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Abstract

This thesis focuses on the study of specialized characters of irreducible polynomial repre-
sentations of infinite families of complex classical Lie groups. We study various special-
izations where the characters are evaluated at elements twisted by roots of unity. The
details of the results are as follows.

Throughout the thesis, we fix an integer t ě 2 and a primitive tth root of unity
ω. We first consider the irreducible characters of representations of the classical groups
GLtn, SO2tn`1, Sp2tn and O2tn, evaluated at elements ωkxi for 0 ď k ď t´1 and 1 ď i ď n.
The case of GLtn was considered by D. J. Littlewood (AMS press, 1950) and indepen-
dently by D. Prasad (Israel J. Math., 2016). In each case, we characterize partitions for
which the character value is nonzero in terms of what we call z-asymmetric partitions,
where z is an integer which depends on the group. This characterization turns out to
depend on the t-core of the indexed partition. Furthermore, if the character value is
nonzero, we prove that it factorizes into characters of smaller classical groups. We also
give product formulas for general z-asymmetric partitions and z-asymmetric t-cores, and
show that there are infinitely many z-asymmetric t-cores for t ě z ` 2.

We extend the above results to the groups GLtn`m p0 ď m ď t ´ 1q, SO2tn`3,
Sp2tn`2 and O2tn`2 evaluated at similar specializations. For the GLtn`m case, we set
the first tn elements to ωjxi for 0 ď j ď t ´ 1 and 1 ď i ď n and the remaining m

to y, ωy, . . . , ωm´1y. For the other three families, we take the same specializations but
with m “ 1. Our motivation for studying these are the conjectures of Wagh and Prasad
(Manuscripta Math., 2020) relating the irreducible representations of Spin2n`1 and SL2n,
SL2n`1 and Sp2n as well as Spin2n`2 and Sp2n.

The hook Schur polynomials are the characters of covariant and contravariant irre-
ducible representations of the general linear Lie superalgebra. These are a supersym-
metric analogue of the characters of irreducible polynomial representations of the general
linear group. Finally, we consider similarly specialized skew hook Schur polynomial hsλ{µ

evaluated at ωkxi/ωℓyj, for 0 ď k, ℓ ď t ´ 1, 1 ď i ď n and 1 ď j ď m. We character-
ize the skew shapes λ{µ for which the polynomial vanishes and prove that the nonzero
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polynomial factorizes into smaller skew hook Schur polynomials. Then we give a com-
binatorial interpretation of hsλ{µp1, ωd, . . . , ωdptn´1q{1, ωd, . . . , ωdptm´1qq, for all divisors d
of t, in terms of ribbon supertableaux.

For certain combinatorial objects, the number of fixed points under a cyclic group
action turns out to be the evaluation of a nice function at the roots of unity. This is
known as the cyclic sieving phenomenon (CSP) and has been the focus of several studies.
We use the combinatorial interpretation for the above skew hook Schur polynomial to
prove the CSP on the set of semistandard supertableaux of shape λ{µ for odd t. Using a
similar proof strategy, we give a complete generalization of a result of Lee–Oh (Electron.
J. Combin., 2022) for the CSP on the set of skew SSYT conjectured by Alexandersson–
Pfannerer–Rubey–Uhlin (Forum Math. Sigma, 2021).
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Chapter 1

Introduction

In this thesis, we study characters of irreducible representations of complex classical
Lie groups with different specializations using combinatorial techniques. The charac-
ters of irreducible representations of the classical families of groups, namely the general
linear, symplectic and orthogonal groups are important families of symmetric Laurent
polynomials indexed by integer partitions or half-partitions. In particular, the charac-
ters of the general linear groups are the Schur polynomials, which are extremely well-
studied [17, 77, 89, 110]. These families of Laurent polynomials with specialized inde-
terminates satisfy nontrivial relations, which are not well understood from the point of
view of representation theory (see, for instance [10, 11, 12, 30, 66]). Littlewood [74] con-
sidered the Schur polynomials in tn variables, for t ě 2 a fixed positive integer, special-
ized to pexpp2πιk{tqxjq0ďkďt´1,1ďjďn. Motivated by a celebrated result of Kostant [65],
Prasad [90] also considered the Schur polynomial with the same specialization inde-
pendently and evaluated the character of irreducible representations of GLtnpCq on the
subgroup GLtpCqn ¸ Zn, which sits naturally inside GLtnpCq at elements of the subgroup
which have projection a fixed generator σ of Zn. They showed that such a specialized
character is nonzero if and only if the corresponding t-core is empty, and if it is nonzero,
it factors into characters indexed by the t-quotients; see Chapter 2 for the definitions. We
extend their results in a few different directions in the next few chapters. We also prove
the cyclic sieving phenomenon on the set of tableaux and supertableaux in Chapter 6.

We begin this chapter by surveying related works in Section 1.1. Later, we give an
overview of the organisation and the layout of the thesis in Section 1.2.
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2 1. Introduction

1.1 Brief literature review

This section provides a brief overview of the theory of classical groups, including their
origin, significance, and notable results pertaining to their representation theory. The
complex classical Lie groups, also simply known as the classical groups, are four infinite
families of Lie groups that, along with the five exceptional finite groups, make up the
complete classification of simple Lie groups. The history of Lie groups dates back to the
19th century, with the emergence of the theory of quadratic forms and their associated
transformations. During the late 19th century, Sophus Lie, a Norwegian mathematician,
extensively investigated continuous transformation groups, which are now known as Lie
groups, both geometrically and analytically. Lie’s work ultimately led to the development
of the modern theory of Lie groups, which bears his name [50].

Lie made a significant contribution to mathematics by uncovering that continuous
transformation groups could be better comprehended by linearizing them and examining
their corresponding generating vector fields. The generators follow a linearized form
of the group law, known as the commutator bracket, and possess the characteristics of
what is now referred to as a Lie algebra [29, 48, 51]. This laid the groundwork for the
study of the symmetries of mathematical objects, including the classical groups. The
classification of the simple Lie algebras over complex numbers, which led to the discovery
of the classical groups, was accomplished by Wilhelm Killing and Élie Cartan.

The first classical group to be introduced was the orthogonal group, which was studied
extensively by mathematicians such as Cartan and Killing in the late 19th and early 20th
centuries. The unitary groups and symplectic groups were introduced later [40, 50]. In
his renowned volume [119], Weyl provided a description of the structure of these groups,
which applies to both general fields and p-adic fields, with more intricate details presented
for the latter. Weyl’s seminal book played a significant role in establishing Lie group
theory as a basic field of research in mathematics building on the work of Lie, Killing,
Cartan and the invariant theorists of the nineteenth century. Since that time, progress in
Lie theory has advanced at an impressive pace. See [42, 45, 47] for a modern introduction
to the field.

Classical groups have numerous applications in various fields, including physics,
chemistry and coding theory. In physics, especially in quantum mechanics, they are
used to describe symmetries of physical systems and the behaviour of elementary parti-
cles [101, 118]. The application of group representations also proved to be an immensely
valuable tool for spectroscopy, as well as for providing quantum-mechanical interpreta-
tions of chemical bonds [120]. In coding theory, error-correcting codes are used to protect
digital data from errors that may occur during transmission, storage, or signal process-
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ing, and the theory of classical groups is used to construct error-correcting codes [25, 27].
These groups have provided an empirical basis for large parts of algebra [32] and the
study of their representation theory has also led to significant breakthroughs in pure
mathematics, including algebraic geometry and number theory. Also, see [117] for a nice
survey on the geometry of classical groups over finite fields and its applications.

Now we recall some key results pertaining to the representation theory of classical
groups over the field of complex numbers. Since the complex classical Lie groups are lin-
ear groups, their finite-dimensional representations are tensor representations by Weyl’s
construction. Each irreducible polynomial representation is labelled by a partition or
half-partition, which encodes its structure and properties [40].

The irreducible polynomial representation of the general linear group GLnpCq in-
dexed by a partition λ has a basis indexed by semistandard Young tableaux of shape
λ with entries from t1, 2, . . . , nu. The number of semistandard tableaux of shape λ is
therefore equal to the dimension of the representation, and this is given by Weyl’s di-
mension formula [119]. In a similar fashion, semistandard symplectic and orthogonal
tableaux of shape λ, which index bases for the irreducible polynomial representations
associated with λ for Spp2nq and SOpmq have been introduced by various authors (see,
for instance, [60, 61, 92, 109]). El Samra and King [99] manipulated Weyl’s dimension
formula to count the number of semistandard symplectic and odd orthogonal tableaux of
shape λ in terms of hook lengths and contents and to produce formula for the dimension
of the representation. Recently, Amdeberhan, Andrews and Ballantine [8] gave combi-
natorial interpretations of analogous expressions involving hook-lengths and symplectic
or orthogonal contents.

The character of an irreducible polynomial representation of GLnpCq corresponding
to the partition λ is the Schur function sλpx1, x2, . . . , xnq. Stanley [104] showed that its
principal specialization sλp1, q, . . . , qn´1q could be expressed as a product involving the
hook lengths and contents of the boxes in the diagram for λ. This gives a generating
function for the semistandard tableaux of shape λ with entries in t1, 2, . . . , nu and in
particular, taking q “ 1 yields a formula for the number of such tableaux. Similar
specializations in the symplectic and orthogonal cases have been studied by Koike [63]
and by Campbell and Stokke [26]. Furthermore, Schur polynomials evaluated at roots
of unity and their powers have been considered in [77, 94].

In a different direction, it was shown in [30] that the Schur polynomial for a rect-
angular partition in 2n variables specialized to the last n variables being reciprocals of
the first n variables becomes a product of two other classical characters. In some cases,
this is the product of a symplectic and an even orthogonal character, and in others,
it is the product of two odd orthogonal characters. As an application, a factorization
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theorem for rhombus tilings of a hexagon is given, which has an equivalent formulation
in terms of plane partitions. Similar factorization results were obtained in [11] for so-
called double staircase partitions, i.e. partitions of the form pk, k, k ´ 1, k ´ 1, . . . , 1, 1q

or pk, k ´ 1, k ´ 1, . . . .1, 1q. This kind of factorization was generalized in [10] for a large
class of partitions and further, to skew-Schur functions, i.e. induced characters, in [12].

Next, we discuss supersymmetric Schur functions, a supersymmetric analogue of the
Schur functions. The supersymmetric Schur functions, also known as the hook Schur
functions, were introduced by Berele and Regev [19] in their study of Lie superalgebras.
Lie superalgebras or Z2-graded Lie algebras are Lie algebras of Lie supergroups, whose
function algebras are algebras with commuting and anticommuting variables [20, 21, 57].

Lie superalgebras and their representations continue to play an important role in
physics in the context of supersymmetries relating particles of different statistics [31].
Lie superalgebras have applications in quantum mechanics [7], conformal field theory [33],
string theory [37], nuclear physics [15], solvable lattice models [14, 103], supergravity [9],
spin systems [44] and quantum systems [98]. Their affine extensions or q-deformations
have also been studied [7, 33] to understand physical systems.

