of n and the irreducible representation indexed by λ ` n is Sλ. Also [81, Theorem 4.6.5]
says that the restriction of the irreducible representation Sλ of Sn to An is an irreducible
representation of An if λ 6= λ′ and a direct sum of two non-isomorphic irreducible repre-
sentations of An if λ = λ′. Let ψλ denote the irreducible character of Sn corresponding to
the irreducible representation given by the partition λ of n. If λ ` n is non-self-conjugate,
then we denote the irreducible character of An corresponding to λ by χλ and if λ ` n
is self-conjugate, then we denote the irreducible characters of An corresponding to λ by
χλ±. We abbreviate the induced character χ ↑SnAn to χ ↑Sn and the restricted character
χ ↓SnAn to χ ↓An .

Lemma 3.15. If λ is a non-self-conjugate partition of n, then ψλ ↓An= χλ = χλ
′. If λ

is self-conjugate, then we have ψλ ↓An= χλ+ + χλ−.

Proof. The proof of this lemma follows directly from [81, Theorem 4.6.5].

Proposition 3.16. For non-self-conjugate λ ` n, we have χλ ↑Sn= ψλ + ψλ
′.

Proof. Sn can be written as the disjoint union of An and (1, 2)An (two distinct left cosets
of An in Sn). Now the proposition follows from [81, Theorem 4.4.2] and definition of
induced representation.

Proposition 3.17. For self-conjugate λ ` n, we have χλ± ↑Sn= ψλ.

Proof. An and (1, 2)An are two distinct left cosets of An in Sn. Therefore the proposition
follows from the definition of induced representation and [81, Theorem 4.4.2].
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Remark 3.18. Alternative proofs of Lemma 3.15, Propositions 3.16 and 3.17 based on
Clifford theory can be found in [27].

Proposition 3.19. Let us recall that χdef is the character of the defining representation
ρdef of Sn. Then

(
χdef ⊗ χdef

)
↓An= 2 χ(n) + 3 χ(n−1,1) + χ(n−2,2) + χ(n−2,1,1).

Proof. Recall from equation (2.1.6) of Chapter 2 that,

(
χdef⊗χdef

)
= 2 ψ(n) + 3 ψ(n−1,1) + ψ(n−2,2) + ψ(n−2,1,1). (3.4.1)

For any non-self-conjugate λ ` n, Theorem 2.8 (Frobenius Reciprocity) implies

〈
χλ,

(
χdef⊗χdef

)
↓An

〉
=
〈
χλ ↑Sn , χdef⊗χdef

〉
=
〈
χλ ↑Sn , 2 ψ(n) + 3 ψ(n−1,1) + ψ(n−2,2) + ψ(n−2,1,1)

〉
, by (3.4.1)

=
〈
ψλ + ψλ

′
, 2 ψ(n) + 3 ψ(n−1,1) + ψ(n−2,2) + ψ(n−2,1,1)

〉
. (3.4.2)

The equality in (3.4.2) follows from Proposition 3.16. Now using orthonormality of
irreducible characters of Sn, expression (3.4.2) becomes



2, if λ = (n) or (1n),

3, if λ = (n− 1, 1) or (2, 1n−1),

1, if λ = (n− 2, 2) or (22, 1n−4),

1, if λ = (n− 2, 1, 1) or (3, 1n−3).

Again, for any self-conjugate λ ` n, by Theorem 2.8, we have

〈
χλ±,

(
χdef⊗χdef

)
↓An

〉
=
〈
χλ± ↑Sn , χdef⊗χdef

〉
=
〈
χλ± ↑Sn , 2 ψ(n) + 3 ψ(n−1,1) + ψ(n−2,2) + ψ(n−2,1,1)

〉
, by (3.4.1)

=
〈
ψλ, 2 ψ(n) + 3 ψ(n−1,1) + ψ(n−2,2) + ψ(n−2,1,1)

〉
, by Proposition 3.17

= 0, using orthonormality of irreducible characters of Sn.

Thus the proposition follows.
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Lemma 3.20. For any i ∈ [n], the number of even permutations π in An which fix i (i.e.
π(i) = i) is 1

2(n− 1)!.

Proof. We know that the number of permutations π ∈ Sn which fix i ∈ {1, . . . , n} is
(n− 1)!. Now for each i, let us consider the following sets,

Si = {π ∈ Sn | π(i) = i} and Ai = {π ∈ An | π(i) = i}.

Then we can define a bijection ψ : Ai → Si \ Ai by π 7→ π(j, k), for fixed j, k ∈
{1, . . . , n}\{i} such that j 6= k. Therefore, the cardinality ofAi is same as the cardinality
of Si\Ai. But we also know that the cardinality of Si is (n−1)!. Thus |Si| = |Ai|+|Si\Ai|
implies |Ai| = 1

2(n− 1)!.

Let us define a random variable X on An by X(π) := the number of fixed points of π,
π ∈ An. Therefore, we have X(π) = χdef ↓An (π). We now find the expectation EUAn (X)
of X under UAn .

EUAn (X) =
∑
π∈An

X(π) 2
n! = 2

n!
∑
π∈An

χdef ↓An (π) = 2
n!

∑
π∈An

Tr
(
ρdef ↓An (π)

)
. (3.4.3)

We know that for each i ∈ {1, . . . , n}, the (i, i)th entry of the matrix
 ∑
π∈An

ρdef ↓An (π)


is the number of permutations in An which fixes i. Therefore, using Lemma 3.20 and
the linearity of the trace, expression (3.4.3) becomes

2
n!

∑
π∈An

Tr
(
ρdef ↓An (π)

)
= 2
n!

n∑
i=1

(n− 1)!
2 = 1.

Now we find the expectation Ek(X) and variance Vark(X) of the same random variable
X under the distribution P ∗kA on An. We know that the defining representation on Sn

decomposes into the trivial representation S(n) and the (n−1)-dimensional representation
S(n−1,1) (see equation (2.1.5) from Chapter 2). As the irreducible representations S(n)

and S(n−1,1) of Sn are irreducible in An [81, Theorem 4.6.7], we have the following:

Ek(X) =
∑
π∈An

X(π)P ∗kA (π) =
∑
π∈An

χdef ↓An (π)P ∗kA (π)

=
∑
π∈An

P ∗kA (π) Tr
(
ρdef ↓An (π)

)
. (3.4.4)

Now using
 ∑
π∈An

PA(π) ρdef ↓An (π)
k =

∑
π∈An

P ∗kA (π) ρdef ↓An (π) and linearity of the
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trace, expression (3.4.4) is equal to Tr
(
P̂A

(
ρdef ↓An

))k
. Therefore from Table 3.1, we

have
Ek(X) = 1 + (n− 3)

(2n− 5
2n− 3

)k
+
(
n− 3
2n− 3

)k (
1 + (−1)k

)
, (3.4.5)

Partition of n Eigenvalues of P̂ (R) corresponding to the irreducible
An-module indexed by the partition of column 1

(n) or (1n) 1 with algebraic multiplicity 1

2n−5
2n−3 with algebraic multiplicity n− 3

(n− 1, 1) or (2, 1n−1) − n−3
2n−3 with algebraic multiplicity 1
n−3
2n−3 with algebraic multiplicity 1

2n−7
2n−3 with algebraic multiplicity (n−2)(n−5)

2
−1

2n−3 with algebraic multiplicity 1
(n− 2, 2) or (22, 1n−4) n−3

2n−3 with algebraic multiplicity n− 3
− n−3

2n−3 with algebraic multiplicity n− 3

2n−7
2n−3 with algebraic multiplicity (n−3)(n−4)

2
3

2n−3 with algebraic multiplicity 1
(n− 2, 12) or (3, 1n−3) n−5

2n−3 with algebraic multiplicity n− 3
− n−5

2n−3 with algebraic multiplicity n− 3

Table 3.1: Eigenvalues of P̂A(R) corresponding to some irreducible representations of An.

Ek(X2) =
∑
π∈An

(X(π))2 P ∗kA (π) =
∑
π∈An

(
χdef ↓An (π)

)2
P ∗kA (π)

=
∑
π∈An

(
χdef⊗χdef

)
↓An (π)P ∗kA (π). (3.4.6)

Using Proposition 3.19, expression (3.4.6) can be written as,

∑
π∈An

P ∗k(π)
(
2 χ(n)(π) + 3 χ(n−1,1)(π) + χ(n−2,2)(π) + χ(n−2,1,1)(π)

)
. (3.4.7)
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Now if we write ξ =
∑
π∈An

PA(π) π, then using the definition of the character and linearity

of the trace, the expression (3.4.7) equal to,

2 χ(n)(ξk) + 3 χ(n−1,1)(ξk) + χ(n−2,2)(ξk) + χ(n−2,1,1)(ξk)

=2 + 3
(

(n− 3)
(2n− 5

2n− 3

)k
+
(
n− 3
2n− 3

)k (
1 + (−1)k

))

+
(

(n− 2)(n− 5)
2

(2n− 7
2n− 3

)k
+
( −1

2n− 3

)k
+ (n− 3)

(
n− 3
2n− 3

)k (
1 + (−1)k

))

+
(

(n− 3)(n− 4)
2

(2n− 7
2n− 3

)k
+
( 3

2n− 3

)k
+ (n− 3)

(
n− 5
2n− 3

)k (
1 + (−1)k

))

from Table 3.1.
Therefore from the definition of variance Vark(X) = Ek(X2)− (Ek(X))2 we have

Vark(X) = 1 + (n− 3)
(2n− 5

2n− 3

)k
+
(
n− 3
2n− 3

)k (
1 + (−1)k

)
(3.4.8)

−
(

(n− 3)
(2n− 5

2n− 3

)k
+
(
n− 3
2n− 3

)k (
1 + (−1)k

))2

+ (n− 2)(n− 5)
2

(2n− 7
2n− 3

)k
+
( −1

2n− 3

)k
+ (n− 3)

(
n− 3
2n− 3

)k (
1 + (−1)k

)
+ (n− 3)(n− 4)

2

(2n− 7
2n− 3

)k
+
( 3

2n− 3

)k
+ (n− 3)

(
n− 5
2n− 3

)k (
1 + (−1)k

)
.

Lemma 3.21. For Vark(X) and Ek(X) given in (3.4.5) and (3.4.8) respectively, the
following are true

1. For c < 0, k = (n− 3
2)(log n+ c) and large n, we have

Ek(X) = 1 + e−c (1 + o(1)) and Vark(X) = 1 + e−c (1 + o(1)) .

2. For any ε ∈ (0, 1), kn = b(1− ε)(n− 3
2) log nc and large n, we have

Ekn(X) = 1 + nε + o(1) and Varkn(X) = 1 + nε + o(1) + nεo(1).

Proof. Throughout this proof we denote dk =
(

1+(−1)k
2k

)
for convenience. Note that

0 ≤ dk < 1 for k ≥ 1. Let us recall that ‘≈’ denotes ‘asymptotic to’ i.e. an ≈ bn means

lim
n→∞

an
bn

= 1.
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First, we have

Ek(X) = 1 + (n− 3)
(

1− 1
n− 1.5

)k
+
(

1− 1.5
n− 1.5

)k (1 + (−1)k
2k

)
≈ 1 + (n− 3)e−

k
n−1.5 + dke

− 1.5k
n−1.5 .

(3.4.9)

Now from (3.4.8), we have

Vark(X) ≈ 1 + (n− 3)e−
k

n−1.5 + dke
− 1.5k
n−1.5 −

(
(n− 3)e−

k
n−1.5 + dke

− 1.5k
n−1.5

)2

+ (−1)k + 3k

(2n− 3)k
+ (n2 − 7n+ 11)e−

2k
n−1.5 + (n− 3)dk

(
e−

1.5k
n−1.5 + e−

3.5k
n−1.5

)
= 1 + (n− 3)e−

k
n−1.5 + dke

− 1.5k
n−1.5 − (n− 2)e−

2k
n−1.5 − 2dk(n− 3)e−

2.5k
n−1.5

− d2
ke
− 3k
n−1.5 + (−1)k + 3k

(2n− 3)k
+ (n− 3)dk

(
e−

1.5k
n−1.5 + e−

3.5k
n−1.5

)
. (3.4.10)

Now for large n, if we take k = (n − 3
2)(log n + c), c < 0, then we have k ≥ 1 and

hence dk is bounded above. Therefore from (3.4.9), we have Ek(X) = 1 + e−c (1 + o(1))
and from (3.4.10), we have Vark(X) = 1 + e−c (1 + o(1)) by straightforward calculations.
This proves the first part.

Now for any ε ∈ (0, 1), kn = b(1 − ε)(n − 3
2) log nc and we have kn ≥ 1 for large n.

Hence dkn is bounded above. Therefore from (3.4.9), we have Ekn(X) = 1+nε+o(1) and
from (3.4.10), we have Varkn(X) = 1+nε+o(1)+nεo(1) by straightforward calculations.
This proves the second part.

Theorem 3.22. For the random walk on An driven by AA, we have the following:

1. For large n, ||P ∗kA − UAn||TV ≥ 1 − 6
1+e−c(1+o(1)) , when k = (n − 3

2)(log n + c) and
c� 0.

2. lim
n→∞

||P ∗knA − UAn||TV = 1, for any ε ∈ (0, 1) and kn = b(1− ε)(n− 3
2) log nc.

Proof. Using Lemma 2.19, µ = P ∗kA and ν = UAn we have,

||P ∗kA − UAn||TV ≥ 1− 4 Vark(X)
(Ek(X))2 −

2
Ek(X) . (3.4.11)

Now if n is large, c � 0 and k = (n − 3
2)(log n + c), then by (3.4.11) and by the first

part of Lemma 3.21, we have the first part of this theorem. Again for any ε ∈ (0, 1) and
kn = b(1− ε)(n− 3

2) log nc from (3.4.11) and by the second part of Lemma 3.21, we have
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the following:

1 ≥ ||P ∗kn − UAn||TV ≥ 1− 4(1 + nε + o(1) + nεo(1))
(1 + nε + o(1))2 − 2

1 + nε + o(1) , (3.4.12)

for large n. Therefore, the second part of this theorem follows from (3.4.12) and the
following:

lim
n→∞

4(1 + nε + o(1) + nεo(1))
(1 + nε + o(1))2 = 0,

lim
n→∞

2
1 + nε + o(1) = 0.

Corollary 3.23 (Total variation cutoff for transpose top-2 with random shuffle). The
transpose top-2 with random shuffle on An exhibits the total variation cutoff phenomenon
and the cutoff is at (n− 3

2) log n.

Proof. The proof follows from the second part of the Theorems 3.14 and 3.22.

For example, if n = 10, the plot for ||P ∗kA − UA10||TV vs. k is given in Figure 3.1. In
this case the cutoff is at 8.5× log 10 = 19.572 and Figure 3.1 confirms this.

5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

1.0

Figure 3.1: Plot for ||P ∗kA − UA10 ||TV vs. k for 1 ≤ k ≤ 35.



Chapter 4

The flip-transpose top with random
shuffle

In this chapter our main aim is to study the properties of a random walk on Coxeter
groups of type B [22]. We call this the flip-transpose top with random shuffle. A random
walk on Coxeter group of type D has also been studied analogous to the former walk. We
introduce the flip-transpose top with random shuffle on the hyperoctahedral group Bn

in Section 4.1. In Section 4.2, we find the spectrum of the transition matrix and give an
upper bound for the total variation distance, of the distribution after k transitions from
the stationary distribution. In Section 4.3, we obtain a lower bound for the total variation
distance of the distribution after k transitions from the stationary distribution. We also
prove the cutoff phenomenon for this shuffle with cutoff time n log n in this section. In
Section 4.4, a brief description for the representation theory of the demihyperoctahedral
group Dn is given. In Section 4.5, we consider a similar random walk on Dn and prove
cutoff at

(
n− 1

2

)
log n.

4.1 Introduction

We begin with defining the hyperoctahedral group Bn and the demihyperoctahedral
groupDn in this section. A signed permutation is a bijection π from {−n, . . . ,−1, 1, . . . , n}
to itself satisfying π(−i) = −π(i) for all 1 ≤ i ≤ n. A signed permutation is completely
determined by its image on the set [n]. Given a signed permutation π, we write it in
window notation by [π1, . . . , πn], where πi is the image of i under π. The set of all signed
permutations forms a group under composition of mapping. This group is known as
the hyperoctahedral group and is denoted by Bn [22]. The subset of Bn consisting of
those signed permutations having an even number of negative entries in their window

43



44 4. The flip-transpose top with random shuffle

notation forms a subgroup of Bn, called the demihyperoctahedral group and is denoted by
Dn. Suppose there are n cards labelled from 1 to n and each card has two orientations
namely ‘face up’ and ‘face down’. Given an arrangements of these n cards in a row we
associate a signed permutation [π1, π2, . . . , πn] to it in the following way: πi is the label
of the ith card (counting starts from left) with sign

positive, if the orientation of the card is ‘face up’ and

negative, if the orientation of the card is ‘face down’.

Thus every arrangement of the n cards in a row represents a signed permutation in its
window notation. We consider the following shuffle on the set of all arrangements of
these n cards in a row: Given an arrangement, either interchange the last card with a
random card, or interchange the last card with a random card and flip both of them,
with equal probability. We note that the random card could be the last card itself. We
call this shuffle the flip-transpose top with random shuffle. Formally, this shuffle is the
random walk on Bn driven by the probability measure PB on Bn given by

PB(π) =



1
2n , if π = id, the identity element of Bn,

1
2n , if π = (i, n) := [1, . . . , i− 1, n, i+ 1, . . . , i] for 1 ≤ i ≤ n− 1,
1

2n , if π = (−i, n) := [1, . . . , i− 1,−n, i+ 1, . . . ,−i] for 1 ≤ i ≤ n,

0, otherwise.

(4.1.1)

Proposition 4.1. The flip-transpose top with random shuffle on Bn is irreducible and
aperiodic.

Proof. We know that the set {(−1, 1), (1, 2), (2, 3), . . . , (n − 1, n)} generates Bn. Let
i be any integer from [n− 1]. Then

(i, i+ 1) = (i+ 1, n)(i, n)(i+ 1, n) and (−1, 1) = (1, n)(−n, n)(1, n).

Therefore the support of the measure PB generates Bn and hence the random walk is
irreducible (Proposition 2.22). Given any π ∈ Bn, the set of all times when it is possible
for the chain to return to the starting state π contains the integer 1 (∵ the identity
element of Bn is in the support of PB). Therefore the period of the state π is 1 and
hence from irreducibility all the states of this chain have period 1. Thus this chain is
aperiodic.

Proposition 4.1 says that the flip-transpose top with random shuffles on Bn has
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unique stationary distribution UBn (Proposition 2.23) and the distribution after the
kth transition converges to its stationary distribution as k → ∞ [66, Theorem 4.9].
Throughout this chapter, id denotes the identity signed permutation.

4.2 Sufficient number of transitions to reach near
stationary distribution

In this section we find the eigenvalues of the transition matrix P̂B(R), the Fourier trans-
form of PB at the right regular representation R of Bn. To find the eigenvalues of P̂B(R)
we use the representation theory of the hyperoctahedral group Bn. Here we briefly dis-
cuss the representation theory of Bn and some necessary concepts useful for this chapter.
For more details one can see [50, 73, 83]. , φ


φ ,

 (
, φ

) (
φ ,

) (
, φ
)

(
φ ,

) (
,

) (
,

) (
,

) (
,

)
Figure 4.1: All elements of D3.

Definition 4.2. Let n be a positive integer. A (Young) double-diagram with n boxes µ is
a pair of Young diagrams with a total number of n boxes. We define ||µ|| = n. The set of
all double-diagram with n boxes is denoted by Dn. For example, all double-diagrams with
3 boxes are listed in Figure 4.1. A standard (Young) double-tableau of shape µ is obtained
by taking the double-diagram µ and filling its ||µ|| boxes (bijectively) with the numbers
1, 2, . . . , ||µ|| such that the numbers in the boxes strictly increase along each row and
each column of all Young diagrams occurring in µ. Let tabD(n, µ), where µ ∈ Dn, denote
the set of all standard double-tableaux of shape µ and let tabD(n) = ∪

µ∈Dn
tabD(n, µ).

For example an element of tabD(8) is given in Figure 4.2. For T ∈ tabD(n, µ) and
i ∈ [n], recall that bT (i) denotes the box of the Young diagram in µ, in which the
number i resides. We denote the content of the box bT (i) by c(bT (i)). For the standard
double-tableau given in Figure 4.2, we have c(bT (1)) = 0, c(bT (2)) = 1, c(bT (3)) = 0,
c(bT (4)) = 1, c(bT (5)) = −1, c(bT (6)) = −1, c(bT (7)) = 0 and c(bT (8)) = 2.

Definition 4.3. The Young-Jucys-Murphy elements XB
1 , X

B
2 , . . . , X

B
n of C[Bn] are de-

fined by XB
1 = 0 and XB

i =
i−1∑
k=1

(k, i) +
i−1∑
k=1

(−k, i), for all 2 ≤ i ≤ n.
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(
3 4 8
6 7 ,

1 2
5

)

Figure 4.2: An element of tabD(8).

Let µ ∈ B̂n and consider the Bn-module V µ. Since the branching is simple [73,
Section 3], the decomposition into irreducible Bn−1-modules is canonical and is given by

V µ = ⊕
λ
V λ,

where the sum is over all λ ∈ B̂n−1, with λ ↗ µ (i.e. there is an edge from λ to
µ in the branching multi-graph). Iterating this decomposition of V µ into irreducible
B1-submodules, we obtain

V µ = ⊕
T
vT , (4.2.1)

where the sum is over all possible chains T = µ1 ↗ µ2 ↗ · · · ↗ µn with µi ∈ B̂i and
µn = µ. We note that if 0 6= vT , then C[Bi]vT = V µi . We call (4.2.1) the Gelfand-
Tsetlin decomposition of V µ and each vT in (4.2.1) a Gelfand-Tsetlin vector of V µ. The
irreducible representations of Bn are parameterized by elements of Dn [73, Lemma 6.2,
Theorem 6.4]. The Gelfand-Tsetlin vectors of V µ form a basis of V µ. We may index the
Gelfand-Tsetlin vectors of V µ by standard double-tableaux of shape µ for µ ∈ Dn [73,
Theorem 6.5] and write the Gelfand-Tsetlin decomposition as

V µ = ⊕
T∈tabD(n,µ)

vT .

Let µ =
(
µ(1), µ(2)

)
∈ Dn and T ∈ tabD(n, µ). Then the action [73, Theorem 6.5] of the

Young-Jucys-Murphy elements and the signed permutation (i,−i) on vT are given by

XB
i vT = 2c(bT (i)) vT for all i ∈ [n],

(−i, i) vT =

vT if bT (i) is in µ(1)

−vT if bT (i) is in µ(2)
for all i ∈ [n].

(4.2.2)

We now come to our main problem of finding the eigenvalues of the transition matrix
P̂B(R). The eigenvalues of P̂B(R) are the eigenvalues of 1

2n

(
id +(−n, n) +XB

n

)
acting

on C[Bn] by multiplication on the right. The following theorem gives the eigenvalues of
P̂B(R).

Theorem 4.4. For each µ =
(
µ(1), µ(2)

)
∈ Dn satisfying m := |µ(1)| ∈ {0, 1, . . . , bn2 c},

let T ∈ tabD(n, µ). Then c(bT (n))+1
n

and c(bT (n))
n

are eigenvalues of P̂B(R) with multiplicity
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M(µ) each, where

M(µ) =


(
n
m

)
fµ

(1)
fµ

(2)
, if 0 ≤ m < n

2 ,

1
2

(
n
m

)
fµ

(1)
fµ

(2)
, if m = n

2 (when n is even).
(4.2.3)

Recall that fµ(i) denotes the number of standard Young tableaux of shape µ(i), i = 1, 2.

Proof. For each µ =
(
µ(1), µ(2)

)
∈ Dn, we have another double-diagram µ̃ with n boxes

such that µ̃ =
(
µ(2), µ(1)

)
. We first find the eigenvalues of the matrix P̂B(R) in the

irreducible Bn-modules V µ and V µ̃. For each T = (T1, T2) ∈ tabD(n, µ), T̃ = (T2, T1) ∈
tabD(n, µ̃). If bT (n) is in µ(1), then b

T̃
(n) is in µ(2). Without loss of generality, let us

assume that bT (n) is in µ(1) and b
T̃

(n) is in µ(2). Let us recall that vT (respectively v
T̃

)
is the Gelfand-Tsetlin vector of V µ (respectively V µ̃). From (4.2.2) we have

(−n, n) vT = vT and XB
n vT = 2c(bT (n)) vT ,

which implies the following:

(
id +(−n, n) +XB

n

)
vT = (1 + 1 + 2c(bT (n))) vT = (2c(bT (n)) + 2) vT . (4.2.4)

Since {vT : T ∈ tabD(n, µ)} form a basis of V µ, the eigenvalues of the action of

(
id +(−n, n) +XB

n

)
on V µ can be obtained from (4.2.4). Now using (4.2.2) we have (−n, n) v

T̃
= −v

T̃
and

XB
n v

T̃
= 2c(b

T̃
(n)) v

T̃
, thus

(
id +(−n, n) +XB

n

)
v
T̃

= (1− 1 + 2c(bT (n))) v
T̃

= 2c(bT (n)) v
T̃
. (4.2.5)

Therefore the eigenvalues of the action of
(
id +(−n, n) +XB

n

)
on V µ̃ are obtained from

(4.2.5), as {v
T̃

: T̃ ∈ tabD(n, µ̃)} form a basis of V µ̃. Thus considering the action of
1

2n

(
id +(−n, n) +XB

n

)
on V µ and V µ̃ simultaneously, the eigenvalues of P̂B(R) are given

by c(bT (n))+1
n

and c(bT (n))
n

for each T ∈ tabD(n, µ).
Now we know that the multiplicity of every irreducible representation in the right reg-

ular representation is equal to its dimension. Therefore the multiplicity of the eigenvalues
are dim(V µ) =

(
n
m

)
fµ

(1)
fµ

(2) = dim(V µ̃) if 0 ≤ m < n
2 and the multiplicity of the eigen-

values are 1
2

(
n
m

)
fµ

(1)
fµ

(2) if m = n
2 (when n is even). The multiplicity of the eigenvalues

for the case of m = n
2 is half of the dimension of the corresponding Bn-module because of

the following: In this case m = n−m. Thus both µ = (µ(1), µ(2)) and µ̃ = (µ(2), µ(1)) are
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in Dn such that their first component is a partition of m and the second component is a
partition of n−m. Therefore while computing the eigenvalues of P̂B(R) by considering
the irreducible Bn-modules V µ and V µ̃, each space is counted twice. Now the proof
of the theorem follows from the fact that all the irreducible representations of Bn are
parameterized by Dn.

We now prove the theorem giving an upper bound of the total variation distance
||P ∗kB − UBn||TV for k ≥ n log n + cn, c > 0. Given a positive integer n, let λ be a
partition of n i.e., λ ` n. Let us recall that tab(λ) denote the set of all standard Young
tableaux of shape λ.

Lemma 4.5. Let m be any positive integer satisfying 1 ≤ m ≤ n
2 and µ =

(
µ(1), µ(2)

)
∈

Dn be such that |µ(1)| = m, |µ(2)| = n−m. If µ(i)
1 (respectively µ(i)′

1 ) denotes the largest
part of the partition µ(i) (respectively its conjugate µ(i)′) for i = 1, 2, then

∑
T∈tabD(n,µ)

(
c(bT (n)) + 1

n

)2k

<

(
n

m

)
fµ

(2)
fµ

(1)
2∑
i=1


µ(i)

1
n

2k

+
µ(i)′

1
n

2k
 .

Proof. The set tabD(n, µ) is a disjoint union of the sets T1 = {(T1, T2) ∈ tabD(n, µ) :
bT (n) is in T1} and T2 = {(T1, T2) ∈ tabD(n, µ) : bT (n) is in T2}. Therefore we have

∑
T∈tabD(n,µ)

(
c(bT (n)) + 1

n

)2k

=
∑
T∈T1

(
c(bT (n)) + 1

n

)2k

+
∑
T∈T2

(
c(bT (n)) + 1

n

)2k

. (4.2.6)

Now the right hand side of (4.2.6) is equal to

(
n− 1
n−m

)
fµ

(2) ∑
T1∈tab(µ(1))

(
c(bT1(m)) + 1

n

)2k

+
(
n− 1
m

)
fµ

(1) ∑
T2∈tab(µ(2))

(
c(bT2(n−m)) + 1

n

)2k

<

(
n

m

)fµ(2) ∑
T1∈tab(µ(1))

(
c(bT1(m)) + 1

n

)2k

+ fµ
(1) ∑
T2∈tab(µ(2))

(
c(bT2(n−m)) + 1

n

)2k


<

(
n

m

)
fµ

(2)
fµ

(1)


µ(1)

1
n

2k

+
µ(1)′

1
n

2k

+
µ(2)

1
n

2k

+
µ(2)′

1
n

2k
 . (4.2.7)

The inequality in (4.2.7) follows from the fact: If λ1 (respectively λ′1) denotes the largest
part of the partition λ (respectively its conjugate λ′), then for all T ∈ tab(λ) we have

(
c(bT (|λ|)) + 1

n

)2k

≤ max

(
λ1

n

)2k

,

(
λ′1 − 2
n

)2k
 <

(
λ1

n

)2k

+
(
λ′1
n

)2k

.
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Theorem 4.6. For the random walk on Bn driven by PB, we have the following:

1. ||P ∗kB − UBn||TV <
√

2(e+ 1) e−c + o(1), for k ≥ n log n+ cn and c > 0.

2. lim
n→∞

||P ∗knB − UBn||TV = 0, for any ε ∈ (0, 1) and kn = b(1 + ε)n log nc.

Proof. We know that the trace of the (2k)th power of a matrix is the sum of the (2k)th
powers of its eigenvalues. Therefore Lemma 2.24 implies 4||P ∗kB − UBn||2TV is bounded
above by the sum of (2k)th powers of the non-largest eigenvalues (which are strictly less
the largest eigenvalue 1) of P̂B(R). Thus from Theorem 4.4 we have

4||P ∗kB −UBn||2TV ≤
(
n− 1
n

)2k
+

∑
λ`n
λ 6=(n)

fλ
∑

T∈tab(λ)

(c(bT (n)) + 1
n

)2k

+
(
c(bT (n))

n

)2k


+
bn2 c∑
m=1

∑
µ(1)`m

µ(2)`(n−m)
µ=(µ(1), µ(2))

M(µ)
∑

T∈tabD(n,µ)

(c(bT (n)) + 1
n

)2k

+
(
c(bT (n))

n

)2k
 . (4.2.8)

M(µ) is defined in (4.2.3) and can be written as M(µ) = I(n,m)
(
n
m

)
fµ

(1)
fµ

(2) , where

I(n,m) =

1 if 0 ≤ m < n
2 ,

1
2 if m = n

2 (when n is even).

The third term in the right hand side of (4.2.8) is less than the following expression

bn2 c∑
m=1

∑
µ(1)`m

µ(2)`(n−m)
µ=(µ(1), µ(2))

2M(µ)
 ∑
T∈tabD(n,µ)

(
c(bT (n)) + 1

n

)2k


<

bn2 c∑
m=1

∑
µ(1)`m

µ(2)`(n−m)
µ=(µ(1), µ(2))

2M(µ)
(
n

m

)
fµ

(2)
fµ

(1)
2∑
i=1


µ(i)

1
n

2k

+
µ(i)′

1
n

2k
 (4.2.9)

=
bn2 c∑
m=1

2
∑

µ(1)`m
µ(2)`(n−m)
µ=(µ(1), µ(2))

2M(µ)
(
n

m

)
fµ

(2)
fµ

(1)


µ(1)

1
n

2k

+
µ(2)

1
n

2k
 . (4.2.10)
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Inequality in (4.2.9) follows from Lemma 4.5. The equality in (4.2.10) holds because

∑
µ(1)`m

µ(2)`(n−m)
µ=(µ(1), µ(2))

2M(µ)
(
n

m

)
fµ

(2)
fµ

(1)

µ(i)′
1
n

2k

=
∑

µ(1)`m
µ(2)`(n−m)
µ=(µ(1), µ(2))

2M(µ)
(
n

m

)
fµ

(2)
fµ

(1)

µ(i)
1
n

2k

for i = 1, 2. Therefore the expression in (4.2.10) is equal to

4
bn2 c∑
m=1

I(n,m)
(
n

m

)2 ∑
µ(1)`m

µ(2)`(n−m)

(
fµ

(1))2 (
fµ

(2))2


µ(1)

1
n

2k

+
µ(2)

1
n

2k


=4
bn2 c∑
m=1

I(n,m)
(
n

m

)2

(n−m)!
∑

µ(1)`m

(
fµ

(1))2
µ(1)

1
n

2k

+ 4
bn2 c∑
m=1

I(n,m)
(
n

m

)2

m!
∑

µ(2)`(n−m)

(
fµ

(2))2
µ(2)

1
n

2k

. (4.2.11)

The definition of I(n,m) and

bn2 c∑
m=1

I(n,m)
(
n

m

)2

m!
∑

µ(2)`(n−m)

(
fµ

(2))2
µ(2)

1
n

2k

=
n−1∑
u=dn2 e

I(n, n− u)
(

n

n− u

)2

(n− u)!
∑
µ(2)`u

(
fµ

(2))2
µ(2)

1
n

2k

,

implies that the expression (4.2.11) is equal to

4
n−1∑
m=1

(
n

m

)2

(n−m)!
∑

µ(1)`m

(
fµ

(1))2
µ(1)

1
n

2k

. (4.2.12)

Replacing ` (respectively λ) by m (respectively µ(1)) and choosing a = b = 0 in Lemma
2.10, we have

∑
µ(1)`m

(
fµ

(1))2
µ(1)

1
m

2k

< em
2e−

2k
m =⇒

∑
µ(1)`m

(
fµ

(1))2
µ(1)

1
m

2k

< e, if k ≥ m logm.