Representation theory of Lie superalgebras differs from the corresponding theory of
Lie algebras in a non-linear manner. Fueled by the physicists’ keen interest in the sub-
ject, Kac constructed a theory of Lie superalgebras and gave a classification of classical
Lie superalgebras [57, 100]. Then he proceeded to the problem of classifying all finite-
dimensional irreducible representations of the classical Lie superalgebras [56]. He derived
a character formula closely analogous to the Weyl character formula for a class of irre-
ducible representations of simple Lie superalgebras [56]. The characters of covariant and
contravariant irreducible representations of glpm|nq are identified with supersymmetric
Schur functions [19, 34], where the corresponding supersymmetric Schur function is la-
belled by a single partition λ. But for the mixed tensor irreducible representations, the
corresponding supersymmetric function is labelled by a composite partition. The prob-
lem of obtaining a character formula for the remaining irreducible representations has
been the subject of intensive investigation [86, 108, 112, 113, 114].

1.2 Organisation of the thesis

We are motivated by the work of Littlewood [74] that studies specialized irreducible
classical characters of the general linear group. We generalize the result to the characters
of other classical groups. Our goal is, on the one hand, to characterize the partitions for
which the specialized irreducible classical character is zero and, on the other hand, to
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prove that the non-zero character factorizes into characters of smaller groups. Presently
we don’t understand these results at the level of the representations of classical groups.
The organization of this thesis is the following:

In Chapter 2, we discuss the preliminaries necessary for this thesis. We briefly recall
various bases of the ring of symmetric and supersymmetric functions and irreducible
characters of classical groups. We also discuss combinatorial objects associated with the
symmetric and supersymmetric functions. This is followed by an introduction to the
cyclic sieving phenomenon.

In Chapter 3, we generalize Littlewood’s results to other classical groups Sp2tn,
SO2tn`1 and O2tn and obtain factorizations for their characters under the same spe-
cialization as that of Littlewood. We use Cauchy-type determinant formulas for these
characters and study the beta sets of partitions. For the general linear group, there is
only one possible value of the t-core for which the twisted character is nonzero, namely
the empty partition. For the other classical characters, there are many possible values of
the t-core for which the character is nonzero. We will show that these are t-cores which
can be written in Frobenius coordinates as pα|α`zq, where the value of z depends on the
group, and which we call z-asymmetric partitions. Further, we give product formulas for
general z-asymmetric partitions and z-asymmetric t-cores. Lastly, we show that there
are infinitely many z-asymmetric t-cores for t ě z ` 2.

In Chapter 4, we give new proofs of factorization results proved in Chapter 3 using
Jacobi–Trudi type identities. Recently using a similar proof strategy, Albion [2] lifted
all the factorization results to the level of universal characters.

In Chapter 5, we extend the factorization results to the groups GLtn`m p0 ď m ď

t´1q, SO2tn`3, Sp2tn`2 and O2tn`2 evaluated at similar specializations: (1) for the GLtn`m

case, we set the first tn elements to ωjxi for 0 ď j ď t´1 and 1 ď i ď n and the remaining
m to y, ωy, . . . , ωm´1y; (2) for the other three families, the same specializations as above
but with m “ 1. For the general linear group, we prove that there are finitely many
t-cores for which the twisted character is nonzero. For the other classical characters, we
characterize partitions for which the character value is nonzero in terms of what we call
pz1, z2, kq-asymmetric partitions, where z1, z2 and k are integers which depend on the
group. Lastly, we prove that there are infinitely many t-core partitions for which these
characters are nonzero.

In Chapter 6, we consider the specialized skew hook Schur polynomial and conse-
quently get the factorization of skew Schur polynomial with the same specialization as
that of Littlewood. We also give a combinatorial proof of the skew Schur factorization
result for t “ 2. Then we prove the cyclic sieving phenomenon on the set of semistandard
tableaux and supertableaux of shape λ{µ.
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Chapter 2

Preliminaries

The purpose of this chapter is on the one hand to fix some notation and terminology,
and on the other hand, to introduce the ring of symmetric and supersymmetric functions
briefly. As most of the objects considered turn out to be indexed by partitions, we will
introduce them in Section 2.1. Section 2.2 is dedicated to the ring of symmetric functions
and well-known bases for this ring. We define Schur polynomials and the skew Schur
polynomials, special classes of symmetric functions, in Section 2.3. In Section 2.4, we
consider the characters of irreducible polynomial representations of classical groups. Next
in Section 2.5, we briefly discuss the ring of supersymmetric functions. In Section 2.6,
we define ribbon tableau and supertableau, generalizing the definitions of tableau and
supertableau defined in Section 2.1 and Section 2.5 respectively. Lastly in Section 2.7,
we discuss some results related to the cyclic sieving phenomenon.

2.1 Partitions

Recall that a partition λ is a weakly decreasing sequence of nonnegative integers λ “

pλ1, . . . , λℓq. The non-zero elements λi are called the parts of λ. The length of a partition
λ, denoted ℓpλq is the number of parts of λ, and the sum of the parts is the weight of
λ, denoted by |λ|. By a ` λ, for a P N, we will mean the partition pa ` λ1, . . . , a ` λℓq.
For a partition λ and an integer ℓ such that ℓpλq ď ℓ, define the beta-set of λ to be a
strict partition βpλq ” βpλ, ℓq “ pβ1pλ, ℓq, . . . , βℓpλ, ℓqq where βipλ, ℓq “ λi ` ℓ ´ i. We
will write βpλq whenever ℓ is clear from the context.

A partition λ can be represented pictorially as a Young diagram, whose i’th row
contains λi left-justified boxes. We will use the so-called English notation where the first

7
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row is on top. For example, the Young diagram of p4, 2, 2, 1q is

.
(2.1.1)

For a partition, λ, the conjugate partition, denoted λ1, is the partition whose Young
diagram is obtained by transposing the Young diagram of λ. A partition in which
no part occurs more than once is called a strict partition. The (Frobenius) rank of a
partition λ, denoted rkpλq, is the largest integer k such that λk ě k. The Frobenius
coordinates of λ is a pair of strict partitions, denoted pα|βq, of length at most rkpλq

given by αi “ λi ´ i and βj “ λ1
j ´ j. For example, the Frobenius coordinates of our

running example p4, 2, 2, 1q in (2.1.1) are p3, 0|3, 1q.

Recall that for partitions λ and µ, we write µ Ă λ to mean that the Young diagram
of λ contains the Young diagram of µ, which is the same as µi ď λi, for all i ě 1. The
skew shape λ{µ is the set-theoretic difference λzµ. For example, the Young diagram of
the skew shape p4, 2, 2, 1q{p2, 1q is

A path in a skew shape λ{µ is a sequence x0, x1, . . . , xk of squares in λ{µ such that
xi´1 and xi have a common side, for 1 ď i ď k. A subdiagram ϕ of λ{µ is said to be
connected if any two squares in ϕ can be connected by a path in ϕ. A border strip or
ribbon is a connected subdiagram of the Young diagram of λ which contains no 2ˆ2 block
of squares. Therefore, successive rows and columns of a border strip overlap by exactly
one box. The length of a border strip ζ is the total number of boxes it contains and its
height, denoted htpζq, is defined to be one less than the number of rows it occupies. For
example,

is a border strip of length 6 and height 3. A domino is a border strip of length 2. The
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head of a border strip is the rightmost box in its top row.
We fix t to be an integer greater than or equal to 2. Now we first define the t-core

and t-quotient of a partition following [75]. There are many equivalent definitions (see
for instance [41, 49, 53, 116]). We then recall Macdonald’s criterion to find the t-core
and t-quotient using the beta set.

Definition 2.1. The t-core of the partition λ, denoted coretpλq, is the partition obtained
by successively removing border strips of length t from the Young diagram of λ.

In the example given in (2.1.1), we see that core2pp4, 2, 2, 1qq “ p2, 1q after three
border strip removals. The idea of removing border strips to get the t-core of a partition
goes back to Nakayama [81]. For example, the only 2-cores are staircase shapes, i.e.
partitions of the form pk, k ´ 1, . . . , 1, 0q, k P N.

For a cell c “ pi, jq in (the Young diagram of) λ, the hook length is given by hc “

λi ´ i` λ1
j ´ j ` 1, which is the total number of cells in its row to the right and those in

its column below it including the cell itself. The content of c is j´ i. The arm (resp. leg)
of c is the rightmost (resp. bottommost) cell in its row (resp. column). For example,
the hook lengths and contents of the running example are

7 5 2 1
4 2
3 1
1

and

0 1 2 3
´1 0
´2 ´1
´3

respectively.
(2.1.2)

Definition 2.2. The t-quotient of λ is a t-tuple of partitions denoted quotpλq “ pλp0q, . . . ,

λpt´1qq obtained using the Young diagram of λ. The pi ` 1q’th element of this tuple is
obtained by taking all cells c whose hook length is divisible by t, and whose arm has
content congruent to i pmod tq. It is a nontrivial fact that this collection of cells forms
a Young subdiagram of λ. The corresponding partition is λpiq.

From (2.1.2), we see that quo2pp4, 2, 2, 1qq “ pp2q, p1qq. Macdonald [77] defines the
t-core and t-quotient alternately using the beta-set and we recall this construction. Let
λ be a partition with ℓpλq ď ℓ. For 0 ď i ď t ´ 1, let nipλq ” nipλ, ℓq be the number
of parts of βpλq congruent to i pmod tq and β

piq
j pλq, 1 ď j ď nipλq be the nipλq parts of

βpλq congruent to i pmod tq in decreasing order.

Proposition 2.3 ([77, Example I.1.8]). Let λ be a partition of length at most ℓ.

1. The ℓ numbers tj ` i, where 0 ď j ď nipλq and 0 ď i ď t ´ 1, are all distinct.
Arrange them in descending order, say β̃1 ą ¨ ¨ ¨ ą β̃ℓ. Then the t-core of λ has
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parts pcoretpλqqi “ β̃i ´ ℓ ` i. Thus, λ is a t-core if and only if these ℓ numbers
tj ` i, where 0 ď j ď nipλq and 0 ď i ď t ´ 1 form its beta-set βpλq.

2. The parts β
piq
j pλq may be written in the form tβ̃

piq
j ` i, 1 ď j ď nipλq, where

β̃
piq
1 ą ¨ ¨ ¨ ą β̃

piq
nipλq

ě 0. Let λpiq
j “ β̃

piq
j ´ nipλq ` j, so that λpiq “ pλ

piq
1 , . . . , λ

piq
nipλq

q

is a partition. Then the t-quotient quotpλq of λ is a cyclic permutation of λ‹ “

pλp0q, λp1q, . . . , λpt´1qq. The effect of changing ℓ is to permute the λpjq cyclically so
that λ‹ should perhaps be thought of as a ‘necklace’ of partitions.

Remark 2.4. We note that Macdonald’s definition of the t-quotient is not identical
to that of Definition 2.2, but is equal up to a cyclic shift. In particular, if quotpλq “

pλp0q, . . . , λpt´1qq and m increases by 1 in Proposition 2.3, the new t-quotient will be
pλpt´1q, λp0q, . . . , λpt´2qq.

A tableau por semistandard Young tableauq T of shape λ{µ is a filling of the Young
diagram of λ{µ in such a way that the numbers increase strictly down each column
and weekly from left to right along each row. The sequence pc1pT q, c2pT q, . . . q, where
cipT q be the number of occurences of i in T , is called the weight of T . Denote the
set of semistandard Young tableaux of shape λ{µ filled with numbers in t1, . . . , ku by
SSYTkpλ{µq.

Example 2.5. Consider λ “ p4, 2, 2, 1q and µ “ p2, 1q. Then the following figure illus-
trates a tableau of shape p4, 2, 2, 1q{p2, 1q and of weight p4, 1, 1q.

1 1
2

1 3
2

There exists a natural partial order on the set of partitions of m called the dominance
order, denoted Ĳ. For two partitions µ and λ of weight m, we write µ Ĳ λ if µ1`¨ ¨ ¨`µi ď

λ1 ` ¨ ¨ ¨ ` λi for all i ě 1. In that case, we say that λ dominates µ. Let Kλ,µ be the
number of tableaux of shape λ and weight µ. Then Kλ,µ is positive if and only if λ
dominates µ in the dominance partial order. Also Kµ,µ “ 1. See [77, Chapter 1] for more
details.

2.2 The ring of symmetric functions

Consider the ring Zrx1, . . . , xns of polynomials in n independent variables with integer
coefficients. A polynomial in the ring Zrx1, . . . , xns is symmetric if it is invariant under
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the action of permuting the variables. Let Λrx1, . . . , xns denote the subring of symmetric
functions, which is graded by degree: we have

Λrx1, . . . , xns “
à

kě0
Λk

rx1, . . . , xns,

where Λkrx1, . . . , xns consists of the homogeneous symmetric polynomials of degree k,
together with the zero polynomial. See [77, 96, 104] for more details. Several bases
indexed by partitions are defined on Λrx1, . . . , xns. We define some of them after setting
up a few notations.

We will use n for a fixed positive integer and let X “ px1, . . . , xnq be a tuple of
commuting indeterminates. For any integer j, we set Xj “ pxj1, . . . , x

j
nq, and for a P R, set

aX “ pax1, . . . , axnq. Define x̄ “ 1{x for an indeterminate x and write X “ px̄1, . . . , x̄nq.
For each n-tuple α “ pα1, . . . , αnq P Zn

ě0, we denote the monomial xα1
1 . . . xαn

n by Xα.

Let λ “ pλ1, λ2, . . . , λnq be a partition of length at most n. The monomial symmetric
function indexed by λ is defined as

mλpXq :“
ÿ

α

Xα, (2.2.1)

summed over all distinct permutations α of λ. As λ runs through all partitions of length
at most n, the monomial symmetric functions mλpXq, form a Z-basis for the ring ΛrXs.
The elementary symmetric function eλpXq indexed by λ is defined as

eλpXq :“
n
ź

i“1
eλi

pXq, (2.2.2)

where

erpXq :“
ÿ

1ďi1ăi2ă¨¨¨ăirďn

xi1xi1 . . . xir “ mp1rqpXq for r ě 1 and e0pXq :“ 1.

The functions erpXq are algebraically independent over Z and the set of all eλpXq with
ℓpλ1q ď n form a Z-basis for ΛrXs. The complete symmetric function hλpXq indexed by
λ is defined as

hλpXq :“
n
ź

i“1
hλi

pXq, (2.2.3)

where

hrpXq :“
ÿ

1ďi1ďi2ď¨¨¨ďirďn

xi1xi1 . . . xir “
ÿ

|λ|“r

mλpXq for r ě 1 and h0pXq :“ 1.
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The set of all hλpXq with ℓpλ1q ď n also form a Z-basis for ΛrXs. The power sum
symmetric function pλpXq indexed by λ is defined as

pλpXq :“
n
ź

i“1
pλi

pXq, (2.2.4)

where prpXq :“
řr
i“1 x

r
i “ mprqpXq for r ě 1 and p0pXq :“ 1. It is convenient to define

erpXq, hrpXq and prpXq to be zero for r ă 0. It is shown in [77, Chapter 1, Section
2] that rhrpXq “

řr
s“1 pspXqhr´spXq. So Qrp1pXq, . . . , prpXqs “ Qrh1pXq, . . . , hrpXqs.

Since the complete symmetric functions hrpXq are algebraically independent over Z,
and hence also over Q, the prpXq are also algebraically independent over Q. So, the
pλpXq form a Q-basis of ΛrXs. But they do not form a Z-basis of ΛrXs; for example,
h2pXq “ 1

2pp1pXq2 ` p2pXqq does not have integer coefficients. We note the following
generating function identities:

ÿ

rě0
erpXqqr “

n
ź

i“1
p1 ` xiqq, (2.2.5)

ÿ

rě0
hrpXqqr “

n
ź

i“1

1
1 ´ xiq

, (2.2.6)

and
ÿ

rě1
prpXqqr´1

“

n
ÿ

i“1

xi
1 ´ xiq

. (2.2.7)

We can also consider symmetric polynomials in countably many independent variables
x1, x2, . . . . Denote the ring thus obtained by Λ. Note that the elements of Λ are no
longer polynomials, they are formal infinite sums of monomials. Let mλ, eλ, hλ and
pλ be the corresponding monomial, elementary, complete and power sum symmetric
functions in infinitely many variables x1, x2, . . . . On the ring of symmetric functions Λ,
a ring homomorphism is defined by: ω̌ : Λ Ñ Λ which maps er to hr, for all r ě 0. This
homomorphism is an involution [77], i.e. ω̌2 is the identity map. The involution ω̌ maps
a power sum onto a scalar multiple of itself:

ω̌ppλq “ ϵλpλ with ϵλ “ p´1q
|λ|´ℓpλq.

Using this involution, a fifth Z-basis of Λ can be defined for any partition λ, namely

fλ “ ω̌pmλq.

These elements are called the forgotten symmetric functions, as there is no simple direct
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description.

We now define the standard Hall inner product xu, vy, a Z-valued bilinear form Λ.
The basis elements phλq and pmλq are defined to be dual of each other with respect to
this inner product:

xhλ,mµy “ δλ,µ,

for all partitions λ, µ of length at most n, where δλ,µ is the Kronecker delta. Then

xeλ, fµy “ δλ,µ,

for all partitions λ, µ of length at most n, since the involution ω̌ is an isometry, i.e
xω̌puq, ω̌pvqy “ xu, vy. Also one can prove that

xpλ, pµy “ δλ,µzλ,

for all partitions λ, µ of length at most n, where zλ “
ź

iě1
imi mi! and mi is the number

of parts of λ equal to i. See [77, Chapter 1, Section 4] for more details.

Recall that we have fixed t to be an integer greater than or equal to 2. Let ω be a
primitive t’th root of unity, i.e. ωt “ 1 and ωs ‰ 1 for any s ă t. If λ “ pλ1, . . . , λℓq is a
partition such that t divides λi, for all i, then we write λ

t
for the partition pλ1

t
, . . . , λℓ

t
q.

Theorem 2.6. For a partition λ of length at most tn, the specialized elementary, com-
plete and power sum symmetric functions, eλpX,ωX, . . . , ωt´1Xq, hλpX,ωX, . . . , ωt´1Xq

and pλpX,ωX, . . . , ωt´1Xq respectively are given by

eλpX,ωX, . . . , ωt´1Xq “

$

&

%

0 λi ı 0 pmod tq for some i,

eλ
t

pp´1qt´1X tq otherwise,
(2.2.8)

hλpX,ωX, . . . , ωt´1Xq “

$

&

%

0 λi ı 0 pmod tq for some i,

hλ
t
pX tq otherwise,

(2.2.9)

pλpX,ωX, . . . , ωt´1Xq “

$

&

%

0 λi ı 0 pmod tq for some i,

t pλ
t
pX tq otherwise.

(2.2.10)

Proof of Theorem 2.6. By (2.2.5), we see that the generating function for the required
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elementary symmetric function is

ÿ

rě0
erpX,ωX, . . . , ω

t´1Xqqr “

n
ź

i“1
p1 ` xiqqp1 ` ω xiqq . . . p1 ` ωt´1 xiqq

“

n
ź

i“1
p1 ` ω

tpt´1q

2 xtiq
t
q “

ÿ

mě0
em

`

p´1q
t´1X t

˘

qmt.

Comparing coefficients and substituting in (2.2.2) proves (2.2.8). A similar calculation
using (2.2.6) and (2.2.7) proves (2.2.9) and (2.2.10) respectively.

Remark 2.7. We also consider the monomial and forgotten symmetric functions (see
Theorem 3.33, Theorem 3.36) in tn variables specialized at X,ωX, . . . , ωt´1X, the same
specialization as in Theorem 2.6, in Section 3.3.

2.3 Schur and skew Schur polynomials

In this section, we give a brief overview of Schur polynomials and the skew Schur poly-
nomials. Schur polynomials are the characters of irreducible polynomial representations
of the general linear group over the field of complex numbers. They also form the most
natural basis of the ring of symmetric functions, which are orthonormal with respect to
the standard Hall inner product. For a partition λ “ pλ1, . . . , λnq, the Schur polynomial
or general linear character of GLn is given by the following Weyl character formula:

sλpXq “

det
1ďi,jďn

´

x
βjpλq

i

¯

det
1ďi,jďn

´

xn´j
i

¯ . (2.3.1)

The denominator is the standard Vandermonde determinant,

det
1ďi,jďn

´

xn´j
i

¯

“
ź

1ďiăjďn

pxi ´ xjq. (2.3.2)

The following Jacobi–Trudi identity expresses the Schur polynomial sλpXq as a polyno-
mial in the complete symmetric functions,

sλpXq “ det phλi´i`jpXqq1ďi,jďr , (2.3.3)
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where r is any integer such that r ě ℓpλq. There is also an equivalent formula in terms
of the elementary symmetric functions, called the dual Jacobi–Trudi formula,

sλpXq “ det
`

eλ1
i´i`jpXq

˘

1ďi,jďr
. (2.3.4)

Now we give the combinatorial definition of the Schur polynomials. The combinatorial
objects associated with the Schur polynomial sλpXq are semistandard tableaux of shape
λ. Recall that a semistandard tableau or tableau of shape λ is a filling of λ with entries
in t1, 2, . . . , nu such that entries increase weekly along rows and strictly along columns.
Then the Schur polynomial sλpXq is given by

sλpXq “
ÿ

T

wtpT q, wtpT q :“
n
ź

i“1
x
cipT q

i , (2.3.5)

where the sum is taken over all semistandard tableaux of shape λ and cipT q, i P rns is the
number of occurrences of i in T . The formulas (2.3.3), (2.3.4) and (2.3.5) also generalize
to infinitely many variables, but (2.3.1) does not.

Example 2.8. Let n “ 3 and consider the partition λ “ p2, 1q. Then we have the
following tableaux of shape λ with entries in t1, 2, 3u:

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

and thus sp2,1qpx1, x2, x3q “ x2
0x1 ` x0x

2
1 ` x2

0x2 ` 2x0x1x2 ` x2
1x2 ` x0x

2
2 ` x1x

2
2.

We note the following relations of the Schur symmetric polynomials with the mono-
mial and forgotten symmetric functions (see [77, Chapter 1, Section 6]). We consider
matrices whose rows and columns are indexed by the partitions of n. Suppose K and J

are two matrices such that Kλ,µ is the number of tableaux of shape λ and weight µ, and

Jλ,µ “

$

&

%

1 if λ1 “ µ

0 otherwise.