Therefore when k ≥ n log n (which implies k ≥ m logm), the expression in (4.2.12) and
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hence the third term in the right hand side of (4.2.8) is less than

4e
n−1∑
m=1

(
n

m

)2

(n−m)!
(
m

n

)2k
= 4e

n−1∑
u=1

(
n

u

)2

u!
(

1− u

n

)2k

< 4e
n−1∑
u=1

(
n2e−

2k
n

)u
u! < 4e

(
en

2e−
2k
n − 1

)
. (4.2.13)

Now we consider the second term in the right hand side of (4.2.8). The second term in
the right hand side of (4.2.8) is bounded above by

2
∑
λ`n
λ 6=(n)

fλ
∑

T∈tab(λ)

(
c(bT (n)) + 1

n

)2k

< 2
∑
λ`n

λ6=(n),(1n)

(
fλ
)2
(λ1

n

)2k

+
(
λ′1
n

)2k
+ 2

(
n− 2
n

)2k
. (4.2.14)

Now using the fact
∑
λ`n

λ 6=(n),(1n)

(
fλ
)2
(
λ′1
n

)2k

=
∑
λ`n

λ 6=(n),(1n)

(
fλ
)2
(
λ1

n

)2k

, the expression in

the right hand side of (4.2.14) is equal to

4
∑
λ`n

λ 6=(n),(1n)

(
fλ
)2
(
λ1

n

)2k

+ 2
(

1− 2
n

)2k
< 4

∑
λ`n

(
fλ
)2
(
λ1

n

)2k

− 1
+ 2e− 4k

n . (4.2.15)

The right hand side of the expression (4.2.15) and hence the second term in the right
hand side of (4.2.8) is less than 4

(
en

2e−
2k
n − 1

)
+ 2e− 4k

n by Lemma 2.10. Thus the
inequality (4.2.8) becomes

4||P ∗k − UBn||2TV ≤ e−
2k
n + (4 + 4e)

(
en

2e−
2k
n − 1

)
+ 2e− 4k

n , for k ≥ n log n. (4.2.16)

Now if k ≥ n log n + cn and c > 0, then the right hand side of (4.2.16) is less than or
equal to

(4e+ 4)
(
ee
−2c − 1

)
+ e−2c

n2 + 2e−4c

n4 < 2(4e+ 4)e−2c + e−2c

n2 + 2e−4c

n4

= 2(4e+ 4)e−2c + o(1).

This proves the first part of the theorem. Now for ε ∈ (0, 1), kn = b(1 + ε)n log nc
implies, kn ≥ (1 + ε)n log n. Thus the right hand side of (4.2.16) is bounded above by
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(4e+ 4)
(
e

1
n2ε − 1

)
+ n−2(1+ε) + 2n−4(1+ε). Therefore the proof of the second part follows

from
lim
n→∞

(
(4e+ 4)

(
e

1
n2ε − 1

)
+ 1
n2(1+ε) + 2

n4(1+ε)

)
= 0.

4.3 Number of transitions necessary for mixing

In this section, we find a lower bound of the total variation distance ||P ∗kB − UBn||TV for
k = log n + cn, c � 0. We also find the sharp mixing time for the flip-transpose top
with random shuffle on Bn driven by PB by proving total variation cutoff phenomenon.
Throughout this section In denotes the identity matrix of order n×n. To start with, we
define a random variable X on Bn as follows:

X(π) = number of fixed points of π.

Remark 4.7. For each i ∈ [n], the signed permutation which fixes i will automatically
fix (−i). Thus X takes values on the set of non-negative even integers.

Throughout this chapter, let Ek(X) be the expectation and Vark(X) be the variance
of X with respect to the probability measure P ∗kB on Bn. Now X can also be described as
follows. Let V = C[{-n, . . . , -1,1, . . . ,n}] be the vector space of all formal C-linear com-
binations of elements of the set {-n, . . . , -1,1, . . . ,n}. Also let V + = C[{a1, a2, . . . , an}]
and V − = C[{b1,b2, . . . ,bn}] be two vector subspaces of V , where ai = i +(-i) and
bi = i−(-i) for all i ∈ [n]. We note that a-i = ai and b-i = −bi for all i ∈ [n]. Let us
now define

ρ+ : Bn → GL(V +) by ρ+(π)(ai) = aπ(i) on the basis elements of V +, for π ∈ Bn,

ρ− : Bn → GL(V −) by ρ−(π)(bi) = bπ(i) on the basis elements of V −, for π ∈ Bn.

It can be easily seen that ρ+(π) and ρ−(π) are well defined for π ∈ Bn. We note that ρ+

and ρ− are two representations of Bn. Using ρ+ and ρ− we can interpret X as follows:

X(π) = Tr
(
ρ+(π) + ρ−(π)

)
, for π ∈ Bn. (4.3.1)

Let C[n] := {c11 + c22 + · · · + cnn | ci ∈ C for all i}. Also let s(u,n) (1 ≤ u < n) denote
the transposition in Sn interchanging u and n. Recall from Chapter 2 (Definition 2.12)
that the defining representation ρdef : Sn → GL(C[n]) of Sn is defined by

ρdef(π) (c11 + c22 + · · ·+ cnn) = c1π(1) + c2π(2) + · · ·+ cnπ(n) for π ∈ Sn.
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From now on the matrices ρ+(π) (respectively ρ−(π)) are defined with respect to the
ordered bases (a1, . . . , an) (respectively (b1, . . . ,bn)) for π ∈ Bn and ρdef(σ) is defined
with respect to the ordered basis (1, . . . ,n) for σ ∈ Sn.

Lemma 4.8. The matrices ρ+((u, n)), ρ+((−u, n)) and ρdef(s(u,n)) are the same for all
u ∈ {1, . . . , n− 1} and ρ+((−n, n)) = In.

Proof. The lemma follows by looking at the action of each of these matrices on the basis
vector. Now for each i ∈ {1, . . . , n} we have the following:

ρ+((−u, n))(ai) =


ai if i 6= u, n

an if i = u

au if i = n

= ρ+((u, n))(ai).

ρdef(s(u,n))(i) =


i if i 6= u, n

n if i = u

u if i = n.

Also ρ+((−n, n)) = In follows trivially by looking its action on the basis elements.

Lemma 4.9. For each i ∈ {1, . . . , n}, let Mi denote the n× n matrix with (i, i)th entry
1 and 0 elsewhere. Then for all u ∈ {1, . . . , n − 1} we have ρ−((u, n)) + ρ−((−u, n)) =
2(In −Mu −Mn) and ρ−((−n, n)) = 2(In −Mn)− In.

Proof. This lemma follows by looking at the action of the matrices on the basis elements.
For i ∈ {1, . . . , n} we have the following:

(
ρ−((u, n)) + ρ−((−u, n))

)
(bi) =


2 bi if i 6= u, n

0 if i = u

0 if i = n

and (
In + ρ−((−n, n))

)
(bi) =

2 bi if i 6= n

0 if i = n.

Lemma 4.10. Let On be the zero matrix of size n× n and recall from Lemma 2.15 that

βi =
n−1∑
u=1

ρdef(s(u,n))− ρdef(s(i,n)), for all 1 ≤ i < n.
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If Blockdiag (β1, β2, . . . , βn−1, On) denotes the block diagonal matrix with ith block βi for
all i ∈ {1, 2, . . . , n− 1} and nth block On, then

n−1∑
u=1

(
ρ−((u, n))⊗ ρ+((u, n)) + ρ−((−u, n))⊗ ρ+((−u, n))

)
(4.3.2)

= 2 Blockdiag (β1, β2, . . . , βn−1, On) .

Proof. Using Lemma 4.8 and Lemma 4.9 the matrix in the statement (given in (4.3.2))
can be written as

n−1∑
u=1

(
ρ−((u, n)) + ρ−((−u, n))

)
⊗ ρdef(s(u,n))

= 2
n−1∑
u=1

(In −Mu −Mn)⊗ ρdef(s(u,n))

= 2
n−1∑
u=1

(In −Mn)⊗ ρdef(s(u,n))− 2
n−1∑
u=1

Mu ⊗ ρdef(s(u,n))

= 2
n−1∑
u=1

Blockdiag
(
ρdef(s(u,n)), ρdef(s(u,n)), . . . , ρdef(s(u,n)), On

)
− 2 Blockdiag

(
ρdef(s(1,n)), ρdef(s(2,n)), . . . , ρdef(s(n−1,n)), On

)
= 2 Blockdiag (β1, β2, . . . , βn−1, On) .

Lemma 4.11. The eigenvalues of
n∑
u=1

(
ρ−((u, n))⊗ρ−((u, n))+ρ−((−u, n))⊗ρ−((−u, n))

)
are given below:

Eigenvalues: 2n 2(n− 1) 0 2 −2 2(n− 2)
Multiplicities: 1 n− 2 1 n− 1 n− 1 (n− 1)(n− 2)

Proof. For simplicity let us call the matrix in the statement R. Now let us consider the
following vectors of V − ⊗ V −.

v1,1 = b1⊗b1 + · · ·+ bn⊗bn

vi,i = bi⊗bi−b1⊗b1 for i ∈ {2, . . . , n− 1}
vn,n = v1,1 − n(bn⊗bn)
v+
i,n = bi⊗bn + bn⊗bi for i ∈ {1, . . . , n− 1}
v−i,n = bi⊗bn−bn⊗bi for i ∈ {1, . . . , n− 1}
vi,j = bi⊗bj for i, j ∈ {1, . . . , n− 1} and i 6= j.

(4.3.3)

It can be easily seen that the vectors in (4.3.3) are linearly independent. Now the lemma
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follows from the following:

R(v1,1) = (2n)v1,1

R(vi,i) = (2n− 2)vi,i for i ∈ {2, . . . , n− 1}
R(vn,n) = 0
R(v+

i,n) = 2v+
i,n for i ∈ {1, . . . , n− 1}

R(v−i,n) = (−2)v−i,n for i ∈ {1, . . . , n− 1}
R(vi,j) = (2n− 4)vi,j for i, j ∈ {1, . . . , n− 1} and i 6= j.

Proposition 4.12. Let X, Ek(X) be defined as in the beginning of this section. Then
we have, Ek(X) = 1 + (2n− 3)

(
1− 1

n

)k
.

Proof. Using (4.3.1) and the definition of expectation of a random variable we have

Ek(X) =
∑
π∈Bn

X(π)P ∗kB (π)

=
∑
π∈Bn

Tr
(
ρ+(π) + ρ−(π)

)
P ∗kB (π)

= Tr
 ∑
π∈Bn

ρ+(π)P ∗kB (π)
+ Tr

 ∑
π∈Bn

ρ−(π)P ∗kB (π)


= Tr
(
P̂ ∗kB (ρ+)

)
+ Tr

(
P̂ ∗kB (ρ−)

)
= Tr

((
P̂B(ρ+)

)k)
+ Tr

((
P̂B(ρ−)

)k)
. (4.3.4)

Now using Lemma 4.8 we have

P̂B(ρ+) = 1
2n

n∑
u=1

(
ρ+((u, n)) + ρ+((−u, n))

)
= 1
n

(
In +

n−1∑
u=1

ρdef(s(u,n))
)
. (4.3.5)

Therefore from (4.3.5) and Lemma 2.13 the eigenvalues of P̂B(ρ+) are the following:

Eigenvalues: 1
(
1− 1

n

)
0

Multiplicities: 1 n− 2 1

Again from Lemma 4.9, P̂B(ρ−) = 1
2n

n∑
u=1

(
ρ−((u, n)) + ρ−((−u, n))

)
can be written as

1
n

(
n−1∑
u=1

(In −Mu −Mn) + (In −Mn)
)

= 1
n

(
n (In −Mn)−

n−1∑
u=1

Mu

)

= n− 1
n

(In −Mn) .
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Thus the eigenvalues of P̂B(ρ−) are given below.

Eigenvalues:
(
1− 1

n

)
0

Multiplicities: n− 1 1

Hence the proposition follows from (4.3.4).

Proposition 4.13. Following the definitions of X and Vark(X), we have

Vark(X) =2 + (4n− 6)
(

1− 1
n

)k
+ (4n2 − 16n+ 13)

(
1− 2

n

)k
+ (2n− 3)

(
1 + (−1)k

nk

)
− (4n2 − 12n+ 9)

(
1− 1

n

)2k
.

Proof. We first find Ek(X2). Now using (4.3.1), for each π ∈ Bn we have the following:

(X(π))2 = Tr
((
ρ+(π) + ρ−(π)

)
⊗
(
ρ+(π) + ρ−(π)

))
= Tr

(
ρ+(π)⊗ ρ+(π)

)
+ 2 Tr

(
ρ−(π)⊗ ρ+(π)

)
+ Tr

(
ρ−(π)⊗ ρ−(π)

)
= Tr (ρ1(π)) + 2 Tr (ρ2(π)) + Tr (ρ3(π)) , (4.3.6)

where ρ1 : Bn → GL(V +⊗ V +), ρ2 : Bn → GL(V −⊗ V +) and ρ3 : Bn → GL(V −⊗ V −)
be three representations of Bn defined below.

ρ1(π) =
(
ρ+ ⊗ ρ+

)
(π)(vi ⊗ vj) = ρ+(π)(vi)⊗ ρ+(π)(vj) for π ∈ Bn, vi ∈ V +, vj ∈ V +,

ρ2(π) =
(
ρ− ⊗ ρ+

)
(π)(vi ⊗ vj) = ρ−(π)(vi)⊗ ρ+(π)(vj) for π ∈ Bn, vi ∈ V −, vj ∈ V +,

ρ3(π) =
(
ρ− ⊗ ρ−

)
(π)(vi ⊗ vj) = ρ−(π)(vi)⊗ ρ−(π)(vj) for π ∈ Bn, vi ∈ V −, vj ∈ V −.

Now we have

Ek(X2) =
∑
π∈Bn

(X(π))2 P ∗kB (π)

=
∑
π∈Bn

(Tr (ρ1(π)) + 2 Tr (ρ2(π)) + Tr (ρ3(π)))P ∗kB (π)

= Tr
 ∑
π∈Bn

ρ1(π)P ∗kB (π)
+ 2 Tr

 ∑
π∈Bn

ρ2(π)P ∗kB (π)
+ Tr

 ∑
π∈Bn

ρ3(π)P ∗kB (π)


= Tr
(
P̂ ∗kB (ρ1)

)
+ 2 Tr

(
P̂ ∗kB (ρ2)

)
+ Tr

(
P̂ ∗kB (ρ3)

)
= Tr

((
P̂B(ρ1)

)k)
+ 2 Tr

((
P̂B(ρ2)

)k)
+ Tr

((
P̂B(ρ3)

)k)
. (4.3.7)
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Now from Lemma 4.8 we have

P̂B(ρ1) = 1
2n

(
n∑
u=1

(
ρ+((u, n))⊗ ρ+((u, n)) + ρ+((−u, n))⊗ ρ+((−u, n))

))

= 1
n

(
n−1∑
u=1

(
ρdef(s(u,n))⊗ ρdef(s(u,n))

)
+ In ⊗ In

)
. (4.3.8)

Therefore from Lemma 2.14 the eigenvalues of P̂B(ρ1) are:

Eigenvalues: 1
(
1− 1

n

)
0

(
1− 2

n

)
1
n

− 1
n

Multiplicities: 2 3(n− 2) 3 n2 − 5n+ 5 n− 2 n− 2

Again from Lemma 4.8, 4.9 and 4.10 we have the following:

P̂B(ρ2) = 1
2n

n∑
u=1

(
ρ−((u, n))⊗ ρ+((u, n)) + ρ−((−u, n))⊗ ρ+((−u, n))

)
= 1

2n
(
2 Blockdiag (β1, β2, . . . , βn−1, On) +

(
In + ρ−((−n, n))

)
⊗ In

)
= 1
n

(Blockdiag (β1, β2, . . . , βn−1, On) + (In −Mn)⊗ In)

= 1
n

Blockdiag (β1 + In, β2 + In, . . . , βn−1 + In, On) . (4.3.9)

Therefore from (4.3.9) and Lemma 2.15, the eigenvalues of P̂B(ρ2) are:

Eigenvalues:
(
1− 1

n

) (
1− 2

n

)
0

Multiplicities: 2(n− 1) (n− 3)(n− 1) 2n− 1

Also from Lemma 4.11, the eigenvalues of P̂B(ρ3) are:

Eigenvalues: 1
(
1− 1

n

)
0

(
1− 2

n

)
1
n

− 1
n

Multiplicities: 1 n− 2 1 (n− 1)(n− 2) n− 1 n− 1

Hence from (4.3.7) we have

Ek(X2) = 3 + (8n− 12)
(

1− 1
n

)k
+ (4n2− 16n+ 13)

(
1− 2

n

)k
+ (2n− 3)

(
1 + (−1)k

nk

)
.

Thus the proposition follows from Proposition 4.12 and straightforward calculations.

Proposition 4.14. Let EUBn (X) denote the expectation of X with respect to the uniform
distribution on Bn, EUBn (X) = 1.

Proof. We note that signed permutations which fix i will automatically fix (−i). Let Bi
be the set of sign permutations in Bn which fix i. Basic combinatorial arguments imply
|Bi| = 2n−1(n− 1)! for all i ∈ {−n, . . . ,−1, 1, . . . , n}.
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Let Rdef : Bn → GL(V ) be the defining representation on Bn. Then we have,

EUBn (X) =
∑
π∈Bn

X(π)UBn(π) = 1
|Bn|

∑
π∈Bn

Tr
(
Rdef(π)

)

= 1
|Bn|

n∑
i=−n
i 6=0

|Bi| =
2n|Bi|
2nn! = 1.

Theorem 4.15. Let X, Ek(X) and Vark(X) be as given above. Then we have

1. For large n, ||P ∗kB −UBn||TV ≥ 1− 10(1+2e−c+o(1))
(1+2e−c+o(1))2 , when k = n log n+ cn and c� 0.

2. lim
n→∞

||P ∗knB − UBn||TV = 1, for any ε ∈ (0, 1) and kn = b(1− ε)n log nc.

Proof. Using Lemma 2.19, µ = P ∗kB and ν = UBn we have,

||P ∗kB − UBn||TV ≥ 1− 4 Vark(X)
(Ek(X))2 −

2
Ek(X) . (4.3.10)

Now if n is large, we have
Ek(X) ≈ 1 + (2n− 3)e− kn (4.3.11)

from Proposition 4.12 and

Vark(X) ≈ 2 + (4n− 6)e− kn − 4(n− 1)e− 2k
n + (2n− 3)

(
1 + (−1)k

nk

)
(4.3.12)

from Proposition 4.13. Recall that ‘ ≈’ means ‘asymptotic to’ i.e. an ≈ bn means
lim
n→∞

an
bn

= 1. Now if n is large, c � 0 and k = n log n + cn, then by (4.3.10), (4.3.11)
and (4.3.12), we have the first part of this theorem. Again for any ε ∈ (0, 1) and
kn = b(1− ε)n log nc from (4.3.10), (4.3.11) and (4.3.12), we have

1 ≥ ||P ∗knB − UBn||TV ≥ 1− 10 + (20 + o(1))nε + n2εo(1) + o(1)
(1 + (2 + o(1))nε)2 (4.3.13)

for large n. Therefore, the second part of this theorem follows from (4.3.13) and the fact
that

lim
n→∞

10 + (20 + o(1))nε + n2εo(1) + o(1)
(1 + (2 + o(1))nε)2 = 0.

Therefore from the first part of Theorems 4.6 and 4.15 we can say that the mixing
time for the flip-transpose top with random shuffle on Bn is n log n. Furthermore, the
second part of Theorems 4.6 and 4.15 prove the total variation cutoff for this shuffle.
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4.4 Representation theory of Dn

In this section we briefly discuss the irreducible representations of Dn (detailed proofs are
omitted) [71]. Our main aim is to look at the restriction of the irreducible representations
of Bn to Dn.

Let us consider the one-dimensional character (or representation) ξ : Bn → ({±1}, ·)
of Bn. The action of ξ on the generators of Bn is defined by

ξ(π) =

−1, if π = (−1, 1),

1, if π = (i, i+ 1) for 1 ≤ i ≤ n− 1.
(4.4.1)

It can be easily seen that ker(ξ) = Dn and the Bn-module V ⊗ ξ is irreducible if and
only if the Bn-module V is irreducible. We have already seen in Section 4.2 that the
irreducible representations of Bn are indexed by Dn. If µ = (µ(1), µ(2)) ∈ Dn, then
µ̃ = (µ(2), µ(1)) ∈ Dn. Now from [50, Proposition II.1.(ii)] it follows that the irreducible
Bn-modules V µ ⊗ ξ and V µ̃ are isomorphic for µ ∈ Dn.

Theorem 4.16. For the irreducible Bn-module V µ indexed by µ = (µ(1), µ(2)) ∈ Dn, we
have the following:

1. If µ(1) 6= µ(2), then the restriction V µ ↓BnDn of V µ to Dn is irreducible as a Dn-
module. We denote this irreducible Dn-module by the same notation V µ. Moreover
if µ̃ = (µ(2), µ(1)), then V µ and V µ̃ are isomorphic as Dn-modules. If ν ∈ Dn be
such that ν 6= µ and ν 6= µ̃, then V ν and V µ are non-isomorphic as Dn-modules.

2. If µ(1) = µ(2), then the restriction V µ ↓BnDn of V µ to Dn is a direct sum of two
irreducible Dn-modules with same dimension. We denote these irreducible Dn-
modules by the V µ

+ and V µ
− .

Proof. Recall that Sn denotes the symmetric group and An denotes the alternating group.
The proof of this theorem follows by mimicking the steps of deducing the irreducible
representations of An from that of Sn [81, Theorem 4.4.2, Theorem 4.6.5]. For this proof
Bn (respectively Dn) will play the role of Sn (respectively An) and ξ will play the role
of the one-dimensional sign character of Sn.

Let S be the collection of subsets Γ of Dn satisfying the following properties:

1. µ(1) 6= µ(2) for each (µ(1), µ(2)) ∈ Γ,

2. (µ(2), µ(1)) /∈ Γ if and only if (µ(1), µ(2)) ∈ Γ.
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Let Γ1 be the maximal element of the poset (S,⊆) and Γ2 = {(µ(1), µ(2)) ∈ Dn : µ(1) =
µ(2)}. Then from Theorem 4.16 and the observation

∑
µ∈Γ1

(dim(V µ))2 +
∑
µ∈Γ2

(
(dim(V µ

+ ))2 + (dim(V µ
− ))2

)
,

=
∑
µ∈Γ1

(dim(V µ))2 +
∑
µ∈Γ2

(dim(V µ)
2

)2

+
(

dim(V µ)
2

)2
 ,

= 1
2

2
∑
µ∈Γ1

(dim(V µ))2 +
∑
µ∈Γ2

(dim(V µ))2

 = |Bn|
2 = |Dn|,

all the irreducible Dn-modules are given by {V µ : µ ∈ Γ1} ∪ {V µ
+ , V

µ
− : µ ∈ Γ2}.

4.5 Flip-transpose top with random shuffle on Dn

Let us consider the random walk on the demihyperoctahedral group Dn driven by the
probability measure PD on Dn defined as follows:

PD(π) =


1

2n−1 , if π = id, the identity element of Dn,

1
2n−1 , if π = (i, n) or (−i, n) for 1 ≤ i ≤ n− 1,

0, otherwise.

(4.5.1)

We call it the flip-transpose top with random shuffle on Dn. It can be easily seen that
the support of PD generates Dn and hence this random walk is irreducible (Proposition
2.22). Moreover this random walk is aperiodic too. Thus the distribution after kth
transition for this random walk will converge to UDn (Proposition 2.23) as k →∞. Let
us recall that P̂D(R) is the Fourier transform of PD at the right regular representation R
of Dn. The transition matrix for the random walk on Dn driven by PD is the transpose
of P̂D(R). To find the eigenvalues of P̂D(R) we will use the representation theory of Dn.

Theorem 4.17. The eigenvalues of P̂D(R) are given by

1. If µ =
(
µ(1), µ(2)

)
∈ Γ1, then for each T ∈ tabD(n, µ), 2c(bT (n))+1

2n−1 is an eigenvalue
of P̂D(R) with multiplicity dim(V µ).

2. If µ =
(
µ(1), µ(2)

)
∈ Γ2, then for each T ∈ tabD(n, µ), 2c(bT (n))+1

2n−1 is an eigenvalue
of P̂D(R) with multiplicity 1

2dim(V µ).

Recall c(bT (n)) is the content of the box containing n in T .



4.5. Flip-transpose top with random shuffle on Dn 61

Proof. We have P̂D(R) = 1
2n−1

(
XB
n + id

)
, where XB

n is the nth Young-Jucys-Murphy
element of Bn and id is the identity element of Dn. Here we identify the elements of
Dn(⊆ Bn) by the elements of Bn.

For µ =
(
µ(1), µ(2)

)
∈ Γ1, we have µ(1) 6= µ(2). Therefore the restriction of irreducible

Bn-module V µ to Dn is irreducible (Theorem 4.16). Now for each T ∈ tabD(n, µ), let
vT be the Gelfand-Tsetlin vector of V µ satisfying XB

n vT = 2c(bT (n))vT . Also we know
that {vT : T ∈ tabD(n, µ)} forms a basis of V µ. Therefore the eigenvalues of P̂D(R) on
the irreducible Dn-module V µ are given by 2c(bT (n))+1

2n−1 for each T ∈ tabD(n, µ). Since
the multiplicity of every irreducible representation in the right regular representation is
equal to its dimension, therefore the multiplicity of these eigenvalues are dim(V µ).

Now for µ =
(
µ(1), µ(2)

)
∈ Γ2 we have µ(1) = µ(2). Then the restriction of the

irreducible Bn-module V µ to Dn splits into two irreducible Dn-modules V µ
+ and V µ

−

(Theorem 4.16). In this case also vT is the Gelfand-Tsetlin vector of V µ and {vT :
T ∈ tabD(n, µ)} forms a basis of V µ

+ ⊕ V µ
− . Therefore, by similar arguments in case

of µ(1) 6= µ(2), the eigenvalues of P̂D(R) on the irreducible Dn-modules V µ
+ and V µ

− are
given by 2c(bT (n))+1

2n−1 for each T ∈ tabD(n, µ). The multiplicity of these eigenvalues are
1
2 dim(V µ) ( ∵ dim(V µ

+ ) = dim(V µ
− ) = 1

2 dim(V µ)).

Theorem 4.18. For the random walk on Dn driven by PD, we have the following:

1. ||P ∗kD − UDn||TV <
√
e+ 1 e−c + o(1), for k ≥

(
n− 1

2

)
(log n+ c) and c > 0.

2. lim
n→∞

||P ∗knD − UDn||TV = 0, for any ε ∈ (0, 1) and kn = b(1 + ε)
(
n− 1

2

)
log nc.

Proof. Using Lemma 2.24 and following similar steps of Theorem 4.6, we have

4||P ∗kD − UDn||2TV ≤ (2 + 2e)
(
en

2e
− 4k

2n−1 − 1
)

+ e−
4k

2n−1 , for k ≥
(
n− 1

2

)
log n. (4.5.2)

Now if k ≥
(
n− 1

2

)
(log n+ c) and c > 0, then the right hand side of (4.5.2) becomes

(2e+ 2)
(
ee
−2c − 1

)
+ e−2c

n2 < (4e+ 4)e−2c + e−2c

n2 = (4e+ 4)e−2c + o(1).

This proves the first part of the theorem. Now for ε ∈ (0, 1), kn = b(1 + ε)
(
n− 1

2

)
log nc

implies, kn ≥ (1 + ε)
(
n− 1

2

)
log n. Thus the right hand side of (4.5.2) is bounded above

by (2e+ 2)
(
e

1
n2ε − 1

)
+ 1

n2(1+ε) . Therefore the proof of the second part follows from

lim
n→∞

(2e+ 2)
(
e

1
n2ε − 1

)
+ 1
n2(1+ε) = 0.



62 4. The flip-transpose top with random shuffle

To obtain the lower bound for the total variation distance ||P ∗kD − UDn||TV we define
the random variable Y as in the case of the walk on Bn driven by PB as follows:

Y (π) = number of fixed points of π, π ∈ Dn.

i.e., Y is the restriction of X to Dn. Now using the definitions of ρ+, ρ− and ρdef and the
conventions for the ordering of the bases to obtain the matrices as given in Section 4.3,
we have the following:

Y (π) = Tr
(
ρ+ ↓BnDn (π) + ρ− ↓BnDn (π)

)
= Tr

(
ρ+(π) + ρ−(π)

)
, for π ∈ Dn.

Now, if EUDn (Y ) denotes the expectation of Y with respect to the uniform distribution
on Dn, then from standard combinatorial arguments one can show that EUDn (Y ) = 1.

Lemma 4.19. The eigenvalues of

n−1∑
u=1

(
ρ−((u, n))⊗ ρ−((u, n)) + ρ−((−u, n))⊗ ρ−((−u, n))

)

are given as below:

Eigenvalues: 2n− 2 2(n− 2) −2 2 2(n− 3)
Multiplicities: 1 n− 2 n n− 1 (n− 1)(n− 2)

Proof. The n2 independent vectors defined in (4.3.3) are the eigenvectors in this case
also.

Proposition 4.20. Let Ek(Y ) be the expectation of Y with respect to the probability
measure P ∗kD . Then we have Ek(Y ) = 1 + (2n− 3)

(
1− 2

2n−1

)k
+ 1+(−1)k

(2n−1)k .

Proof. Following similar steps we used in Proposition 4.12 to get (4.3.4) and using (4.3.1)
we have the following:

Ek(Y ) =
∑
π∈Dn

Y (π)P ∗kD (π)

= Tr
((
P̂D

(
ρ+ ↓BnDn

))k)
+ Tr

((
P̂D

(
ρ− ↓BnDn

))k)
. (4.5.3)

Now from Lemmas 4.8, 2.13, 4.9 and by the similar arguments given in the proof of
Proposition 4.12 we have the following: The eigenvalues of P̂D

(
ρ+ ↓BnDn

)
are:

Eigenvalues: 1
(
1− 2

2n−1

)
− 1

2n−1

Multiplicities: 1 n− 2 1
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The eigenvalues of P̂D
(
ρ− ↓BnDn

)
are:

Eigenvalues:
(
1− 2

2n−1

)
1

Multiplicities: n− 1 1

The proposition follows from (4.5.3) and the fact that the trace of kth power of matrix
is the sum of kth powers of its eigenvalues.

Proposition 4.21. Let Vark(Y ) be the variance of Y with respect to the probability
measure P ∗kD . Then we have

Vark(Y ) =2 + (4n− 6)
(

1− 2
2n− 1

)k
+ (4n2 − 16n+ 13)

(
1− 4

2n− 1

)k

+

(
1 + (−1)k

)
(2n− 1)k

(
3n− 1− 2

(2n− 1)k − 2
(

1− 2
2n− 1

)k)

+ (n− 2)

(
3k + (−3)k

)
(2n− 1)k − 3

(2n− 1)k +
( 3

2n− 1

)k
− (4n2 − 12n+ 9)

(
1− 2

2n− 1

)2k
.

Proof. We first find Ek(Y 2). From (4.3.1) and by similar arguments given in the proof
of Proposition 4.13 to obtain (4.3.6), we have

(Y (π))2 = Tr
(
ρ1 ↓BnDn (π)

)
+ 2 Tr

(
ρ2 ↓BnDn (π)

)
+ Tr

(
ρ3 ↓BnDn (π)

)
for each π ∈ Dn.

(4.5.4)
Again following similar steps we used in the proof of Proposition 4.13 to get (4.3.7) we
have

Ek(Y 2) = Tr
((
P̂D

(
ρ1 ↓BnDn

))k)
+ 2 Tr

((
P̂D

(
ρ2 ↓BnDn

))k)
+ Tr

((
P̂D

(
ρ3 ↓BnDn

))k)
.

(4.5.5)
Now following Lemmas 2.14, 4.8 and similar steps in the proof of Proposition 4.13, we
have the Eigenvalues of P̂D

(
ρ1 ↓BnDn

)
are:

Eigenvalues: 1
(
1− 2

2n−1

)
− 1

2n−1

(
1− 4

2n−1

)
1

2n−1 − 3
2n−1

Multiplicities: 2 3(n− 2) 3 n2 − 5n+ 5 n− 2 n− 2

From Lemmas 2.15 and 4.10 the eigenvalues of P̂D
(
ρ2 ↓BnDn

)
are:

Eigenvalues:
(
1− 2

2n−1

) (
1− 4

2n−1

)
− 1

2n−1
1

2n−1

Multiplicities: 2(n− 1) (n− 3)(n− 1) n− 1 n

Finally from Lemma 4.19 the eigenvalues of P̂D
(
ρ3 ↓BnDn

)
are:
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Eigenvalues: 1 − 1
2n−1

3
2n−1

(
1− 2

2n−1

) (
1− 4

2n−1

)
Multiplicities: 1 n n− 1 n− 2 (n− 1)(n− 2)

Therefore this proposition follows from (4.5.5) and Proposition 4.20.