Then
mλpXq “

ÿ

µĲλ

K´1
λ,µsµpXq, (2.3.6)
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fλpXq “
ÿ

µ$|λ|

pK´1Jqλ,µsµpXq. (2.3.7)

Now we define the skew Schur polynomials, symmetric functions indexed by skew
shapes which generalize the Schur polynomials. If µ Ă λ pi.e. µi ď λi, i ě 1q, then define
the skew Schur function sλ{µpXq as

sλ{µpXq “
ÿ

T

wtpT q, wtpT q :“
ź

iě1
x
cipT q

i , (2.3.8)

where the sum is taken over all tableaux of shape λ{µ and cipT q, i P rns is the number
of occurrences of i in T . Otherwise sλ{µpXq “ 0. The following Jacobi–Trudi formula
and dual Jacobi–Trudi formula gives sλ{µpXq in terms of complete symmetric functions
and elementary symmetric functions,

sλ{µpXq “ det
`

hλi´µj´i`jpXq
˘

1ďi,jďr
, (2.3.9)

sλ{µpXq “ det
´

eλ1
i´µ1

j´i`jpXq

¯

1ďi,jďr
, (2.3.10)

where r is any integer such that r ě ℓpλq, which generalize (2.3.3) and (2.3.4) respectively.

The relations (2.3.6) and (2.3.7), and the formulas (2.3.8), (2.3.9) and (2.3.10) also
generalize to infinitely many variables, but we do not need them.

2.4 Irreducible characters of other classical groups

The characters of irreducible polynomial representations of the symplectic and orthog-
onal groups are symmetric Laurent polynomials indexed by integer partitions or half-
partitions. These characters are given by the Weyl character formula [40], which de-
scribes the characters of irreducible representations of compact Lie groups in terms of
their highest weights. In this section, we write down the explicit Weyl character formulas
and Jacobi–Trudi-type identities for the characters of classical groups SOp2n`1q, Spp2nq

and Op2nq [40].

The odd orthogonal (type B) character of the group SOp2n` 1q at the representation
indexed by the partition λ “ pλ1, . . . , λnq is given by

soλpXq “

det
1ďi,jďn

´

x
βjpλq`1{2
i ´ x̄

βjpλq`1{2
i

¯

det
1ďi,jďn

´

x
n´j`1{2
i ´ x̄

n´j`1{2
i

¯ “

det
1ďi,jďn

´

x
λj`n´j`1
i ´ x̄

λj`n´j
i

¯

det
1ďi,jďn

´

xn´j`1
i ´ x̄n´j

i

¯ , (2.4.1)
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and the denominator in the first formula is

det
1ďi,jďn

´

x
n´j`1{2
i ´ x̄

n´j`1{2
i

¯

“

n
ź

i“1

`

x
1{2
i ´ x̄

1{2
i

˘

ź

1ďiăjďn

pxi ` x̄i ´ xj ´ x̄jq. (2.4.2)

The symplectic (type C) character of the group Spp2nq at the representation indexed by
λ “ pλ1, . . . , λnq is given by

spλpXq “

det
1ďi,jďn

´

x
βjpλq`1
i ´ x̄

βjpλq`1
i

¯

det
1ďi,jďn

´

xn´j`1
i ´ x̄n´j`1

i

¯ , (2.4.3)

and the denominator here is

det
1ďi,jďn

´

xn´j`1
i ´ x̄n´j`1

i

¯

“

n
ź

i“1
pxi ´ x̄iq

ź

1ďiăjďn

pxi ` x̄i ´ xj ´ x̄jq. (2.4.4)

Lastly, the even orthogonal (type D) character of the group Op2nq at the representation
indexed by λ “ pλ1, . . . , λnq is given by

oeven
λ pXq “

2 det
1ďi,jďn

´

x
βjpλq

i ` x̄
βjpλq

i

¯

p1 ` δλn,0q det
1ďi,jďn

´

xn´j
i ` x̄n´j

i

¯ , (2.4.5)

where δ is the Kronecker delta. The extra factor in the denominator arises because of
the difference in the representation theory of Op2nq and SOp2nq; see [40, p. 411] and
[92, pp. 311–312] for the precise details. The determinant here factorizes as

det
1ďi,jďn

´

xn´j
i ` x̄n´j

i

¯

“ 2
ź

1ďiăjďn

pxi ` x̄i ´ xj ´ x̄jq. (2.4.6)

Notice that

sλpx1, . . . , xnq “ spλpx1, . . . , xnq “ soλpx1, . . . , xnq “ oeven
λ px1, . . . , xnq “ 0, if n ă ℓpλq.

A half-integer is an odd integer divided by 2. The expressions (2.4.1) and (2.4.5) for
odd and even orthogonal characters, respectively, also hold for half-integer partitions,
where a half-integer partition is a tuple pλ1, . . . , λnq whose entries are all positive half-
integers such that λ1 ě ¨ ¨ ¨ ě λn. The odd and even orthogonal characters indexed by
the half-integer partition pλ1 ` 1{2, . . . , λn` 1{2q can be expressed in terms of characters
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indexed by λ as

sopλ1`1{2,...,λn`1{2qpx1, . . . , xnq “

n
ź

i“1

`

x
1{2
i ` x̄

1{2
i

˘

spλpx1, . . . , xnq, (2.4.7)

oeven
pλ1`1{2,...,λn`1{2qpx1, . . . , xnq “ p´1q

řn
i“1 λi

n
ź

i“1

`

x
1{2
i ` x̄

1{2
i

˘

soλp´x1, . . . ,´xnq. (2.4.8)

We now write the Jacobi–Trudi-type identities for the characters of the other classical
groups. The Jacobi–Trudi formula expresses the classical characters as a determinant
in terms of the complete homogeneous symmetric polynomials. See [39, 40, 77] for
background and more details. The odd orthogonal (type B) character of the group
SOp2n ` 1q is given by

soλpXq “ det
`

hλi´i`jpX,X, 1q ´ hλi´i´jpX,X, 1q
˘

1ďi,jďn
. (2.4.9)

The symplectic (type C) character of the group Spp2nq is given by

spλpXq “
1
2 det

`

hλi´i`jpX,Xq ` hλi´i´j`2pX,Xq
˘

1ďiďn
. (2.4.10)

Lastly, the even orthogonal (type D) character of the group Op2nq is given by

oeven
λ pXq “ det

`

hλi´i`jpX,Xq ´ hλi´i´jpX,Xq
˘

1ďi,jďn
. (2.4.11)

We note that the universal characters of the symplectic and orthogonal groups defined
by Koike and Terada [64] are symmetric functions which under the appropriate special-
izations of the variables become the characters of irreducible polynomial representations
of classical groups SOp2n ` 1q, Spp2nq and Op2nq.

2.5 The ring of supersymmetric functions

Now we will give a supersymmetric analogue of the symmetric functions defined above.
We consider the ring Zrx1, . . . , xn, y1, . . . , yms of polynomials in n`m independent vari-
ables x1, . . . , xn, y1, . . . , ym with integer coefficients. Suppose X “ px1, . . . , xnq and
Y “ py1, . . . , ymq. A polynomial fpX, Y q in this ring is doubly symmetric if it is sepa-
rately symmetric in both the X and Y variables. Moreover, if substituting xn “ t and
ym “ ´t results in an expression independent of t, then we call fpX, Y q a supersymmetric
function. Let ΛpX{Y q denote the subring of supersymmetric functions. Several bases
indexed by partitions are defined on ΛpX{Y q. The monomial supersymmetric functions



2.5. The ring of supersymmetric functions 19

are defined as
MλpX{Y q “

ÿ

µYν

mµpXqfνpY q,

where the sum is over the union µ Y ν of the partitions µ and ν, which is a partition
whose parts are of those of µ and ν, arranged in descending order. The elementary
supersymmetric function indexed by λ “ pλ1, λ2, . . . , λnq is given by

EλpX{Y q “

n
ź

i“1
Eλi

pX{Y q, (2.5.1)

where ErpX{Y q “

r
ÿ

j“0
ejpXqhr´jpY q, r ě 1. The complete supersymmetric function in-

dexed by λ “ pλ1, λ2, . . . , λnq is given by

HλpX{Y q “

n
ź

i“1
Hλi

pX{Y q, (2.5.2)

where HrpX{Y q “

r
ÿ

j“0
hjpXqer´jpY q, r ě 1. The power sum supersymmetric polynomial

indexed by λ “ pλ1, λ2, . . . , λnq is defined as

PλpX{Y q “

n
ź

i“1
Pλi

pX{Y q, (2.5.3)

where PrpX{Y q “ prpXq ` p´1qr´1prpY q, r ě 1. We note that E0pX{Y q “ H0pX{Y q “

P0pX{Y q “ 1. It is convenient to define ErpX{Y q, HrpX{Y q and PrpX{Y q to be zero
for r ă 0. Now we consider Hook Schur functions (or supersymmetric Schur functions),
denoted hsλpX{Y q, supersymmetric functions indexed by integer partitions. They are
the characters of irreducible covariant tensor representations of glpm{nq introduced by
Berele and Regev [19] in their study of Lie superalgebras. They form a Z-basis of the ring
of supersymmetric functions, generalizing Schur polynomials. Additionally, skew hook
Schur functions are indexed by the skew shape partitions and generalize skew Schur
polynomials. For background, see [57, 79].

Definition 2.9. A supertableau (or semistandard supertableau) T of shape λ{µ with
entries

1 ă 2 ă ¨ ¨ ¨ ă n ă 11
ă 21

ă ¨ ¨ ¨ ă m1

is a filling of the shape with these entries satisfying the following conditions:

• entries increase weakly along rows and columns
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• the unprimed entries strictly increase along rows

• the primed entries strictly increase along columns

We use the shorthand notation rnsYrms to denote the ordered set t1, . . . , n, 11, . . . ,m1u

such that 1 ă ¨ ¨ ¨ ă n ă 11 ă ¨ ¨ ¨ ă m1. The weight of a supertableau is given by

wtpT q :“
n
ź

i“1
x
nipT q

i

m1
ź

j“11

y
njpT q

j ,

where nkpT q, k P rns Y rms, is the number of occurrences of k in T . Denote the set of
supertableaux of skew shape λ{µ with entries in rnsYrms by SSYTn{mpλ{µq. For integer
partitions µ Ă λ, the skew hook Schur polynomial, denoted hsλ{µpX{Y q is given by:

hsλ{µpX{Y q :“
ÿ

T P SSYTn{mpλ{µq

wtpT q. (2.5.4)

We define the skew hook Schur polynomial hsλ{µpX{Y q to be zero unless µ Ă λ. If
µ “ H, then hsλpX{Y q is the hook Schur function. The hook Schur function hsλpX{Y q

is nonzero if and only if λn`1 ď m.

Example 2.10. Let n “ 2 and m “ 1 and consider the skew shape p2, 2q{p1q. Then we
have the following supertableaux in SSYT2{1pp2, 2q{p1qq:

1
1 2

1
2 2

1
1 11

1
2 11

2
1 11

2
2 11

1
1 11

1
2 11

and thus hsp2,2q{p1qpx1, x2{y1q “ x2
1x2 `x1x

2
2 `x2

1y1 ` 2x1x2y1 `x2
2y1 `x1y

2
1 `x2y

2
1. Notice

that hsp2,2q{p1qpx1, t{ ´ tq “ 0.