Theorem 4.22. Following the expression of Y, Ek(Y ) and Vark(Y ), we have

1. For large n, ||P ∗kD −UDn||TV ≥ 1− 10(1+2e−c+o(1))
(1+2e−c+o(1))2 , when k = (n− 1

2)(log n+ c) and
c� 0.

2. lim
n→∞

||P ∗knD − UDn||TV = 1, for any ε ∈ (0, 1) and kn = b(1− ε)(n− 1
2) log nc.

Proof. Using Lemma 2.19, µ = P ∗kD and ν = UDn we have,

||P ∗kD − UDn||TV ≥ 1− 4 Vark(Y )
(Ek(Y ))2 −

2
Ek(Y ) . (4.5.6)

For large enough n, we have

Ek(Y ) ≈ 1 + (2n− 3)e−
2k

2n−1 (4.5.7)

from Proposition 4.20 and

Vark(Y ) ≈ 2 + 2
2n− 3−

(
1 + (−1)k

)
(2n− 1)k

 e− 2k
2n−1 − 4(n− 1)e−

4k
2n−1 (4.5.8)

from Proposition 4.21. Now if n is large, c � 0 and k = (n − 1
2)(log n + c), then by

(4.5.6), (4.5.7) and (4.5.8), we have the first part of this theorem. Again for any ε ∈ (0, 1)
and kn = b(1− ε)(n− 1

2) log nc from (4.5.6), (4.5.7) and (4.5.8), we have

1 ≥ ||P ∗knD − UDn||TV ≥ 1− 10 + (20 + o(1))nε + n2εo(1) + o(1)
(1 + (2 + o(1))nε)2 (4.5.9)

for large n. Therefore, the second part of this theorem follows from (4.5.9) and the fact
that

lim
n→∞

10 + (20 + o(1))nε + n2εo(1) + o(1)
(1 + (2 + o(1))nε)2 = 0.

Therefore the second part of Theorems 4.18 and 4.22 implies that the random walk
on Dn driven by PD satisfies the cutoff phenomenon and the total variation cutoff for
this shuffle occurs at

(
n− 1

2

)
log n.



Chapter 5

The warp-transpose top with
random shuffle

In this chapter, we consider a random walk on the complete monomial group Gn o Sn.
This is a generalization of the flip-transpose top with random shuffle of Chapter 4 (see
Remark 5.17). We call this the warp-transpose top with random shuffle. In Section 5.1,
we introduce this shuffle. We obtain the spectrum of the transition matrix for this shuffle
in Section 5.2. In Section 5.3, we give an upper bound for the total variation distance
of the distribution after k transitions from the stationary distribution. We also show
that the mixing time for this shuffle is O

(
n log n+ 1

2n log(|Gn| − 1)
)
, in this section. In

Section 5.4, we obtain a lower bound for the total variation distance of the distribution
after k transitions from the stationary distribution. In this section, we also show that
this shuffle satisfies the cutoff phenomenon if |Gn| = o(nδ) for all δ > 0.

5.1 Introduction

Definition 5.1. Let G be a finite group. Recall that Sn is the symmetric group of
permutations of elements of the set [n]. The complete monomial group is the wreath
product of G with Sn, is a group denoted by G oSn and can be described as follows: The
elements of G o Sn are (n + 1)-tuples (g1, g2, . . . , gn; π) where gi ∈ G and π ∈ Sn. The
multiplication in G o Sn is given by

(g1, . . . , gn; π)(h1, . . . , hn; η) = (g1hπ−1(1), . . . , gnhπ−1(n); πη).

The identity element is (1G, . . . , 1G; id), where 1G is the identity element of G and id is
the identity permutation. Therefore (g1, . . . , gn; π)−1 = (g−1

π(1), . . . , g
−1
π(n); π−1).

65
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Let G1 ⊆ · · · ⊆ Gn ⊆ · · · be a sequence of finite groups such that |G1| > 2. We
consider the complete monomial groups Gn := Gn o Sn for each positive integer n. Let
e be the identity of Gn and id be the identity of Sn. For an element π ∈ Sn, let
π := (e, . . . , e; π) ∈ Gn and for g ∈ Gn, let

g(i) := (e, . . . , e, g
↑
, e, . . . , e; id) ∈ Gn .

ith position.

Unless otherwise stated from now on, (e, . . . , e, g−1, e, . . . , e, g; (i, n)) denotes the element
of Gn with g−1 in ith position and g in nth position, for g ∈ Gn, 1 ≤ i < n. One can check
that (g−1)(i)g(n)(i, n) is equal to (e, . . . , e, g−1, e, . . . , e, g; (i, n)) for g ∈ Gn, 1 ≤ i < n.

In this work we consider a random walk on the complete monomial group Gn driven
by a probability measure PG, defined as follows:

PG(x) =


1

n|Gn| , if x = (e, . . . , e, g; id) for g ∈ Gn,

1
n|Gn| , if x = (e, . . . , e, g−1, e, . . . , e, g; (i, n)) for g ∈ Gn, 1 ≤ i < n,

0, otherwise.

(5.1.1)

We call this the warp-transpose top with random shuffle because at most times the nth
component is multiplied by g and the ith component is multiplied by g−1 simultaneously,
g ∈ Gn, 1 ≤ i < n. We now give a combinatorial description of this model as follows:

Let An(G) denote the set of all arrangements of n coloured cards in a row such that
the colours of the cards are indexed by the set G. For example, if Z2 denotes the additive
group of integers modulo 2, then elements of An(Z2) can be identified with the elements
of Bn (the hyperoctahedral group). For g, h ∈ G, by saying update the colour g using
colour h we mean the colour g is updated to colour g ·h. Elements of Gn can be identified
with the elements of An(Gn) as follows: The element (g1, . . . , gn; π) ∈ Gn is identified
with the arrangement in An(Gn) such that the label of the ith card is π(i), and its colour
is gπ(i), for each i ∈ [n]. Given an arrangement of coloured cards in An(Gn), the warp-
transpose top with random shuffle on Gn is the following: Choose a positive integer i
uniformly from [n]. Also choose a colour g uniformly from Gn, independent of the choice
of the integer i.

1. If i = n: update the colour of the nth card using colour g.

2. If i < n: first transpose the ith and nth cards. Then simultaneously update the
colour of the nth card using colour g and update the colour of the ith card using
colour g−1.
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123459786

12345 6 789
−−−
→

−−−→
−−−→

123459786

123459786

123456789

12345678 9
−−−
→

−−−→
−−−→

123456789

123456789
(a) (b)

Figure 5.1: Transitions for the warp-transpose top with random shuffle on Z3 o S9. Z3 is
the additive group of integers modulo 3, consists of the colours red, green and blue such
that red represents the identity element. (a) shows transitions when the sixth card is
chosen and (b) shows transitions when the last card is chosen.

Proposition 5.2. The warp-transpose top with random shuffle on Gn is irreducible and
aperiodic.

Proof. The support of PG is Γ = {(g−1)(i)g(n)(i, n), g(n) | g ∈ Gn, 1 ≤ i < n} and it can
be easily seen that {g(k), (i, n) | g ∈ Gn, 1 ≤ k ≤ n, 1 ≤ i < n} is a generating set of Gn.

(g−1)(n)
(
(g−1)(i)g(n)(i, n)

)
g(n) = (i, n) for each 1 ≤ i < n and g ∈ Gn,

(k, n)g(n)(k, n) = g(k) for each 1 ≤ k ≤ n and for all g ∈ Gn.
(5.1.2)

Thus (5.1.2) implies Γ generates Gn and hence the warp-transpose top with random
shuffle on Gn is irreducible (Proposition 2.22). Moreover given any π ∈ Gn, the set of
all times when it is possible for the chain to return to the starting state π contains the
integer 1 (as support of PG contains the identity element of Gn). Therefore the period of
the state π is 1 and hence from irreducibility all the states of this chain have period 1.
Thus this chain is aperiodic.

We know from Chapter 2 that the irreducible and aperiodic random walk on a finite group
driven by some probability measure (defined on the group) converges to its stationary
distribution [66, Theorem 4.9]. Moreover the stationary distribution is the uniform
distribution in this case (Proposition 2.23). Thus Proposition 5.2 says that the warp-
transpose top with random shuffle on Gn converges to the uniform distribution UGn as
the number of transitions goes to infinity.

5.2 Spectrum of the transition matrix

In this section we find the eigenvalues of the transition matrix P̂G(R), the Fourier trans-
form of PG at the right regular representation R of Gn. To find the eigenvalues of P̂G(R)
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we will use the representation theory of the wreath product Gn of a finite group Gn with
the symmetric group Sn. First we briefly discuss the representation theory of G o Sn,
following the notations from [73].

Recall that Y denotes the set of all Young diagrams (there is a unique Young diagram
with zero boxes) and Yn denotes the set of all Young diagrams with n boxes. Let X
be a finite set, we define Y(X) = {µ : µ is a map from X to Y}. For µ ∈ Y(X), define
||µ|| =

∑
x∈X
|µ(x)|, where |µ(x)| is the number of boxes of the Young diagram µ(x) and

define Yn(X) = {µ ∈ Y(X) : ||µ|| = n}. Let n be a fixed positive integer. Recall that
Ĝ is the set of equivalence classes of irreducible representations of G. Given σ ∈ Ĝ, we
denote by W σ the corresponding irreducible G-module (the space for the corresponding
irreducible representation of G). Elements of Y(Ĝ) are called Young G-diagrams and
elements of Yn(Ĝ) are called Young G-diagrams with n boxes. Given µ ∈ Y(Ĝ) and
σ ∈ Ĝ, we denote by µ ↓σ the set of all Young G-diagrams obtained from µ by removing
one of the inner corners in the Young diagram µ(σ). Let µ ∈ Y(Ĝ). A Young G-tableau
of shape µ is obtained by taking the Young G-diagram µ and filling its ||µ|| boxes
(bijectively) with the numbers 1, 2, . . . , ||µ||. A Young G-tableau is said to be standard if
the numbers in the boxes strictly increase along each row and each column of all Young
diagrams occurring in µ. Let tabG(n, µ), where µ ∈ Yn(Ĝ), denote the set of all standard
Young G-tableaux of shape µ and let tabG(n) = ∪

µ∈Yn(Ĝ)
tabG(n, µ). Let T ∈ tabG(n) and

i ∈ [n]. If i appear in the Young diagram µ(σ), where µ is the shape of T and σ ∈ Ĝ,
we write rT (i) = σ. Recall that bT (i) denotes the box in µ(σ), with the number i resides
and c(bT (i)) denotes the content of the box bT (i).

For example let us take n = 10 and G to be Z10, the additive group of integers modulo
10. Also let Ẑ10 := {σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10} and µ ∈ Y10(Ẑ10) be such that

µ(σ1) = , µ(σ2) = , µ(σ8) = , µ(σ10) =

and µ(σi) = φ for all i ∈ {3, 4, 5, 6, 7, 9}, where φ denotes the empty Young diagram (i.e.
Young diagram with no boxes). Then for the element T of tabZ10 (10, µ) given by

µ(σ1) 
4 6 9
7 10 , µ(σ2) 

1
2 , µ(σ8) 

3
8 , µ(σ10) 5

and µ(σi)  φ for i ∈ {3, 4, 5, 6, 7, 9}, we have the following: rT (1) = σ2, rT (2) = σ2,
rT (3) = σ8, rT (4) = σ1, rT (5) = σ10, rT (6) = σ1, rT (7) = σ1, rT (8) = σ8, rT (9) = σ1,
rT (10) = σ1 and c(bT (1)) = 0, c(bT (2)) = −1, c(bT (3)) = 0, cT (4) = 0, cT (5) = 0,
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c(bT (6)) = 1, c(bT (7)) = −1, c(bT (8)) = −1, c(bT (9)) = 2, c(bT (10)) = 0.

Definition 5.3. Let Hi,n(G) be the subgroup

{(g1, . . . , gn; π) ∈ G o Sn : π(j) = j for i+ 1 ≤ j ≤ n}

of G o Sn for 0 ≤ i ≤ n. In particular H0,n(G) = H1,n(G) = Gn and Hn,n(G) = G o Sn.

Definition 5.4. The (generalized) Young-Jucys-Murphy elements X1(G), . . . , Xn(G) of
C[G o Sn] or Hn,n(G) are given by X1(G) = 0 and

Xi(G) =
i−1∑
k=1

∑
g∈G

(g−1)(k)g(i)(k, i)

=
i−1∑
k=1

∑
g∈G

(g−1)(k)(k, i)g(k), for all 2 ≤ i ≤ n.

The Young-Jucys-Murphy elements generate a maximal commuting subalgebra of
C[G o Sn], known as the Gelfand-Tsetlin subalgebra of Hn,n(G). We now define Gelfand-
Tsetlin subspaces and the Gelfand-Tsetlin decomposition.

Let λ ∈ Ĥn,n(G) and consider the irreducible Hn,n(G)-module (the space for the
representation of Hn,n(G)) V λ. Since the branching is simple [73, Section 3], the decom-
position into irreducible Hn−1,n(G)-modules is given by

V λ = ⊕
µ
V µ,

where the sum is over all µ ∈ Ĥn−1,n(G), with µ ↗ λ (i.e., there is an edge from µ to
λ in the branching multi-graph), is canonical. Iterating this decomposition of V λ into
irreducible H1,n(G)-submodules we obtain

V λ = ⊕
T
VT , (5.2.1)

where the sum is over all possible chains T = λ1 ↗ λ2 ↗ · · · ↗ λn with λi ∈ Ĥi,n(G)
and λn = λ. From the definition of VT , for 0 6= vT ∈ VT , we have C[Hi,n(G)]vT =
V λi . We call (5.2.1) the Gelfand-Tsetlin decomposition of V λ and each VT in (5.2.1) a
Gelfand-Tsetlin subspace of V λ. The Young-Jucys-Murphy elements act by scalars on
the Gelfand-Tsetlin subspaces of all irreducible G o Sn-modules. From Lemma 6.2 and
Theorem 6.4 of [73], we may parametrise the irreducible representations of G o Sn by
elements of Yn(Ĝ).
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Theorem 5.5 ([73, Theorem 6.5]). Let µ ∈ Yn(Ĝ). Then we may index the Gelfand-
Tsetlin subspaces of V µ by standard Young G-tableaux of shape µ and write the Gelfand-
Tsetlin decomposition as

V µ = ⊕
T∈tabG(n,µ)

VT ,

where each VT is closed under the action of Gn and as a Gn-module, is isomorphic to
the irreducible Gn-module

W rT (1) ⊗W rT (2) ⊗ · · · ⊗W rT (n).

For i = 1, . . . , n; the eigenvalues of Xi(G) on VT are given by |G|
dim(W rT (i))c(bT (i)).

Theorem 5.6 ([73, Theorem 6.7]). Let µ ∈ Yn(Ĝ). Write Ĝ := {σ1, . . . , σt} and set
µ(i) = µ(σi), mi = |µ(i)|, di = dim(W σi) for each 1 ≤ i ≤ t. Then

dim(V µ) =
(

n

m1, . . . ,mt

)
fµ

(1) · · · fµ(t)
dm1

1 · · · dmtt .

Recall that fµ(i) denotes the number of standard Young tableau of shape µ(i), for each
1 ≤ i ≤ t.

Lemma 5.7. Let G be a finite group and σ ∈ Ĝ. Recall that 1 is the trivial representation
of G. If W σ (respectively χσ) denotes the irreducible G-module (respectively character)
with dimension dρ and Idσ denotes the identity matrix of order dσ × dσ, then the action
of the group algebra element

∑
g∈G

g on W σ is given by the following scalar matrix

∑
g∈G

g = |G|
dσ
〈χσ, χ1〉Idσ .

Proof. It is clear that
∑
g∈G

g is in the center of C[G]. Therefore by Lemma 2.4 (Schur’s

lemma), we have
∑
g∈G

g = cIdσ for some c ∈ C. The value of c can be obtained by equating

the traces of
∑
g∈G

g and cIdσ .

Remark 5.8. Our focus will be on Hn,n(Gn) i.e. Gn o Sn for the sequence of subgroups

H1,n(Gn) ⊆ · · · ⊆ Hi,n(Gn) ⊆ · · · ⊆ Hn,n(Gn).

For simplicity we write the Young-Jucys-Murphy elements Xi(Gn) of Gn oSn (i.e. Gn) as
XGi for 1 ≤ i ≤ n. Thus Theorems 5.5 and 5.6 are applicable to Gn.
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Let t := |Ĝn| and Ĝn := {σ1, . . . , σt}, where σ1 = 1 (the trivial representation of
Gn). We write µ

(
∈ Yn(Ĝn)

)
as the tuple (µ(1), . . . , µ(t)), where µ(i) := µ(σi) for each

1 ≤ i ≤ t. We also denote mi := |µ(i)|, W σi := the irreducible Gn-module corresponding
to σi and di = dim(W σi) for each 1 ≤ i ≤ t. Thus t, σi, µ(i), mi, W

σi and di depend on
Gn i.e., on n. To avoid notational complication, the dependence of t, σi, µ(i), mi, W

σi

and di on n is suppressed. We note that for T ∈ tabGn(n, µ) the dimension of VT is
dm1

1 · · · dmtt .