We can also define the elements of the ring ΛpX{Y q using the notion of plethystic
difference X ´ Y . See [22, 46, 72] for background on plethysm and plethystic notation.
The skew hook Schur polynomial in plethystic notation is given by

hsλ{µpX{Y q “ sλ{µpX ´ ϵY q|ϵ“´1. (2.5.5)

Using the plethystic notation in (2.3.9), we can express hsλ{µpX{Y q in terms of the
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complete supersymmetric functions.

hsλ{µpX{Y q “ det
`

Hλi´µj´i`jpX{Y q
˘

1ďi,jďr
, (2.5.6)

where r is any integer such that r ě ℓpλq.

2.6 Ribbon tableaux and supertableaux

Recall that a border strip or a ribbon is a connected subdiagram of the Young diagram
of λ which contains no 2 ˆ 2 block of squares. In this section, we define ribbon tableau
and ribbon supertableau, generalizing tableau and supertableau respectively.

Definition 2.11. A k-horizontal strip is a skew shape formed by a disjoint union of k
ribbons such that all their heads are in different columns.

Definition 2.12. A t-ribbon tableau (resp. ribbon supertableau) is a filling (resp. su-
pertableau) of shape λ{µ and weight ν such that the entries along rows and columns
are weakly increasing, and the shape determined by the entries labelled i, for each i, is
a νi-horizontal strip. Such a tableau is called a standard ribbon tableau (resp. standard
ribbon supertableau) if the entries are distinct in different ribbons.

1 1 1 1
2 2 4

2 2 2 4
2 2 2 4

4 4 4 4 4

”

1

4

4

22

Figure 2.1: 4-ribbon tableau of shape (6,5,5,5,5)/(2,2,1,1) and weight (1,2,0,2)

Remark 2.13. A 2-ribbon tableau (resp. supertableau) is also known as a domino
tableau (resp. supertableau). We denote the set of domino tableaux of shape λ{µ filled
with entries in t1, . . . , nu by Dnpλ{µq.

For a ribbon tableau or supertableau S, let RibpSq denote the set of its ribbons.
Recall that the parity is the property of an integer of whether it is even or odd.

Lemma 2.14 ([84, Lemma 4.1], [115, Proposition 3.3.1]). Let λ and µ be partitions such
that coretpλq{coretpµq is empty. Suppose S is a t-ribbon tableau of shape λ{µ. Then the
parity of htpSq :“

ř

ξPRibpSq
htpξq is independent of S.
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Definition 2.15. We call a tableau T filled with entries in t1, 2, . . . , 2nu coverable if it
can be covered with the dominoes of the form

2a 2a and
2a ´ 1

2a
,

a P t1, 2, . . . , nu. We denote the set of coverable tableaux of shape λ{µ filled with entries
in t1, . . . , 2nu by C2npλ{µq.

The following lemma gives a bijection between the set of coverable tableaux and that
of domino tableaux of shape λ{µ.

Lemma 2.16. Let λ{µ be a skew shape such that core2pλq{core2pµq is empty. Then there
exists a natural one-to-one correspondence ψ : C2npλ{µq Ñ Dnpλ{µq such that

dipψpT qq “ c2i´1pT q ` c2ipT q and
ÿ

ξPRibpψpT qq

htpξq “ c1pT q ` ¨ ¨ ¨ ` c2n´1pT q,

where cipT q and dipψpT qq is the number of occurrences of i in T and ψpT q respectively.

Proof. Suppose T is a coverable tableau. Then define ψ : C2npλ{µq Ñ Dnpλ{µq such that

ψpT qpi, jq “

Z

T pi, jq ` 1
2

^

.

We note that the entries of ψpT q are weakly increasing along its rows and columns since
T is a tableau. Also, 1 ď ψpT qpi, jq ď n, for all pi, jq. Furthermore, the shape determined
by the entries in ψpT q labelled i, for each i, is a ppc2i´1pT q ` c2ipT qq{2q-horizontal strip
since T is coverable. So, ψ is well-defined and dipψpT qq “ c2i´1pT q ` c2ipT q. Finally,
since

ř

ξPRibpψpT qq
htpξq is the number of vertical dominoes in ψpT q and T is coverable,

ř

ξPRibpψpT qq
htpξq “ c1pT q ` ¨ ¨ ¨ ` c2n´1pT q.

Example 2.17. Suppose n “ 2, λ “ p5, 3, 2q and µ “ p1q. Then the following figure
shows a coverable tableau and its image under ψ, the bijection defined in Lemma 2.18.

Lemma 2.18. For a skew shape λ{µ and a tableau T P SSYT2npλ{µq, let

pX,´Xq
T :“ p´1q

c2pT q`¨¨¨`c2npT qx
c1pT q`c2pT q

1 x
c3pT q`c4pT q

2 . . . xc2n´1pT q`c2npT q
n ,

where cjpT q is the number of occurrences on j in T for all j P t1, . . . , 2nu. Also, suppose
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3 4 4
1 3 4
2 4

ÝÑ

2 2 2
1 2 2
1 2

”

1 2
2

2

Figure 2.2: A coverable tableau T on the left and the corresponding domino tableau
ψpT q on the right.

N2npλ{µq is the set of tableaux in SSYT2npλ{µq which are not coverable. Then

ÿ

T :T P N2npλ{µq

pX,´Xq
T

“ 0.

Proof. To prove the lemma, it is sufficient to define a fixed-point-free involution γ on
N2npλ{µq such that

pX,´Xq
T

“ ´pX,´Xq
γpT q. (2.6.1)

Let T P N2npλ{µq. Suppose i is the smallest integer such that T can not be covered with
the dominoes of the form

2i 2i and
2i ´ 1

2i
.

Consider the part of T with entries equal to 2i ´ 1 or 2i. Some columns of T will have
no such entries, while some columns will contain both 2i ´ 1 and 2i. We ignore these
columns. The remaining part will have a certain number k of rows with entries equal to
2i ´ 1 or 2i once in each column. Suppose there are rj number of 2i ´ 1 followed by a
certain number sj of 2i in the j’th row, for all 1 ď j ď k. The following diagram shows
two such rows:

2i ´ 1 . . .

r1 s1

2i ´ 1 2i . . . 2i
2i. . .

s2r2

2i2i ´ 1. . .2i ´ 1

Since T is not coverable, there will be atleast one j in t1, . . . , ku such that either sj is
odd, or sj is even and rj ą 0. Fix the smallest such j. In the first case, convert the
leftmost 2i to 2i ´ 1, and in the second case convert the rightmost 2i ´ 1 to 2i, in the
j’th row. This will give us γpT q. It is easy to see that γ is the fixed point-free involution
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and it satisfies (2.6.1), completing the proof.

2.7 Cyclic sieving phenomenon

The cyclic sieving phenomenon was introduced by V. Reiner, D. Stanton and D. White [93]
generalizing Stembridge’s p´1q phenomenon [105, 106, 107]. To define it, let Ct be the
cyclic group of order t acting on a finite set X and fpqq a polynomial with nonnegative
integer coefficients. Then the triple pX,Ct, fpqqq is said to exhibit the cyclic sieving
phenomenon (CSP) if, for any integer k ě 0,

|tx P X |σk ¨ x “ xu| “ fpωkq,

where σ is a generator of Cn and ω is a primitive tth root of unity.
At first glance, it might appear odd that evaluating a polynomial with nonnegative

integer coefficients at a complex number could result in another nonnegative integer,
let alone have any meaningful counting interpretation. However, the cyclic sieving phe-
nomenon (CSP), as extensively explored in the literature, reveals that this occurrence
is actually quite common. See [97] for a nice survey on cyclic sieving by Sagan and
[1, 5, 24, 43, 62] for various other instances of cyclic sieving. This phenomenon high-
lights a fascinating interplay between the fields of combinatorics and algebra, with the
Reiner-Stanton-White paper [93] serving as a catalyst for a surge in interest in cyclic
sieving.

Numerous researchers have explored the cyclic sieving phenomena on the set of semi-
standard Young tableaux (See [4, 18, 80, 83, 85, 88, 111]). Rhoades [94] unveiled a con-
nection between Sch:utzenberger’s promotion [102] and the cyclic sieving phenomenon.
To state his result, let SSYTkpλ{µq of semistandard Young tableaux of shape λ{µ filled
with numbers in t1, . . . , ku and Ck be the cyclic group of order k. Using Kazhdan-Lusztig
theory, he showed that if λ is rectangular partition of length at most k, then the triple

pSSYTkpλq, Ck, q
´mpλqsλp1, q, . . . , qk´1

qq,

exhibits the cyclic sieving phenomenon, where mpλq “
řk
i“1pi´1qλi and sλp1, q, . . . , qk´1q

is the principal specialization of the Schur polynomial. Such a result was further gener-
alized in [38] where cyclic sieving on rectangular SSYTkpλq with a fixed content vector
was considered and also for partition λ of any shape with gcdp|λ|, kq “ 1 [82].

Alexandersson, Pfannerer, Rubey and Uhlin proposed the following conjecture [6,
Conjecture 50] generalizing Rhoades’s result. There exists an action of the cyclic group
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Ct of order t on SSYTkptλ{tµq such that the triple

pSSYTkptλ{tµq, Ct, stλ{tµp1, q, . . . , qk´1
qq,

exhibits the cyclic sieving phenomenon. Here tλ{tµ is the stretched Young diagram of
λ{µ by t. If t does not divide k, then the conjecture is false [73]. But the conjecture is
true if k is divisible by t [73, Theorem 1.1]. More precisely, it can be reformulated as
follows: let λ{µ be a skew partition. If λi ´ µi is divisible by t for all i ě 1, then there
exists an action of the cyclic group Ct of order t such that the triple

pSSYTtnpλ{µq, Ct, sλ{µp1, q, . . . , qtn´1
qq,

exhibits the cyclic sieving phenomenon. Recently, in [52], Graeme, Stokke and Wiebe
proved the cyclic sieving phenomenon on the set of symplectic tableaux.
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Chapter 3

Factorization of classical characters
twisted by roots of unity

In this chapter, we study the factorization of irreducible characters of representations
of GLtn, SO2tn`1, Sp2tn and O2tn, evaluated at elements ωkxi for 0 ď k ď t ´ 1 and
1 ď i ď n. The case of GLtn was considered by D. J. Littlewood [74] and independently
by D. Prasad [90]. In each case, we characterize partitions for which the character
value is nonzero in terms of what we call z-asymmetric partitions, where z is an integer
which depends on the group. We give statements of results and illustrative examples
in Section 3.1. We formulate results on beta sets, generating functions and determi-
nant identities in Section 3.2. We give a self-contained proof of Littlewood’s result in
Section 3.3. In consequence, we also consider the monomial symmetric functions and
forgotten symmetric functions with the same specialization in Section 3.3. We prove
the new factorizations of other classical characters in Section 3.4. Finally, we prove
generating function formulas for z-asymmetric partitions and z-asymmetric t-cores in
Section 3.5. This work has appeared in the Journal of Algebra [13].

3.1 Main results

The first result in this direction is due to D. Littlewood and independently D. Prasad
for GLtn. We will denote our indeterminates by X,ωX, ω2X, . . . , ωt´1X, where we recall
that X “ px1, . . . , xnq and ω is a primitive t’th root of unity.