Theorem 5.9. For each µ ∈ Yn(Ĝn), let P̂G(R)
∣∣∣
V µ

denote the restriction of P̂G(R) to
the irreducible Gn-module V µ. Then the eigenvalues of P̂G(R)

∣∣∣
V µ

are given by,

1
n dim(W rT (n))

(
c(bT (n)) + 〈χrT (n), χ1〉

)
, with multiplicity dim(VT ) = dm1

1 · · · dmtt

for each T ∈ tabGn(n, µ).

Proof. We first find the eigenvalues of XGn +
∑
g∈Gn

(e, . . . , e, g; id). Let Idim(VT ) denote the

identity matrix of order dim(VT )× dim(VT ). Then from Theorem 5.5 we have

V µ = ⊕
T∈tabGn (n,µ)

VT and XGn
∣∣∣
VT

= |Gn|
dim(W rT (n))c(bT (n))Idim(VT ). (5.2.2)

Again from Theorem 5.5 and Lemma 5.7 we have

∑
g∈Gn

(e, . . . , e, g; id)
∣∣∣
VT

= |Gn|
dim(W rT (n))〈χ

rT (n), χ1〉Idim(VT ). (5.2.3)

Let us recall that,

P̂G(R) = 1
n|Gn|

∑
g∈Gn

(
R ((e, . . . , e, g; id)) +

n−1∑
i=1

R
(
(e, . . . , e, g−1, e, . . . , e, g; (i, n))

))
.

Therefore n|Gn|P̂G(R) is nothing but the action of XGn + ∑
g∈Gn(e, . . . , e, g; id) on C[Gn]

by multiplication on the right. Since dim(VT ) = dm1
1 · · · dmtt , the theorem follows from

(5.2.2) and (5.2.3).

Remark 5.10. In the regular representation of a finite group, each irreducible represen-
tation occurs with multiplicity equal to its dimension. Therefore, Theorems 5.6 and 5.9
provide the eigenvalues of P̂G(R).
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5.3 Upper bound for ||P ∗kG − UGn||TV

We find the order of the mixing time for the warp-transpose top with random shuffle
in this section. In this section, we also find an upper bound of ||P ∗kG − UGn||TV when
k ≥ n log n+Cn log(|Gn|− 1) for C > 1. Before proving the main results of this section,
first we set some notations and prove a useful lemma. Given a partition ξ of the integer
` (here we are allowing ` to take value 0), throughout this section ξ1 denotes the largest
part of ξ. In particular if ξ ` 0 then f ξ = 1 (as there is a unique Young diagram with
zero boxes) and we set ξ1 = 0.

Definition 5.11. Let A be a non empty set. Then the indicator function of A is denoted
by IndA and is defined by

IndA(x) =

1 if x ∈ A

0 if x /∈ A.

Lemma 5.12. Let µ = (µ(1), . . . , µ(t)) ∈ Yn(Ĝn). Recall that µ(j)
1 (respectively µ

(j)′
1 )

denotes the largest part of µ(j) (respectively its conjugate µ(j)′) for 1 ≤ j ≤ t. Then we
have

∑
T∈tabGn (n,µ)

(
c(bT (n)) + 〈χrT (n), χ1〉

n dim(W rT (n))

)2k

<

(
n

m1, . . . ,mt

)
fµ

(1) · · · fµ(t)
t∑

j=1

(
M2k

j +M′2k
j

)
Ind{mj>0},

where Mj := µ
(j)
1 −1+〈χσj ,χ1〉

ndj
and M′

j := µ
(j)′
1 −1+〈χσj ,χ1〉

ndj
for each 1 ≤ j ≤ t.

Proof. Let Ti = {(T1, . . . , Tt) ∈ tabGn(n, µ) | bT (n) is in Ti} for each 1 ≤ i ≤ t. Then
tabGn(n, µ) is the disjoint union of the sets T1, . . . , Tt. Therefore we have

∑
T∈tabGn (n,µ)

(
c(bT (n)) + 〈χrT (n), χ1〉

n dim(W rT (n))

)2k

=
t∑
i=1

∑
T∈Ti

(
c(bT (n)) + 〈χσi , χ1〉

ndi

)2k

Ind{mi>0}

and this is equal to,

t∑
i=1

(
n− 1

m1, ..,mi − 1, ..,mt

)
fµ

(1) · · · fµ(t)

fµ(i)

∑
Ti∈tab(µ(i))

(
c(bT (mi)) + 〈χσi , χ1〉

ndi

)2k

Ind{mi>0}

<
t∑
i=1

(
n

m1, . . . ,mt

)
fµ

(1) · · · fµ(t)

fµ(i)

∑
Ti∈tab(µ(i))

(
M2k

i +M′2k
i

)
Ind{mi>0} . (5.3.1)
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The inequality in (5.3.1) holds because Ti ∈ tab(µ(i)) implies the following:

(
c(bT (mi)) + 〈χσi , χ1〉

ndi

)2k

≤max

µ(i)

1 − 1 + 〈χσi , χ1〉
ndi

2k

,

µ(i)′
1 − 1− 〈χσi , χ1〉

ndi

2k 
≤max


µ(i)

1 − 1 + 〈χσi , χ1〉
ndi

2k

,

µ(i)′
1 − 1 + 〈χσi , χ1〉

ndi

2k , as 〈χσi , χ1〉 = 0 or 1

<

µ(i)
1 − 1 + 〈χσi , χ1〉

ndi

2k

+
µ(i)′

1 − 1 + 〈χσi , χ1〉
ndi

2k

=M2k
i +M′2k

i .

Therefore the result follows from (5.3.1) and

∑
Ti∈tab(µ(i))

(
M2k

i +M′2k
i

)
= fµ

(i) (M2k
i +M′2k

i

)
.

Proposition 5.13. For the warp-transpose top with random shuffle on Gn, we have

4 ||P ∗kG − UGn ||2TV < 2
(
en

2e−
2k
n − 1

)
+ e−

4k
n + 2e

(
en

2(|Gn|−1)e−
2k
n − 1

)
+2(|Ĝn| − 1)

(
e−

2k
n en

2e−
2k
n + e

n2

(
en

2(|Gn|−1)e−
2k
n − 1

))
,

for all k ≥ max{n, n log n}.

Proof. Let us recall that Ĝn = {σ1, . . . , σt} and σ1 = 1, the trivial representation of
Gn. Given µ ∈ Yn(Ĝn), throughout this proof we write µ = (µ(1), . . . , µ(t)), where

µ(i) = µ(σi), µ(i) ` mi,
t∑
i=1

mi = n. Now using Lemma 2.24, we have

4 ||P ∗kG − UGn ||2TV ≤
∑

µ∈Yn(Ĝn): µ(1)6=(n)

dim(V µ) Tr
((
P̂G(R)

∣∣∣
V µ

)2k
)
. (5.3.2)

First we partition the set Yn(Ĝn) into two disjoint subsets A1 and A2 as follows:

A1 = ∪
1≤i≤t
Bi, where Bi = {µ ∈ Yn(Ĝn) | mi = n, mk = 0 for all k ∈ {1, . . . , t} \ {i}}

A2 = {µ ∈ Yn(Ĝn) |
t∑

k=1
mk = n, 0 ≤ mk ≤ n− 1}.

It can be easily seen that Bi’s are disjoint. Therefore by using Theorem 5.9 and Remark
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5.10, the inequality (5.3.2) become

4 ||P ∗kG −UGn||2TV ≤
∑
µ∈B1

µ(1)6=(n)

dim(V µ)
∑

T∈tabGn (n,µ)

(
c(bT (n)) + 1

nd1

)2k

dn1

+
t∑
i=2

∑
µ∈Bi

dim(V µ)
∑

T∈tabGn (n,µ)

(
c(bT (n))
ndi

)2k

dni (5.3.3)

+
∑
µ∈A2

dim(V µ)
∑

T∈tabGn (n,µ)

(
c(bT (n)) + 〈χrT (n), χ1〉

n dim(W rT (n))

)2k

dm1
1 · · · dmtt .

The first two terms in the right hand side of (5.3.3) are equal to

∑
λ`n
λ1 6=n

fλdn1
∑

T∈tab(λ)

(
c(bT (n)) + 1

nd1

)2k

dn1 +
t∑
i=2

∑
λ`n

fλdni
∑

T∈tab(λ)

(
c(bT (n))
ndi

)2k

dni

=
∑
λ`n

λ 6=(n),(1n)

fλ
∑

T∈tab(λ)

(
c(bT (n)) + 1

n

)2k

+
(
n− 2
n

)2k
+

t∑
i=2

d2n
i

d2k
i

∑
λ`n

fλ
∑

T∈tab(λ)

(
c(bT (n))

n

)2k

.

(5.3.4)

Now recalling λ1 (respectively λ′1) is the largest part of λ (respectively its conjugate), we
have the following:

(
c(bT (n)) + x

n

)2k

≤ max

(
λ1 − 1 + x

n

)2k

,

(
λ′1 − 1 + x

n

)2k
,

<

(
λ1 − 1 + x

n

)2k

+
(
λ′1 − 1 + x

n

)2k

, for T ∈ tab(λ) and x ≥ 0.

This implies

∑
λ`n

λ 6=(n),(1n)

fλ
∑

T∈tab(λ)

(
c(bT (n)) + 1

n

)2k

<
∑
λ`n

λ6=(n),(1n)

(
fλ
)2
(λ1

n

)2k

+
(
λ′1
n

)2k


< 2
∑
λ`n

λ 6=(n),(1n)

(
fλ
)2
(
λ1

n

)2k

and

∑
λ`n

fλ
∑

T∈tab(λ)

(
c(bT (n))

n

)2k

<
∑
λ`n

(
fλ
)2
(λ1 − 1

n

)2k

+
(
λ′1 − 1
n

)2k


< 2
∑
λ`n

(
fλ
)2
(
λ1 − 1
n

)2k

.
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Thus using 1 − x ≤ ex for x ≥ 0, k ≥ n, and di ≥ 1 for all 1 ≤ i ≤ t, the expression in
(5.3.4) is bounded above by

2
∑
λ`n
λ 6=(n)

(fλ)2
(
λ1

n

)2k

+
(

1− 2
n

)2k
+ 2

t∑
i=2

∑
λ`n

(fλ)2
(
λ1 − 1
n

)2k

< 2
(
en

2e−
2k
n − 1

)
+ e−

4k
n + 2(t− 1)e− 2k

n en
2e−

2k
n . (5.3.5)

The inequality in (5.3.5) follows from Corollary 2.11 (by taking ` = n, a = b = 0) and
Lemma 2.10 (by taking ` = n, a = 1, b = 0). Now recallingMj := µ

(j)
1 −1+〈χσj ,χ1〉

ndj
, M′

j :=
µ

(j)′
1 −1+〈χσj ,χ1〉

ndj
, and using Lemma 5.12, the third term in the right hand side of (5.3.3) is

less than

∑
µ∈A2

(
n

m1, . . . ,mt

)2

(fµ(1))2 · · · (fµ(t))2d2m1
1 . . . d2mt

t

t∑
j=1

(
M2k

j +M′2k
j

)
Ind{mj>0} . (5.3.6)

We deal with (5.3.6) by considering two separate cases namely j = 1 and 1 < j ≤ t.
Now using ∑

µ(1)`m1

(
fµ

(1))2
µ(1)′

1
nd1

2k

=
∑

µ(1)`m1

(
fµ

(1))2
µ(1)

1
nd1

2k

,

the partial sum corresponding to j = 1 in (5.3.6) is equal to,

n−1∑
m1=1

∑
(m2,...,mt)∑
mk=n−m1

0≤mk≤n−1

2
∑

µ(i)`mi
1≤i≤t

(
n

m1

)2(
n−m1

m2, . . . ,mt

)2

(fµ(1))2 · · · (fµ(t))2d2m1
1 . . . d2mt

t

µ(1)
1
nd1

2k

=2
n−1∑
m1=1

(d2
2 + · · ·+ d2

t )n−m1

(
n

m1

)2

(n−m1)!
( 1
d1

)2k−2m1 (m1

n

)2k ∑
µ(1)`m1

(fµ(1))2

µ(1)
1
m1

2k

<2
n−1∑
m1=1

(d2
2 + · · ·+ d2

t )n−m1

(
n

m1

)2

(n−m1)!
( 1
d1

)2k−2m1 (m1

n

)2k
em

2
1e
− 2k
m1 . (5.3.7)

The inequality in (5.3.7) follows from Lemma 2.10 (by taking ` = m1, a = b = 0). As
k ≥ n log n, we have k ≥ m1 logm1. Thus writing n−m1 by u, the expression in (5.3.7)
is less than or equal to

2e
n−1∑
u=1

(
d2

2 + · · ·+ d2
t

d2
1

)u ( 1
d1

)2k−2n (n
u

)2

u!
(

1− u

n

)2k
(5.3.8)

Now using 1− x ≤ e−x for all x ≥ 0 and d1 = 1 the expression in (5.3.8) is less than or
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equal to

2e
n−1∑
u=1

1
u!

(
n2
(
|Gn|
d2

1
− 1

)
e−

2k
n

)u
< 2e

e
(
n2
(
|Gn|
d2

1
−1
)
e−

2k
n

)
− 1

 . (5.3.9)

Now using the notation m1, . . . , m̂j, . . . ,mt to denote m1, . . . ,mj−1,mj+1, . . . ,mt, and

∑
µ(j)`mj

(
fµ

(j))2
µ(j)′

1
ndj

2k

=
∑

µ(j)`mj

(
fµ

(j))2
µ(j)

1
ndj

2k

,

the partial sum corresponding to 1 < j ≤ t in (5.3.6) turns out to be

n−1∑
mj=1

∑
(m1,...,m̂j ,...,mt)∑

mk=n−mj
0≤mk≤n−1

2
∑

µ(i)`mi
1≤i≤t

(
n

mj

)2(
n−mj

m1, . . . , m̂j, . . . ,mt

)2

(fµ(1))2 · · · (fµ(t))2d2m1
1 . . . d2mt

t ζ2k,

(5.3.10)
where ζ = µ

(j)
1 −1
ndj

. The expression given in (5.3.10) is equal to the following

2
n−1∑
mj=1

d
2mj
j (d2

1 + · · ·+ d2
t − d2

j)n−mj
(
n

mj

)2

(n−mj)!
(
mj

ndj

)2k∑
µ(j)`mj

(fµ(j))2

µ(j)
1 − 1
mj

2k

< 2
n−1∑
mj=1

(d2
1 + · · ·+ d2

t − d2
j)n−mj

(
n

mj

)2

(n−mj)!
(

1
dj

)2k−2mj (mj

n

)2k
e
− 2k
mj em

2
je
− 2k
mj
.

(5.3.11)

The inequality in (5.3.11) follows from Lemma 2.10 (by taking ` = mj, a = 1, b = 0). As
k ≥ n log n, we have k ≥ mj logmj, mj log n. Thus writing n−mj by v, the expression
in (5.3.11) is less than or equal to

2e
n2

n−1∑
v=1

(
d2

1 + · · ·+ d2
t − d2

j

d2
j

)v ( 1
dj

)2k−2n (
n

v

)2

v!
(

1− v

n

)2k
(5.3.12)

Thus using 1− x ≤ e−x for all x ≥ 0 and d2k−2n
j ≥ 1 for all j ∈ {1, . . . , t}, the expression

in (5.3.12) is less than or equal to

2e
n2

n−1∑
v=1

1
v!

(
n2
(
|Gn|
d2
j

− 1
)
e−

2k
n

)v
<

2e
n2

e
(
n2

(
|Gn|
d2
j

−1
)
e−

2k
n

)
− 1

 . (5.3.13)

Therefore the proposition follows from (5.3.3), (5.3.5), (5.3.9), (5.3.13) and 1
dj
≤ 1 for
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all j ∈ {1, . . . , t}.

Theorem 5.14. For the random walk on Gn driven by PG, we have the following:

1. Let C > 1. Then for k ≥ n log n+ Cn log(|Gn| − 1), we have

||P ∗kG − UGn ||TV <
√

1 + 2e 2−C + o(1).

2. Let ε ∈ (0, 1). If |Gn| = o(nδ) for all δ > 0, then kn = b(1 + ε)n log nc implies

lim
n→∞

||P ∗knG − UGn ||TV = 0.

Proof. Using k ≥ n log n+Cn log(|Gn| − 1) and Proposition 5.13 we have the following:

4 ||P ∗kG − UGn ||2TV < 2
(
e(

1
|Gn|−1)2C

− 1
)

+ 1
n4(|Gn| − 1)4C + 2e

(
e(

1
|Gn|−1)2C−1

− 1
)

+ 2(|Ĝn| − 1)
(

1
n2(|Gn| − 1)2C e

( 1
|Gn|−1)2C

+ e

n2

(
e(

1
|Gn|−1)2C−1

− 1
))

<
4

(|Gn| − 1)2C + 1
n4(|Gn| − 1)4C + 4e

(|Gn| − 1)2C−1 (5.3.14)

+ 2e(
1

|Gn|−1)2C

n2(|Gn| − 1)2C−1 + 4e
n2(|Gn| − 1)2C−2 .

The inequality in (5.3.14) follows from the fact ex − 1 < 2x for all x ∈ (0, 1
2 ] ⊂ (0, log 2)

and |Ĝn| ≤ |Gn|. Also since |Gn| − 1 ≥ |G1| − 1 ≥ 2 and C > 1 implies

1
|Gn| − 1 ,

1
(|Gn| − 1)2C−1 ,

1
(|Gn| − 1)2C ≤

1
2 .

Thus (5.3.14) become

4 ||P ∗kG − UGn||2TV <
4

22C + 4e
22C−1 + 1

n424C + 2e 1
2

n222C−1 + 4e
n222C−2

=⇒ ||P ∗kG − UGn||TV <

√
1 + 2e
2C + 1

n 2C

√
1

n222C+2 + e
1
2 + 4e .

Thus the first part of the theorem follows.
Again kn = b(1+ε)n log nc implies kn+1 > (1+ε)n log n and thus e− 2kn

n < e
2
nn−2(1+ε).
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Therefore using Proposition 5.13 we have

0 ≤ 4 ||P ∗kG − UGn||2TV

< 2
(
ee

2
n n−2ε − 1

)
+ e

4
nn−4(1+ε) + 2e

(
ee

2
n (|Gn|−1)n−2ε − 1

)
(5.3.15)

+ 2(|Ĝn| − 1)
 e

2
n

n2(1+ε) e
e

2
n n−2ε + e

n2

(
ee

2
n (|Gn|−1)n−2ε − 1

)
Therefore the second part follows form the fact that the right hand side of the inequality
(5.3.15) converges to zero as n→∞ and |Ĝn| ≤ |Gn| = o(nδ) for all δ > 0.

Remark 5.15. The mixing window should be negligible for the existence of cutoff. Thus
the first part of Theorem 5.14 suggests the following condition for the existence of cutoff.

lim
n→∞

n log(|Gn| − 1)
n log n = 0

⇐⇒ |Gn| = o(nδ) for all δ > 0.

Theorem 5.16. The mixing time for the warp-transpose top with random shuffle on Gn

is O
(
n log n+ 1

2n log(|Gn| − 1)
)
.

Proof. Let a > 1
2 and k = n log n + 1

2n log(|Gn| − 1) + an log(|Ĝn| − 1). Then from
Proposition 5.13 we have the following:

4 ||P ∗kG − UGn ||2TV <2
e 1

(|Gn|−1)(|Ĝn|−1)2a

− 1
+ 1

n4 (|Gn| − 1)2
(
|Ĝn| − 1

)4a (5.3.16)

+ 2e
e 1

(|Ĝn|−1)2a

− 1


+ 2(|Ĝn| − 1)

 1
n2(|Gn| − 1)

(
|Ĝn| − 1

)2a e

1

(|Gn|−1)(|Ĝn|−1)2a

+ e

n2

e 1

(|Ĝn|−1)2a

− 1



Now using |Gn| ≥ |G1| > 2 and |Ĝn| > 2 we have

0 < 1
(|Gn| − 1)

(
|Ĝn| − 1

)2a <
1(

|Ĝn| − 1
)2a ≤

1
22a <

1
2 < log 2, for all n ≥ 1. (5.3.17)

Therefore using ex−1 < 2x for 0 < x < log 2 and (5.3.17), the right hand side of (5.3.16)
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is bounded above by

4
(|Gn| − 1)

(
|Ĝn| − 1

)2a + 1
n4 (|Gn| − 1)2

(
|Ĝn| − 1

)4a + 4e(
|Ĝn| − 1

)2a

+ 2(|Ĝn| − 1)
n2(|Gn| − 1)

(
|Ĝn| − 1

)2a e

1

(|Gn|−1)(|Ĝn|−1)2a

+ 4e(|Ĝn| − 1)
n2
(
|Ĝn| − 1

)2a

<
4

22a + 1
n424a + 4e

22a + 4
n222a + 4e

n2
(
|Ĝn| − 1

)2a−1 . (5.3.18)

Finally using a > 1
2 , |Ĝn| > 2, (5.3.16), and (5.3.18) we have

||P ∗kG − UGn ||TV <
√

1 + e 2−a + o(1), for n ≥ 1. (5.3.19)

Thus (5.3.19) implies that the mixing time for the warp-transpose top with random
shuffle on Gn is O

(
n log n+ 1

2n log(|Gn| − 1)
)
.

Remark 5.17. By taking Gn = S2 for all n ≥ 1, the warp-transpose top with random
shuffle on Gn boils down to the flip-transpose top with random shuffle on Bn. As |S2| ≯ 2,
Theorem 5.16 and the first part of Theorem 5.14 are not applicable to the case of flip-
transpose top with random shuffle. Although the second part of Theorem 5.14 implies
the mixing time for the flip-transpose top with random shuffle is O(n log n), it fails to
give the correct mixing window.

5.4 Lower bound for ||P ∗kG − UGn||TV

In this section, we will find a lower bound of the total variation distance ||P ∗kG −UGn||TV

when k = n log n + cn for c � 0. To establish the theorem giving this lower bound
we use tools from representation theory of finite groups. We also use the action of nth
Young-Jucys-Murphy element of the symmetric group Sn on irreducible Sn-modules. Let
us recall that [n] := {1, . . . , n} and [n− 1] := {1, . . . , n− 1}. Now we define an auxiliary
representation R of Gn and a random variable X on Gn.

Let V = C[Gn× [n]] be the complex vector space of all formal linear combinations of
elements of Gn× [n] and GL(V ) be the set of all invertible linear maps from V to itself.
We now define the representation R : Gn −→ GL(V ) on the basis elements of V by

R(g1, . . . , gn; π) ((h, i)) =
(
gπ(i)h, π(i)

)
.
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The random variable X counts the number of fixed points of the action of R i.e. X

is the character χR of R. Let Ek(X) be the expectation and Vark(X) be the variance
of X with respect to the probability measure P ∗kG on Gn. Also EU(X) denotes the
expectation of X with respect to the uniform distribution on Gn. Our goal is to compute
Ek(X), Vark(X), EU(X) and use them.

Proposition 5.18. The expectation EU(X) of X with respect to UGn is 1.

Proof. For notational simplicity let us denote A = Gn × [n]. Also for a ∈ A, FixGn(a)
denotes the set consisting of elements Gn, which fixes a. Then |FixGn(a)| = |Gn|n−1(n−1)!
for all a ∈ A. Because if a = (x, i) then a is fixed by |Gn|n−1(n − 1)! elements of Gn of
the form:

(∗, . . . , ∗, e
↑
, ∗, . . . , ∗; π̃) ∈ Gn such that π̃(i) = i.

ith position.

Here ∗ can be chosen independently from Gn and for each of these choice π̃ can be chosen
from Sn such that π̃(i) = i. Therefore using the definition of expectation we have

EU(X) =
∑
g∈Gn

UGn(g)X(g) = 1
| Gn |

∑
g∈Gn

χR(g) = 1
|Gn|nn!

∑
g∈Gn

Tr (R(g)) .

Now the lemma follows from the following fact

∑
g∈Gn

Tr (R(g)) = Tr
∑
g∈Gn

R(g)
 =

∑
a∈A
|FixGn(a)|

=
∑
a∈A
|Gn|n−1(n− 1)! = |Gn|nn!.

Let V + be the subspace of V spanned by {v1, v2, . . . , vn}, where vis are defined as
follows:

vi =
∑
g∈Gn

(g, i), for 1 ≤ i ≤ n.

Also let V − be the subspace of V spanned by {vi
g | 1 ≤ i ≤ n, g ∈ Gn \ {e}}, where vi

gs
are defined by

vi
g = vi−|Gn|(g, i) =

∑
h∈Gn

(h, i)− |Gn|(g, i), for 1 ≤ i ≤ n and g ∈ Gn.

It can be seen that V = V + ⊕ V − and both V +and V − are invariant under R. Now we
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define the following sub-representations of R

R+ : Gn → GL(V +) defined by R+(g) = R(g)
∣∣∣
V +

for all g ∈ Gn,

R− : Gn → GL(V −) defined by R−(g) = R(g)
∣∣∣
V −

for all g ∈ Gn .

Using R+ and R−, X can be written as follows:

X(g) = Tr (R(g)) = Tr
(
R+(g)

)
+ Tr

(
R−(g)

)
for all g ∈ Gn .

Unless otherwise stated from now on we have the following notational assumptions for
this chapter:

• In (respectively On) denotes the identity (respectively zero) matrix of order n×n.

• Mi denotes the matrix of order n× n with 1 at (i, i)th position and 0 elsewhere.

• ρdef(π) (recall Definition 2.12 from Chapter 2) denotes the matrix of the action of
π on C[n] with respect to the ordered basis (1, . . . ,n) for π ∈ Sn.

• R+(g) denotes the matrix of its action on V + with respect to the ordered basis
(v1, v2 . . . , vn) for g ∈ Gn.

• R−(g) denotes the matrix of its action on V − with respect to the ordered basis

∪
h∈Gn\{e}

(
v1
h, v2

h . . . , vn
h
)

for g ∈ Gn .

In this case the ordered basis is the union of (|Gn| − 1) ordered bases indexed by
elements of Gn \ {e}.

Lemma 5.19. For any (g1, g2, . . . , gn; π) ∈ Gn, the matrices R+((g1, g2, . . . , gn; π)) and
ρdef(π) are the same. Moreover the eigenvalues of P̂G(R+) are given by

Eigenvalues: 1 1− 1
n

0
Multiplicities: 1 n− 2 1

Proof. Following the definition of R+ and ρdef we have,

R+((g1, g2, . . . , gn; π))(vi) = R((g1, g2, . . . , gn; π))(vi) = vπ(i) and ρdef(π)(i) = π(i),

for 1 ≤ i ≤ n. Thus the first part of the lemma follows. Also the second part of this
theorem follows from Lemma 2.13 and the fact

P̂G(R+) = 1
n

(
n−1∑
u=1

ρdef((u, n)) + ρdef(id)
)
.
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Lemma 5.20. The eigenvalues of P̂G(R−) are given by

Eigenvalues: 1− 1
n

0
Multiplicities: (n− 1)(|Gn| − 1) (|Gn| − 1)

Proof. Let I∗ denote the identity matrix of order (|Gn|−1)× (|Gn|−1). Also recall that

h(n) := (e, . . . , e, h; id) for h ∈ Gn and
(h−1)(u)h(n)(u, n) = (e, . . . , e, h−1

↑
, e, . . . , e, h; (u, n)) for h ∈ Gn.

uth position.

For g ∈ Gn \ {e} and 1 ≤ u < n, we have the following

∑
h∈Gn

R−
(
(h−1)(u)h(n)(u, n)

)
(vi

g) =


|Gn| vi

g if i 6= u, n

0 if i = u

0 if i = n

and (5.4.1)

∑
h∈Gn

R−(h(n))(vi
g) =

|Gn| vi
g if i 6= n

0 if i = n.

Therefore (5.4.1) implies

1
|Gn|

∑
h∈Gn

R−
(
(h−1)(u)h(n)(u, n)

)
= I∗ ⊗ (In −Mu −Mn) for all u ∈ [n− 1]. (5.4.2)

1
|Gn|

∑
h∈Gn

R−
(
h(n)

)
= I∗ ⊗ (In −Mn). (5.4.3)

Now using (5.4.2), (5.4.3) and the definition of P̂G(R−) we have,

P̂G(R−) = 1
n

n−1∑
u=1

1
|Gn|

∑
h∈Gn

R−
(
(h−1)(u)h(n)(u, n)

)
+ 1
|Gn|

∑
h∈Gn

R−
(
h(n)

)
= 1
n

(
n−1∑
u=1

I∗ ⊗ (In −Mu −Mn) + I∗ ⊗ (In −Mn)
)

= 1
n
I∗ ⊗

(
n(In −Mn)−

n−1∑
u=1

Mu

)
=
(

1− 1
n

)
I∗ ⊗ (In −Mn) . (5.4.4)

Therefore the lemma follows from (5.4.4).
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Proposition 5.21. Recall that Ek(X) is the expectation of X with respect to the proba-
bility measure P ∗kG on Gn. Then

Ek(X) = 1 + ((n− 1)|Gn| − 1)
(

1− 1
n

)k
.

Proof. In the proof we use the fact that the trace of kth power of a matrix is the sum of
the kth powers of its eigenvalues. We also know that X(g) = Tr (R+(g)) + Tr (R−(g))
for all g ∈ Gn. Thus from the definition of expectation we have

Ek(X) =
∑
g∈Gn

P ∗kG (g)
(
Tr
(
R+(g)

)
+ Tr

(
R−(g)

))

= Tr
∑
g∈Gn

P ∗kG (g)R+(g)
+ Tr

∑
g∈Gn

P ∗kG (g)R−(g)
 (5.4.5)

= Tr
(
P̂ ∗kG (R+)

)
+ Tr

(
P̂ ∗kG (R−)

)
= Tr

((
P̂G(R+)

)k)
+ Tr

((
P̂G(R−)

)k)
= 1 + (n− 2)

(
1− 1

n

)k
+ (n− 1)(|Gn| − 1)

(
1− 1

n

)k
= 1 + ((n− 1)|Gn| − 1)

(
1− 1

n

)k
(5.4.6)

The equality in (5.4.5) holds because Tr is linear. The equality in (5.4.6) follows from
Lemmas 5.19 and 5.20.

Our goal now is to find the expectation Ek(X2) of X2 with respect to the probability
measure P ∗kG . For any g ∈ Gn, let us first observe the following:

(X(g))2 =
(
Tr
(
R+(g)

)
+ Tr

(
R−(g)

))2

=
(
Tr
(
R+(g)

))2
+ 2

(
Tr
(
R−(g)

)) (
Tr
(
R+(g)

))
+
(
Tr
(
R−(g)

))2

= Tr
(
R+(g)⊗R+(g)

)
+ 2 Tr

(
R−(g)⊗R+(g)

)
+ Tr

(
R−(g)⊗R−(g)

)
. (5.4.7)

Expression (5.4.7) suggests us to define three representations R1 : Gn → GL(V + ⊗ V +),
R2 : Gn → GL(V −⊗V +) and R3 : Gn → GL(V −⊗V −) of Gn. Precisely given as follows:

R1(g) =
(
R+ ⊗R+

)
(g)(vi ⊗ vj) = R+(g)(vi)⊗R+(g)(vj) for g ∈ Gn, vi ∈ V +, vj ∈ V +,

R2(g) =
(
R− ⊗R+

)
(g)(vi ⊗ vj) = R−(g)(vi)⊗R+(g)(vj) for g ∈ Gn, vi ∈ V −, vj ∈ V +,

R3(g) =
(
R− ⊗R−

)
(g)(vi ⊗ vj) = R−(g)(vi)⊗R−(g)(vj) for g ∈ Gn, vi ∈ V −, vj ∈ V −.
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Lemma 5.22. Ek(X2) can be expressed as follows

Tr
((
P̂G(R1)

)k)
+ 2 Tr

((
P̂G(R2)

)k)
+ Tr

((
P̂G(R3)

)k)
.

Proof. Using (5.4.7), i.e.,

(X(g))2 = Tr (R1(g)) + 2 Tr (R2(g)) + Tr (R3(g))

and linearity of Tr we have

Ek(X2) =
∑
g∈Gn

P ∗kG (g) (Tr (R1(g)) + 2 Tr (R2(g)) + Tr (R3(g)))

= Tr
∑
g∈Gn

P ∗kG (g)R1(g)
+ 2 Tr

∑
g∈Gn

P ∗kG (g)R2(g)
+ Tr

∑
g∈Gn

P ∗kG (g)R3(g)


= Tr
(
P̂ ∗kG (R1)

)
+ 2 Tr

(
P̂ ∗kG (R2)

)
+ Tr

(
P̂ ∗kG (R3)

)
= Tr

((
P̂G(R1)

)k)
+ 2 Tr

((
P̂G(R2)

)k)
+ Tr

((
P̂G(R3)

)k)
.

Lemma 5.23. The eigenvalues of P̂G(R1) are given as follows:

Eigenvalues: 1 1− 1
n

0 1
n

− 1
n

1− 2
n

Multiplicities: 2 3(n− 2) 3 n− 2 n− 2 n2 − 5n+ 5

Proof. Let us recall that R+((g1, g2, . . . , gn; π)) = ρdef(π) for all (g1, g2, . . . , gn; π) ∈ Gn

and P̂G(R1) =
∑
g∈Gn

PG(g)R1(g) =
∑
g∈Gn

PG(g)
(
R+(g)⊗R+(g)

)
. Therefore we have

P̂G(R1) = 1
n|Gn|

n−1∑
u=1

∑
h∈Gn

R+
(
(h−1)(u)h(n)(u, n)

)
⊗R+

(
(h−1)(u)h(n)(u, n)

)
+ 1
n|Gn|

∑
h∈Gn

R+
(
h(n)

)
⊗R+

(
h(n)

)

= 1
n

(
n−1∑
u=1

ρdef((u, n))⊗ ρdef((u, n)) + ρdef(id)⊗ ρdef(id)
)
.