For a partition of length at most tn, let σλ P Stn be the permutation that rearranges

27
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the parts of βpλq such that

βσλpjqpλq ” q pmod tq,
q´1
ÿ

i“0
nipλq ` 1 ď j ď

q
ÿ

i“0
nipλq, (3.1.1)

arranged in decreasing order for each q P t0, 1, . . . , t ´ 1u. For the empty partition,
βpH, tnq “ ptn ´ 1, tn ´ 2, . . . , 0q with nqpH, tnq “ n, 0 ď q ď t ´ 1 and

σH “ pt, . . . , nt, t ´ 1, . . . , nt ´ 1, . . . , 1, . . . , pn ´ 1qt ` 1q, (3.1.2)

in one line notation with sgnpσHq “ p´1q
tpt´1q

2
npn`1q

2 .

Theorem 3.1 ([74, Equation (7.3;3)], [90, Theorem 2]). Let λ be a partition of length at
most tn indexing an irreducible representation of GLtn and quotpλq “ pλp0q, . . . , λpt´1qq.
Then the GLtn-character sλpX,ωX, . . . , ωt´1Xq is as follows.

1. If coretpλq is not empty, then

sλpX,ωX, . . . , ωt´1Xq “ 0. (3.1.3)

2. If coretpλq is empty, then

sλpX,ωX, . . . , ωt´1Xq “ p´1q
tpt´1q

2
npn`1q

2 sgnpσλq

t´1
ź

i“0
sλpiqpX t

q. (3.1.4)

In other words, the nonzero GLtn-character is a product of t GLn characters. We
will give a self-contained proof of this result in Section 3.3. We note that Theorem 3.1
for X “ p1q is due to Macdonald [77, Chapter I.3, Example 17(a)], where the Schur
polynomial on the right hand side of (3.1.4) is 1 for each i P r0, t ´ 1s. Recently,
Karmakar [58] gave a different proof of this result. A similar factorization result is
proved by Mizukawa for Schur’s P and Q functions [78].

Example 3.2. For t “ 2, Theorem 3.1 says that the character of the group GL2 (i.e.,
n “ 1) of the representation indexed by the partition pa, bq, a ě b ě 0, evaluated at
px,´xq is nonzero if and only if a and b have the same parity. If a and b are both odd,
then

spa,bqpx,´xq “ ´sp
a`1

2 qpx
2
qs

p
b´1

2 q
px2

q,

and if a and b are both even, then

spa,bqpx,´xq “ sp b
2 qpx

2
qsp a

2 qpx
2
q.
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We now generalize Theorem 3.1 to other classical characters. We first need some
definitions.

Definition 3.3. Let z be a nonnegative integer. We say that a partition λ is z-
asymmetric if λ “ pα|α ` zq, in Frobenius coordinates for some strict partition α.
More precisely, λ “ pα|βq where βi “ αi ` z for 1 ď i ď rkpλq.

Definition 3.4. A 1-asymmetric partition is said to be symplectic1. In addition, if a
symplectic partition is also a t-core, we call it a symplectic t-core.

Note that the empty partition is vacuously symplectic. For example, the only sym-
plectic partitions of 6 are p3, 1, 1, 1q and p2, 2, 2q, and the first few symplectic 3-cores are
p1, 1q, p2, 1, 1q, p4, 2, 2, 1, 1q and p5, 3, 2, 2, 1, 1q.

For the symplectic case, we take G “ Sp2tn, the symplectic group of p2tnq ˆ p2tnq

matrices. To state our results, it will be convenient to define, for λ “ pλ1, . . . , λkq, the
reverse of λ as revpλq “ pλk, . . . , λ1q. Further, if µ “ pµ1, . . . , µjq is another partition such
that µ1 ď λk, then we write the concatenated partition pλ, µq “ pλ1, . . . , λk, µ1, . . . , µjq.

Theorem 3.5. Let λ be a partition of length at most tn indexing an irreducible repre-
sentation of Sp2tn and quotpλq “ pλp0q, . . . , λpt´1qq. Then the Sp2tn-character spλpX,ωX,

. . . , ωt´1Xq is given as follows.

1. If coretpλq is not a symplectic t-core, then

spλpX,ωX, . . . , ωt´1Xq “ 0. (3.1.5)

2. If coretpλq is a symplectic t-core with rank r, then

spλpX,ωX, . . . , ωt´1Xq “ p´1q
ϵ sgnpσλq spλpt´1qpX t

q

t t´3
2 u
ź

i“0
s
µ

p1q

i
pX t, X

t
q

ˆ

$

&

%

so
λp

t
2 ´1qpX tq t even,

1 t odd,
(3.1.6)

where

ϵ “ ´

t´2
ÿ

i“t t
2 u

ˆ

nipλq ` 1
2

˙

`

$

&

%

npn`1q

2 ` nr t even,

0 t odd,

1While this terminology also seems to be have been used for partitions whose odd parts have even
multiplicity [54], it does not seem widespread.
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and µp1q

i “ λ
pt´2´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´2´iq
q
˘

has 2n parts for 0 ď i ď
X

t´3
2

\

.

Again, nonzero Sp2tn characters are a product of characters, but this time there are
tpt ´ 1q{2u GL2n characters, one Sp2n character and, if t is even, one additional SO2n`1

character. As mentioned above, the only 2-cores are self-conjugate. Therefore, this
character when t “ 2 is nonzero if and only if core2pλq “ H.

Example 3.6. For t “ 2, Theorem 3.5 says that the character of the group Spp4q pn “ 1q

of the representation indexed by the partition pa, bq, a ě b ě 0, evaluated at px,´xq is
nonzero if and only if a and b have the same parity. If a and b are both odd, then

sppa,bqpx,´xq “ ´sp
p

b´1
2 q

px2
q sop

a`1
2 qpx

2
q,

and if a and b are both even, then

sppa,bqpx,´xq “ spp a
2 qpx

2
q sop b

2 qpx
2
q.

Notice that all the characters on the right-hand side are for the groups Spp2q and SOp3q,
and in both cases, the partitions indexing them are the 2-quotients and of length 1.

We also give a concrete example.

Example 3.7. Let n “ 2, t “ 3 and consider the partition λ “ p3, 2, 1, 1, 1q so that
βpλq “ p8, 6, 4, 3, 2, 0q. Hence, n0pλ, 6q “ 3, n1pλ, 6q “ 1 and n2pλ, 6q “ 2. Hence, it
has 3-core equal to p1, 1q, and its symplectic character is nonzero. With X “ px1, x2q,
spλpX,ω3X,ω

2
3Xq is given by

ˆ

px1 ` x2qpx1x2 ` 1q px2
1 ´ x2x1 ` x2

2q px2
1x

2
2 ´ x1x2 ` 1q

x3
1x

3
2

˙2

.

Since quo3pλq “ pH, p1q, p1qq, µp1q

0 “ 0 ` p1, 0, 0, 0q “ p1q and we need to calculate
spp1qpX

3q and sp1qpX
3, X

3
q. These are the characters of Spp4q, SOp5q respectively, cor-

responding to the partition p1, 0q. It turns out that both are equal to

px1 ` x2qpx1x2 ` 1q px2
1 ´ x2x1 ` x2

2q px2
1x

2
2 ´ x1x2 ` 1q

x3
1x

3
2

,

verifying Theorem 3.5.

Definition 3.8. A p´1q-asymmetric partition is said to be orthogonal. In addition, if
an orthogonal partition is also a t-core, we call it an orthogonal t-core.
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Our notion of an orthogonal partition is the same as Macdonald’s double of α [77,
p. 14], and Garvan–Kim–Stanton’s doubled partition of α, denoted αα [41, Sec. 8]. The
first few orthogonal 3-cores are p2q, p3, 1q, p5, 3, 1, 1q and p6, 4, 2, 1, 1q, which are precisely
the conjugates of the symplectic 3-cores listed earlier. Then our result for factorization
of even orthogonal characters is as follows.

For the even orthogonal case, we take G “ O2tn, the orthogonal group of p2tnqˆp2tnq

square matrices.

Theorem 3.9. Let λ be a partition of length at most tn indexing an irreducible repre-
sentation of O2tn and quotpλq “ pλp0q, . . . , λpt´1qq. Then the O2tn character oeven

λ pX,ωX,

. . . , ωt´1Xq is given as follows.

1. If coretpλq is not an orthogonal t-core, then

oeven
λ pX,ωX, . . . , ωt´1Xq “ 0. (3.1.7)

2. If coretpλq is an orthogonal t-core with rank r, then

oeven
λ pX,ωX, . . . , ωt´1Xq “ p´1q

ϵ sgnpσλq oeven
λp0q pX t

q

t t´1
2 u
ź

i“1
s
µ

p2q

i
pX t, X

t
q

ˆ

$

&

%

p´1q
řn

i“1 λ
pt{2q

i soλpt{2qp´X t
q t even,

1 t odd,
(3.1.8)

where

ϵ “ ´

t´1
ÿ

i“t t`2
2 u

ˆ

nipλq

2

˙

`

$

&

%

npn`t´1q

2 ` nr t even,
pt´1qn

2 t odd,

and µp2q

i “ λ
pt´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´iq
q
˘

has 2n parts for 0 ď i ď
X

t´1
2

\

.

Again, nonzero O2tn characters are a product of characters, but this time there are
tpt ´ 1q{2u GL2n characters, one O2n character and, if t is even, one additional SO2n`1

character. As in the symplectic factorization in Theorem 3.5, the even orthogonal char-
acter for t “ 2 is nonzero if and only if core2pλq “ H. Recall the involution ω̌ (see
Section 2.2) on the space of symmetric functions the takes sλ to sλ1 . Koike and Terada
have shown [64] that this involution interchanges (universal) orthogonal characters and
(universal) symplectic characters. Comparing Theorem 3.5 and Theorem 3.9, it seems
reasonable to suppose that we can obtain a proof of the latter from the former using this
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involution. However, this involution works only at the level of universal characters and
does not commute with our specialization.

Example 3.10. For t “ 2, Theorem 3.9 says that the character of the group Op4q of the
representation indexed by the partition pa, bq, a ě b ě 0, evaluated at px,´xq is nonzero
if and only if a and b have the same parity. If a and b are both odd, then

oeven
pa,bqpx,´xq “ p´1q

pb`1q{2 so
p

b´1
2 q

p´x2
qoeven

p
a`1

2 q
px2

q,

and if a and b are both even, then

oeven
pa,bqpx,´xq “ p´1q

a{2 sop a
2 qp´x2

qoeven
p b

2 q
px2

q.

Notice that all the characters on the right-hand side are for the groups SOp3q and SOp2q,
and in both cases the partitions indexing them are the 2-quotients and of length 1.

For the odd orthogonal case, we take G “ SO2tn`1, the orthogonal group of p2tn `

1q ˆ p2tn ` 1q square matrices. It will turn out that the notion of an ‘odd-orthogonal
partition’ is the same as being self-conjugate, or equivalently, 0-asymmetric. The first
few self-conjugate 3-cores are p1q, p3, 1, 1q, p4, 2, 1, 1q and p6, 4, 2, 2, 1, 1q. Our result for
factorization of odd orthogonal characters is as follows.

Theorem 3.11. Let λ be a partition of length at most tn indexing an irreducible rep-
resentation of SO2tn`1. Then the SO2tn`1 character soλpX,ωX, . . . , ωt´1Xq is given as
follows.

1. If coretpλq is not self-conjugate, then

soλpX,ωX, . . . , ωt´1Xq “ 0. (3.1.9)

2. If coretpλq is self-conjugate with rank r, then

soλpX,ωX, . . . , ωt´1Xq “ p´1q
ϵ sgnpσλq

t t´2
2 u
ź

i“0
s
µ

p3q

i
pX t, X

t
q

ˆ

$

&

%

so
λp

t´1
2 qpX tq t odd,

1 t even,

(3.1.10)

where

ϵ “ ´

t´1
ÿ

i“t t`1
2 u

ˆ

nipλq ` 1
2

˙

`

$

&

%

nr t odd,

0 t even,
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and µp3q

i “ λ
pt´1´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´1´iq
q
˘

has 2n parts for 0 ď i ď
X

t´2
2

\

.

Again, nonzero SO2tn`1 characters are a product of characters, but this time there are
tt{2u GL2n characters, and, if t is odd, one additional SO2n`1 character. Since 2-cores are
always self-conjugate, odd orthogonal characters always have a nontrivial factorization
when t “ 2.

Example 3.12. For t “ 2, Theorem 3.11 says that the character of the group SOp5q

of the representation indexed by the partition pa, bq, a ě b ě 0, evaluated at px,´xq is
nonzero if and only if a and b have the same parity. We obtain

sopa,bqpx,´xq “ p´1q
as

p
a`b

2 ,0q
px2, x̄2

q.

Notice that the character on the right hand side is for GLp2q and involves the sum of the
2-quotients.

Remark 3.13. It might seem that the results of Theorem 3.5, Theorem 3.9 and Theo-
rem 3.11 are not well-defined because of Remark 2.4. More precisely, the lack of symme-
try of the t-quotients on the right hand sides of these theorems might cause some worry.
However, since changing n Ñ n ` 1 will change the length of the partition λ by tn, the
order of the quotients remains unchanged.

Remark 3.14. In some cases, the Schur functions s
µ

pjq

i
pX t, X

t
q appearing on the right

hand sides of Theorem 3.5, Theorem 3.9 and Theorem 3.11 for j P r3s respectively
factorize further into characters of other classical groups, but we do not understand this
behavior fully. Whenever µi can be written as ρ1 ` pρ,´ revpρqq or ρ1 ` p1 ` ρ,´ revpρqq

for a partition ρ of length at most n, such a factorization occurs by the results in [10]. In
that case sµi

is either a product of two odd orthogonal characters or an even orthogonal
and a symplectic character.

Further generalizations of the factorization results have now appeared in [2, 69]. It
is natural to ask if there are infinitely many symplectic, orthogonal and self-conjugate
t-cores. As we have seen, there are no symplectic or orthogonal 2-cores and all 2-cores
are self-conjugate. For t ě 3, it has been proved [41] that there are infinitely many
self-conjugate t-cores. Our last result gives a generalisation.

Theorem 3.15. There are infinitely many symplectic and orthogonal t-cores for t ě 3.

This is proved in Section 3.5.
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3.2 Background results

We collect all the assorted results we will need to prove our main results here. In
Section 3.2.1, we will use beta sets of partitions to classify symplectic partitions and
their generalizations. We will derive generating functions for such partitions and prove
that there are infinitely many of them in Section 3.5. Finally, we will derive determinant
identities for block matrices in Section 3.2.2.

3.2.1 Properties of beta sets

In his treatise, Macdonald [77] used beta sets to derive powerful results for cores and
quotients. We review and extend his results to the cases of interest. First, we recall
a useful property of the beta numbers. Throughout, we will use the notation rms “

t1, . . . ,mu and rm1,m2s “ tm1, . . . ,m2u.

Lemma 3.16. Let λ and µ be partitions of length at most m1 and m2 respectively and
let m2 ě λ1. Then λ1 “ µ if and only if the m1 ` m2 numbers βjpλq for j P rm1s and
m1 ` m2 ´ 1 ´ βkpµq for k P rm2s form a permutation of t0, 1, . . . ,m1 ` m2 ´ 1u.

Proof. The forward implication holds by [77, Chapter I.1, Equation (1.7)].
For the converse, since m2 ě λ1, the m1 ` m2 numbers βjpλq for j P rm1s and

m1 ` m2 ´ 1 ´ βkpλ1q for k P rm2s are a permutation of t0, 1, . . . ,m1 ` m2 ´ 1u by [77,
Chapter I.1, Equation (1.7)]. So, βkpλ1q “ βkpµq, k P rm2s and λ1 “ µ.

Let λ, µ be partitions of length at most m such that λ Ą µ, and such that the set
difference of Young diagrams λzµ is a border strip of length t. Then, it is known [77,
Chapter I.1, Example 8(a)] that βpµq can be obtained from βpλq by subtracting t from
some part βipλq and rearranging in descending order. Therefore, for a partition λ of
length at most m, we see that

nipλ,mq “ nipcoretpλq,mq, 0 ď i ď t ´ 1. (3.2.1)

We now explain the relationship between a partition and its conjugate in terms of
their beta sets.

Lemma 3.17. Let λ and µ be partitions of length at most tm1 and tm2 respectively. If
µ “ λ1, then

nipλq ` nt´1´ipµq “ m1 ` m2, 0 ď i ď t ´ 1. (3.2.2)

The converse is true if λ and µ are t-cores.
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Proof. Suppose µ “ λ1. Then Lemma 3.16 implies that the numbers βjpλq for 1 ď j ď

tm1 and tm`tn´1´βkpµq for 1 ď k ď tm2 are a permutation of t0, 1, . . . , tm1`tm2´1u.
Since ξ ” t ´ 1 ´ i pmod tq implies tm1 ` tm2 ´ 1 ´ ξ ” i pmod tq, nipλq ` nt´1´ipµq is
equal to number of integers in t0, 1, . . . , tm1 ` tm2 ´ 1u congruent to i pmod tq. Since
for each 0 ď i ď t´ 1, there are m1 `m2 numbers in t0, 1, . . . , tm1 ` tm2 ´ 1u congruent
to i modulo t, (3.2.2) holds.

Conversely, assume λ and µ are t-cores and (3.2.2) holds. Fix i, 0 ď i ď t´1. Since λ
is a t-core, the numbers i ă i`t ă ¨ ¨ ¨ ă i`pnipλq´1qt occur in βpλq. Similarly, since µ is
a t-core and 0 ď t´i´1 ď t´1, the numbers t´1´i ă 2t´1´i ă ¨ ¨ ¨ ă pnt´1´ipµqqt´1´i

occur in βpµq.
So, the parts of βpλq and tm1 ` tm2 ´ 1 ´ βpµq congruent to i pmod tq are

i ă i ` t ă ¨ ¨ ¨ ă i ` pnipλq ´ 1qt

and
tpm1 ` m2 ´ 1q ` i ą tpm1 ` m2 ´ 2q ` i ą ¨ ¨ ¨ ą pnipλqqt ` i

respectively. Therefore, all the numbers congruent to i pmod tq between i and tpm1 `

m2 ´ 1q ` i appear in the union of βpλq and tm1 ` tm2 ´ 1 ´ βpµq. Since this holds
for each 0 ď i ď t ´ 1, parts of βpλq and tm1 ` tm2 ´ 1 ´ βpµq are a permutation of
t0, 1, . . . , tm1 ` tm2 ´ 1u. Moreover, the largest part of βpλq is at most tpm1 ` m2q ´ 1
implies λ1 is at most tm2. So, by Lemma 3.16, µ “ λ1, completing the proof.

Using Lemma 3.17 and (3.2.1) for m “ tn, we have the following corollary.

Corollary 3.18. For a partition λ of length at most tn, coretpλq is self-conjugate if and
only if

nipλq ` nt´1´ipλq “ 2n, 0 ď i ď

Z

t ´ 1
2

^

. (3.2.3)

Recall the definition of z-asymmetric partition from Definition 3.3. Let Pz be the set
of z-asymmetric partitions and Pz,t be the set of z-asymmetric t-cores.

Lemma 3.19. Let λ “ pα|βq be a partition of length at most m and rank r. Then the
following statements are equivalent.

1. λ P Pz.

2. an integer ξ between 0 and m´ z ´ 1 occurs in βpλq if and only if 2m´ z ´ 1 ´ ξ

does not.
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3. βpλq is obtained from the sequence pα1 `m, . . . , αr `m,m´ 1, . . . , 1, 0) by deleting
the numbers m´z´1´αr ą m´z´1´αr´1 ą ¨ ¨ ¨ ą m´z´1´α1 lying between
0 and m ´ 1.

Proof. First, note that λ P Pz if and only if λ is of the form

λ “ pα1 ` 1, . . . , αr ` r, r, . . . , r
loomoon

αr`z

, r ´ 1, . . . , r ´ 1
loooooooomoooooooon

αr´1´αr´1

, . . . , 1, . . . , 1
loomoon

α1´α2´1

q.

In that case, its beta set is

βpλq “ pα1 ` m, . . . , αr ` m,m ´ 1, . . . ,m ´ pαr ` zq
loooooooooooooomoooooooooooooon

αr`z

, {m ´ pαr ` z ` 1q,

m ´ pαr ` z ` 2q, . . . ,m ´ pαr´1 ` zq
looooooooooooooooooooooomooooooooooooooooooooooon

αr´1´αr´1

, {m ´ pαr´1 ` z ` 1q, . . . , {m ´ pα2 ` z ` 1q,

m ´ pα2 ` z ` 2q, . . . ,m ´ pα1 ` zq
loooooooooooooooooooooomoooooooooooooooooooooon

α1´α2´1

, {m ´ pα1 ` z ` 1q,m ´ pα1 ` z ` 2q, . . . , 0q,

where a hat on an entry denotes its absence from the tuple. So, Item 1 and Item 3 are
equivalent.

Clearly, Item 3 implies Item 2. Now suppose Item 2 holds. Observe that a part of
βpλq, λi `m´ i is greater than and equal to m if and only if λi is greater than and equal
to i. Thus there are r parts of βpλq greater than m. Since α1 `m ą ¨ ¨ ¨ ą αr `m are r
integers greater than and equal to m which occur in βpλq, Item 3 holds.

Lemma 3.20. For 2 ď t ď z ` 1, the empty partition is the only t-core in Pz,t.

Proof. Let λ “ pα|βq P Pz have rank r ą 0. Then

λ “ pα1 ` 1, . . . , αr ` r, r, . . . , r
loomoon

αr`z

, r ´ 1, . . . , r ´ 1
loooooooomoooooooon

αr´1´αr´1

, . . . , 1, . . . , 1
loomoon

α1´α2´1

q.

So, λr`i “ r, 1 ď i ď αr`z and λ1
r “ αr`r`z. If z ě t´1, then λr`αr`z´t`1 “ r. Hence,

the hook number hpr`αr`z´t`1, rq “ prq`pαr`r`zq´pr`αr`z´t`1q´prq`1 “ t,
which is a contradiction since λ is a t-core. So, λ must be empty.

Now we explain the constraints satisfied by nipλq, 0 ď i ď t ´ 1, for a z-asymmetric
t-core λ of length at most tn.
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Lemma 3.21. Let λ be a t-core of length at most tn and 0 ď z ď t ´ 2. Then λ P Pz,t

if and only if

nipλq ` nt´z´1´ipλq “2n for 0 ď i ď t ´ z ´ 1,
and nipλq “n, t ´ z ď i ď t ´ 1.