Thus the lemma follows from Lemma 2.14.

Lemma 5.24. The eigenvalues of P̂G(R2) are given as follows:

Eigenvalues: 1− 1
n

1− 2
n

0
Multiplicities: 2(n− 1)(|Gn| − 1) (n− 3)(n− 1)(|Gn| − 1) (2n− 1)(|Gn| − 1)
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Proof. Let us recall that R+((g1, g2, . . . , gn; π)) = ρdef(π) for all (g1, g2, . . . , gn; π) ∈ Gn.
Now using the definition of P̂G(R2) we have

P̂G(R2) =
∑
g∈Gn

PG(g)R2(g) =
∑
g∈Gn

PG(g)
(
R−(g)⊗R+(g)

)

= 1
n|Gn|

n−1∑
u=1

∑
h∈Gn

R−
(
(h−1)(u)h(n)(u, n)

)
⊗R+

(
(h−1)(u)h(n)(u, n)

)
+ 1
n|Gn|

∑
h∈Gn

R−
(
h(n)

)
⊗R+

(
h(n)

)

= 1
n

n−1∑
u=1

 1
|Gn|

∑
h∈Gn

R−
(
(h−1)(u)h(n)(u, n)

)⊗ ρdef ((u, n))

+ 1
n

 1
|Gn|

∑
h∈Gn

R−
(
h(n)

)⊗ ρdef(id)

= 1
n

n−1∑
u=1

I∗ ⊗ (In −Mu −Mn)⊗ ρdef((u, n)) + 1
n
I∗ ⊗ (In −Mn)⊗ ρdef(id) (5.4.8)

= 1
n
I∗ ⊗

(
n−1∑
u=1

(In −Mu −Mn)⊗ ρdef((u, n)) + (In −Mn)⊗ ρdef(id)
)

= 1
n
I∗ ⊗

(
(In −Mn)⊗

(
n−1∑
u=1

ρdef ((u, n)) + ρdef (id)
)
−

n−1∑
u=1

Mu ⊗ ρdef((u, n))
)

(5.4.9)

The equality in (5.4.8) follows from (5.4.2) and (5.4.3). If Blockdiag (A1, A2, . . . , An)
denotes the block diagonal matrix with ith block Ai for all i ∈ [n− 1]. Then recalling

βi =
n−1∑
u=1

ρdef ((u, n))− ρdef((i, n)) for all 1 ≤ i < n

from Lemma 2.15, the right hand side of (5.4.9) can be written as

1
n
I∗ ⊗ Blockdiag (In + β1, In + β2, . . . , In + βn−1, On) .

Therefore the lemma follows from Lemma 2.15.

Let us first prove a lemma which will be useful in finding the eigenvalues of P̂G(R3).
This lemma is true in general not only for our setting. We prove this lemma using the
Geršhgorin disc theorem, stated as follows:

Theorem 5.25 (Geršhgorin disc theorem [56, Theorem 6.1.1]). Let A = (aij)n×n be a
matrix with complex entries. Also let r′i(A) =

∑
j 6=i
|aij|, 1 ≤ i ≤ n denote the deleted

absolute row sums of A, and consider the n Geršhgorin discs {z ∈ C : |z − aii| <
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r′i(A)}, 1 ≤ i ≤ n. Then the eigenvalues of A are in the union of Geršhgorin discs

G(A) :=
⋃

1≤i≤n
{z ∈ C : |z − aii| < r′i(A)}.

Furthermore, if the union of k of the n discs that comprise G(A) forms a set Gk(A) that
is disjoint from the remaining n− k discs, then Gk(A) contains exactly k eigenvalues of
A, counted according to their algebraic multiplicities.

Lemma 5.26. Let G be a finite group. Recall that V = C[G] is the complex vector space
with basis G. Also let (ρ, V ) be the left regular representation of G i.e.

ρ(g) 7→
∑
h∈G

Chh 7→
∑
h∈G

Chgh

 , g ∈ G, Ch ∈ C.

Then the eigenvalues of 1
|G|

∑
g∈G

ρ(g)⊗ ρ(g−1) are in the closed unit disc

D := {z ∈ C : |z| ≤ 1}.

Proof. Before proving the lemma let us recall the definition of a stochastic matrix. A
real square matrix is said to be stochastic if all its entries are from the interval [0, 1] and
sum of the elements in each row is 1.

It can be easily seen that ρ(g) is a permutation matrix and thus a stochastic matrix
for each g ∈ G. Therefore ρ(g)⊗ρ(g−1) is a stochastic matrix for each g ∈ G. It is known
that the average of stochastic matrices are stochastic. Therefore 1

|G|

∑
g∈G

ρ(g)⊗ ρ(g−1) is

a stochastic matrix. Hence the lemma follows from Theorem 5.25.

Corollary 5.27. Let G be a finite group and V ′ be the vector space spanned by the
complex linear combinations of elements of the set {vg|g ∈ G}, where vg =

∑
h∈G

h− |G|g.

Also let L be the representation of G defined by left regular action on V ′. Then the
eigenvalues of 1

|G|

∑
g∈G

L(g)⊗ L(g−1) are in the closed unit disc D := {z ∈ C : |z| ≤ 1}.

Proof. Let V = C[G] and ρ denotes the left regular representation of G. Also note that
V ′⊗ V ′ is a subspace of V ⊗ V invariant under 1

|G|

∑
g∈G

ρ(g)⊗ ρ(g−1). Then the corollary

follows follows from the fact 1
|G|

∑
g∈G

L(g)⊗ L(g−1) = 1
|G|

∑
g∈G

ρ(g)⊗ ρ(g−1)
∣∣∣
V ′⊗V ′

.

Lemma 5.28. Let L be the representation of Gn defined by left regular action on the
vector space spanned by the set {vg|g ∈ G}, where vg =

∑
h∈Gn

h−|Gn|g. If the eigenvalues
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of 1
|Gn|

∑
g∈Gn

L(g)⊗L(g−1) are λi for 1 ≤ i ≤ (|Gn| − 1)2, then the eigenvalues of P̂G(R3)

are given in Table 5.1. Also we note that |λi| ≤ 1 for 1 ≤ i ≤ (|Gn| − 1)2 in this case.

Eigenvalues Multiplicities

1 |Gn| − 1

1− 1
n

(n− 1)(|Gn| − 1)2 − (|Gn| − 1)

1− 2
n

(n− 1)(n− 2)(|Gn| − 1)2

±λi
n
, 1 ≤ i ≤ (|Gn| − 1)2 (n− 1)

0 (|Gn| − 1)2

Table 5.1: Eigenvalues of P̂G(R3)

Proof. We prove this lemma by splitting V −⊗V − into three subspaces which are invariant
under the action of P̂G(R3). The subspaces are given as follows.

• Let W be the subspace of V − ⊗ V − spanned by the set of vectors

∪
1≤i<n

({
vi
x⊗ vn

y : x, y ∈ Gn \ {e}
}
∪
{

vn
x⊗ vi

y : x, y ∈ Gn \ {e}
})
.

• Let W ′ be the subspace of V − ⊗ V − spanned by the set of vectors

{
vi
g⊗ vj

h : g, h ∈ Gn \ {e}, i 6= j, 1 ≤ i, j < n
}
.

• Let W ′′ be the subspace of V − ⊗ V − spanned by the set of vectors

{
vi
g⊗ vi

h : g, h ∈ Gn \ {e}, 1 ≤ i ≤ n
}
.

It can be easily seen that V − ⊗ V − = W ⊕W ′ ⊕W ′′. We also note that dim(W ) =
2(n− 1)(|Gn| − 1)2, dim(W ′) = (n− 1)(n− 2)(|Gn| − 1)2 and dim(W ′′) = n(|Gn| − 1)2.
Since W,W ′ and W ′′ are all invariant under the action of P̂G(R3), we can write P̂G(R3) as
block diagonal matrix with respect to a certain choice for ordering of the basis elements.
Our goal is to use that block diagonal decomposition and obtain the eigenvalues of
P̂G(R3).
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Eigenvalue Eigenvectors corresponding to number of (independent)
eigenvalue given in column 1 vectors in column 2

1
∑
h∈Gn
1≤i≤n

vi
h⊗ vi

hx, for x ∈ Gn \ {e}. |Gn| − 1

0 n
n−1

∑
h∈Gn

1≤i≤n−1

vi
h⊗ vi

hx−n
∑
h∈Gn

vn
h⊗ vn

hx, |Gn| − 1

for x ∈ Gn \ {e}.

0 vn
g⊗ vn

gx− vn
h⊗ vn

hx, for x ∈ Gn \ {g−1} (|Gn| − 1)(|Gn| − 2)
and h ∈ Gn \ {g, x−1}.

1− 1
n

vi
g⊗ vi

gx− vi
h⊗ vi

hx, for x ∈ Gn \ {g−1}, (n− 1)(|Gn| − 1)(|Gn| − 2)
h ∈ Gn \ {g, x−1} and 1 ≤ i < n.

1− 1
n

vi
g⊗ vi

gx− v1
g⊗ v1

gx for x ∈ Gn \ {g−1}, (n− 2)(|Gn| − 1)
and 2 ≤ i < n.

Table 5.2: Eigenvectors and eigenvalues of P̂G(R3)
∣∣∣
W ′′

.

First let us notice that the subspaces Wi of V − ⊗ V − spanned by the set of vectors

({
vi
x⊗ vn

y : x, y ∈ Gn \ {e}
}
∪
{

vn
x⊗ vi

y : x, y ∈ Gn \ {e}
})

is also invariant under the action of P̂G(R3) for each i ∈ [n−1] and W = W1⊕· · ·⊕Wn−1.
We now focus on W = W1 ⊕ · · · ⊕Wn−1. For any 1 ≤ i < n, consider the ordered basis
Bi of Wi as follows: In Bi first list all elements of the form vi

x⊗ vn
y and then list the

elements of the form vn
x⊗ vi

y by maintaining the same ordering of the pair (x, y). Using
this ordered basis Bi, P̂G(R3)

∣∣∣
Wi

will be of the form

1
n

0 1
1 0

⊗
 1
|Gn|

∑
g∈Gn

L(g)⊗ L(g−1)
 . (5.4.10)

Here the matrix 1
|Gn|

∑
g∈Gn

L(g)⊗L(g−1) is written with respect to a ordered basis following

the same ordering as that of (x, y) in vi
x⊗ vn

y (or vn
x⊗ vi

y). Since (5.4.10) is true for all
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i ∈ [n − 1], using the Corollary 5.27 we can conclude that the eigenvalues of P̂G(R3)
∣∣∣
W

are given by: ±λi
n

with multiplicity (n− 1) each for 1 ≤ i ≤ (|Gn| − 1)2.
We now focus on the subspace W ′ of V − ⊗ V −. It can be easily seen that

P̂G(R3)(vi
g⊗ vj

h) =
(

1− 2
n

)
(vi

g⊗ vj
h), for g, h ∈ Gn \ {e}, 1 ≤ i, j < n and i 6= j.

Therefore P̂G(R3)
∣∣∣
W ′

is the scalar matrix
(
1− 2

n

)
Idim(W ′).

The eigenvalues and eigenvectors of P̂G(R3)
∣∣∣
W ′′

are given in Table 5.2, where g is a
fixed non identity element of Gn. Hence the lemma follows.

Proposition 5.29. Recall that Vark(X) is the variance of X with respect to the proba-
bility measure P ∗kG on Gn. Then

Vark(X) = |Gn|+
(
(n− 1)|Gn|2 − |Gn|

)(
1− 1

n

)k
+
(
(n− 1)(n− 2)(|Gn| − 1)2 + 2(n− 3)(n− 1)(|Gn| − 1) + n2 − 5n+ 5

) (
1− 2

n

)k

+

(
1 + (−1)k

)
nk

n− 2 + (n− 1)
(|Gn|−1)2∑

i=1
λki

− ((n− 1)|Gn| − 1)2
(

1− 1
n

)2k
.

Where λi are defined in Lemma 5.28.

Proof. This proposition follows from the definition of variance, Proposition 5.21, Lemmas
5.22, 5.23, 5.24, 5.28 and straightforward calculations.

Theorem 5.30. For the random walk on Gn driven by PG, we have the following:

1. For large n, we have

||P ∗kG − UGn ||TV > 1−
2
(
2 + 1

|Gn|

) (
e−c + 1

|Gn|

)
+ o(1)(1 + e−c + e−2c)(

1
|Gn| + (1 + o(1))e−c

)2 ,

when k = n log n+ cn and c� 0.

2. For any ε ∈ (0, 1) and kn = b(1− ε)n log nc, we have

lim
n→∞

||P ∗knG − UGn||TV = 1.

Proof. Using Lemma 2.19, µ = P ∗kG and ν = UGn we have,

||P ∗kG − UGn ||TV ≥ 1− 4 Vark(X)
(Ek(X))2 −

2
Ek(X) . (5.4.11)
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Now from Propositions 5.21 and 5.29 we have

Ek(X) ≈ 1 + ((n− 1)|Gn| − 1) e− kn , for k ≥ 1. (5.4.12)
Vark(X) ≈ |Gn|+

(
(n− 1)|Gn|2 − |Gn|

)
e−

k
n − (n− 1)|Gn|2e−

2k
n

+

(
1 + (−1)k

)
nk−1

(
1 + (|Gn| − 1)2

)
, for k ≥ 1. (5.4.13)

Here ‘≈’ means ‘asymptotic to’ i.e. an ≈ bn means lim
n→∞

an
bn

= 1. Now if c � 0 and
k = n log n + cn, then by (5.4.11), (5.4.12) and (5.4.13), we have the first part of this
theorem.

Now for any ε ∈ (0, 1) and kn = b(1− ε)n log nc from (5.4.12) and (5.4.13) we have

Ek(X) = 1 + ((1 + o(1))|Gn|+ o(1))nε

Vark(X) = |Gn|+
(
(1 + o(1))|Gn|2 + o(1)|Gn|

)
nε

− |Gn|2 (1 + o(1))
n1−2ε + o(1)

(
1 + (|Gn| − 1)2

)
.

Therefore the second part of this theorem follows from (5.4.11) and the following:

lim
n→∞

|Gn|+ ((1 + o(1))|Gn|2 + o(1)|Gn|)nε − |Gn|
2(1+o(1))
n1−2ε + o(1)

(
1 + (|Gn| − 1)2

)
(1 + ((1 + o(1))|Gn|+ o(1))nε)2 = 0

lim
n→∞

1
1 + ((1 + o(1))|Gn|+ o(1))nε = 0.

The second part of Theorems 5.14 and 5.30 prove the following theorem.

Theorem 5.31. The warp-transpose top with random shuffle on Gn exhibits cutoff phe-
nomenon with cutoff time n log n if |Gn| = o(nδ) for all δ > 0.

Remark 5.32. All the results of this chapter will be the same if we consider any sequence
of groups {Gn}∞1 with the condition |Gn| > 2 for all n ≥ 1, instead of considering the
ascending sequence of groups G1 ⊆ G2 ⊆ · · · with |G1| > 2. The proofs are similar.
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[48] Rusiņš Freivalds. Probabilistic machines can use less running time. In Informa-
tion processing 77 (Proc. IFIP Congr., Toronto, Ont., 1977), pages 839–842. IFIP
Congr. Ser., Vol. 7, 1977.

[49] Jason Fulman. Convergence rates of random walk on irreducible representations
of finite groups. J. Theoret. Probab., 21(1):193–211, 2008.

[50] L. Geissinger and D. Kinch. Representations of the hyperoctahedral groups. J.
Algebra, 53(1):1–20, 1978.

[51] Harry Gonshor. An application of random walk to a problem in population genetics.
The American Mathematical Monthly, 94(7):668–671, 1987.



BIBLIOGRAPHY 95

[52] Geoffrey Grimmett. The random-cluster model. In Probability on discrete struc-
tures, volume 110 of Encyclopaedia Math. Sci., pages 73–123. Springer, Berlin,
2004.

[53] W. J. Hendricks. The stationary distribution of an interesting Markov chain. J.
Appl. Probability, 9:231–233, 1972.

[54] W. J. Hendricks. An extension of a theorem concerning an interesting Markov
chain. J. Appl. Probability, 10:886–890, 1973.

[55] Martin Hildebrand. Generating random elements in SLn(Fq) by random transvec-
tions. J. Algebraic Combin., 1(2):133–150, 1992.

[56] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University
Press, Cambridge, second edition, 2013.
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