(3.2.4)

Proof. Suppose λ “ pα|α`zq and rkpλq “ r. Using Lemma 3.19(3), βpλq is obtained from
the sequence pα1`tn, . . . , αr`tn, tn´1, . . . , 1, 0) by deleting the numbers tn´z´1´αr ą

tn´z´1´αr´1 ą ¨ ¨ ¨ ą tn´z´1´α1. Since nipH, tnq “ n for all i, (3.2.4) trivially holds
for the empty partition. Note that if tn´z´1´αi ” θi pmod tq, then αi`tn ” t´z´1´θi

pmod tq for i P rrs. In that case nt´z´1´θi
pλq increases by one and nθi

pλq decreases by
one. Therefore, it is sufficient to show that θi P r0, t ´ z ´ 1s, for each i P rrs to prove
(3.2.4).

We prove this successively in reverse order starting from θr and going all the way
to θ1. Since λ is a t-core, if tn ´ z ´ 1 ´ αr does not occur in βpλq, then neither
does tn ´ z ´ 1 ´ αr ` t. Since tn ´ z ´ 1 ´ αr is the largest number deleted from
ptn ´ 1, tn ´ 2, . . . , 0q to get βpλq, tn ´ z ´ 1 ´ αr ` t ě tn. So, αr ` z ` 1 P rz ` 1, ts;
and θr P r0, t ´ z ´ 1s. There is nothing to show if θr´1 “ θr. So, assume θr´1 ‰ θr.
Similarly, since λ is a t-core, if tn ´ z ´ 1 ´ αr´1 does not occur in βpλq, then neither
does tn ´ z ´ 1 ´ αr´1 ` t. Since tn ´ z ´ 1 ´ αr´1 is the largest number congruent
to θr´1 deleted from ptn ´ 1, tn ´ 2, . . . , 0q to get βpλq, αr´1 ` z ` 1 P rz ` 1, ts and
θr´1 P r0, t ´ z ´ 1s. Proceeding in this manner, θi P r0, t ´ z ´ 1s for all i P rrs.

Conversely, assume (3.2.4) holds for λ. If λ is the empty partition, then it belongs to
Pz,t vacuously. Now suppose λ is non-empty and ti1, i2, . . . , ikuą Ă t0, 1, . . . , t ´ z ´ 1u

such that nij pλq ą n which implies nt´z´1´ij pλq ă n, j P rks. Since λ is a t´core, for
each j, ij ` tn ă ij ` tpn` 1q ă ¨ ¨ ¨ ă ij ` tpnij pλq ´ 1q are the parts of βpλq greater than
and equal to tn. If nt´z´1´ij pλq ă n for j P rks implies parts of βpλq less than and equal
to tn ´ 1 is obtained from the sequence ptn ´ 1, tn ´ 2, . . . , 0q by deleting the numbers

tn ´ z ´ 1 ´ ij, tpn ´ 1q ´ z ´ 1 ´ ij, . . . , tpnt´2´ij pλq ` 1q ´ z ´ 1 ´ ij.

Observe that an integer ξ between 0 and tn´z´1 occurs in βpλq if and only if 2tn´z´1´ξ

does not. So, by Lemma 3.19, λ P Pz,t.

Corollary 3.22. Let t ě 3 and λ be a partition of length at most tn. Then coretpλq is a
symplectic t-core if and only if nipλq`nt´2´ipλq “ 2n for 0 ď i ď

X

t´2
2

\

and nt´1pλq “ n.

Proof. Set z “ 1 in Lemma 3.21. This now follows using ℓpcoretpλqq ď ℓpλq ď tn and
(3.2.1) for m “ tn.
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Since coretpλq
1

“ coretpλ1q [77, Example I.1(e)], it follows that coretpλq is an orthog-
onal t-core if and only if coretpλ1q is a symplectic t-core. We then have the following
corollary.

Corollary 3.23. Let λ be a partition of length at most tn. Then coretpλq is an orthogonal
t-core if and only if n0pλq “ n and nipλq ` nt´ipλq “ 2n for 1 ď i ď

X

t
2

\

.

Proof. Suppose ℓpλ1q ď tm, for some m ě 1. Using Corollary 3.22 for λ1, coretpλq

is an orthogonal t-core if and only if nt´1pλ1q “ m and nipλ
1q ` nt´2´ipλ

1q “ 2m for
0 ď i ď

X

t´2
2

\

. Now using Lemma 3.17, we get the desired result.

For completeness, we note the following property of the t-quotient of orthogonal and
symplectic partitions, although we will not use it.

Proposition 3.24 ([41, Bijection 3]). Let λ be a partition. If

1. λp0q is an orthogonal partition,

2. coretpλq is an orthogonal t-core, and

3. pλpiqq1 “ λpt´iq for 1 ď i ď
X

t
2

\

,

then λ is orthogonal. A similar statement holds for symplectic partitions.

We now see how to compute the rank of a t-core from its beta-set.

Lemma 3.25. If λ is a t-core of length at most tn, then

rkpλq “

t´1
ÿ

i“0
pnipλq ´ nq`, (3.2.5)

where z` :“ maxpz, 0q.

Proof. If nipλq “ n for 0 ď i ď t ´ 1, then βpλq “ ptn ´ 1, tn ´ 2, . . . , 1, 0q which
implies λ is an empty partition. So, the result holds in this case. Otherwise, assume
ti1, i2, . . . , ikuą Ă t0, 1, . . . , t´ 1u such that nij pλq ą n for 1 ď j ď k. Since λ is a t-core,

ij ` tn ă ij ` tpn ` 1q ă ¨ ¨ ¨ ă ij ` tpnij pλq ´ 1q

are the parts of βpλq greater than tn ´ 1 for each j. If r is the number of parts of βpλq

greater than tn ´ 1, then

r “

k
ÿ

j“1
pnij pλq ´ nq “

t´1
ÿ

i“0
pnipλq ´ nq`.
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Moreover, βrpλq is the smallest part of βpλq greater than tn ´ 1 and is therefore equal
to ik ` tn. So, λr “ βrpλq ´ ptn ´ rq “ tn ` ik ´ ptn ´ rq “ ik ` r ě r and λr`1 ď

tn ´ 1 ´ ptn ´ r ´ 1q ď r, which implies the rank of λ is r.

Lemma 3.25 immediately tells us how to compute the rank of the t-core of a partition
using (3.2.1).

Corollary 3.26. If λ is a partition of length at most tn, then

rkpcoretpλqq “

t´1
ÿ

i“0
pnipλq ´ nq`.

Lemma 3.25 also gives us an algorithm to determine if a partition has empty t-core.

Corollary 3.27. If λ is a partition of length at most tn, then coretpλq is empty if and
only if nipλq “ n for 0 ď i ď t ´ 1.

Lemma 3.28. Let λ be a partition of length at most tn.

1. If coretpλq is a symplectic t-core, then

rkpcoretpλqq “

t t´3
2 u
ÿ

i“0
|nipλq ´ n| “

t´2
ÿ

i“t t´1
2 u

|nipλq ´ n|. (3.2.6)

2. If coretpλq is an orthogonal t-core, then

rkpcoretpλqq “

t t´1
2 u
ÿ

i“1
|nipλq ´ n|. (3.2.7)

3. If coretpλq is self-conjugate t-core, then

rkpcoretpλqq “

t t´2
2 u
ÿ

i“0
|nipλq ´ n|. (3.2.8)

Proof. Using Corollary 3.26,

rkpcoretpλqq “

t´1
ÿ

i“0
pnipλq ´ nq`.
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If coretpλq is a symplectic t-core, then by Corollary 3.22,

nt´1pλq “ n and nipλq ` nt´2´ipλq “ 2n for 0 ď i ď

Z

t ´ 2
2

^

.

If nipλq ą n for some i P t
X

t´3
2

\

` 1,
X

t´3
2

\

` 2, . . . , t ´ 2u, then nt´2´ipλq ă n and
nipλq ´ n “ n ´ nt´2´ipλq. Since t ´ 2 ´ i P t0, 1, . . . ,

X

t´3
2

\

u,

rkpcoretpλqq “

t t´3
2 u
ÿ

p“0
|nppλq ´ n|.

Using an argument analogous to the one just given as well as Corollary 3.23 and Corol-
lary 3.18, the proofs of (3.2.7) and (3.2.8) follow.

3.2.2 Determinant evaluations

Here, we will derive all the determinant evaluations we need to prove our character
identities. We will state them in the most general form possible.

Let λ be a partition with ℓpλq ď tn. Recall for 0 ď p ď t ´ 1, βppq

j pλq, 1 ď j ď nppλq

are the parts of βpλq congruent to p modulo t, arranged in decreasing order. In addition,
for q P Z Y pZ ` 1{2q, define n ˆ nppλq matrices

Aλp,q “

ˆ

x
β

ppq

j pλq`q

i

˙

1ďiďn
1ďjďnppλq

, Āλp,q “

ˆ

x̄
β

ppq

j pλq`q

i

˙

1ďiďn
1ďjďnppλq

. (3.2.9)

The corresponding matrices for the empty partition are denoted by

Ap,q “

´

x
tpn´jq`p`q
i

¯

1ďi,jďn
, Āp,q “

´

x̄
tpn´jq`p`q
i

¯

1ďi,jďn
. (3.2.10)

In all cases, whenever q “ 0, we will omit it. For example, we will write Aλp instead of
Aλp,0. Recall that the t-quotient of λ is given by quotpλq “ pλp0q, . . . , λpt´1qq and nppλq ď n

for 0 ď p ď t ´ 1. Then, using Proposition 2.3(2),

tβjpλ
ppq

q “ β
ppq

j pλq ´ p, 1 ď j ď n,

we write down alternate formulas for the classical characters. Recall thatX t “ pxt1, . . . , x
t
nq.

Using this notation, we see that the Schur polynomial is given by

sλppqpX t
q “

detAλp
detAp

, (3.2.11)



3.2. Background results 41

the symplectic character is given by

spλppqpX t
q “

det
`

Aλp,t´p ´ Āλp,t´p
˘

det
`

Ap,t´p ´ Āp,t´p
˘ , (3.2.12)

the odd orthogonal character is given by

soλppqpX t
q “

det
´

Aλ
p, t

2 ´p
´ Āλ

p, t
2 ´p

¯

det
´

Ap, t
2 ´p ´ Āp, t

2 ´p

¯ , (3.2.13)

and the even orthogonal character is given by

oeven
λppq pX t

q “
2 det

`

Aλp,´p ` Āλp,´p
˘

p1 ` δ
λ

ppq
n ,0q det

`

Ap,´p ` Āp,´p
˘ , (3.2.14)

using (2.4.3), (2.4.1) and (2.4.5) respectively.
We first express the Schur function in the variables X tYX

t occurring in our theorems.

Lemma 3.29. Let λ be a partition of length at most tn with quotpλq “ pλp0q, . . . , λpt´1qq.
If p, q P t0, 1, . . . , t ´ 1u such that nppλq ` nqpλq “ 2n, then we define ρp,q “ λ

ppq

1 `

pλpqq, 0, . . . , 0,´ revpλppqqq, where we pad 01s in the middle so that ρp,q is of length 2n.
Then the Schur function sρp,q pX t, X

t
q can be written as

sρp,q pX t, X
t
q “

p´1q
nppλqpnppλq´1q

2

p´1q
npn´1q

2

det

¨

˚

˝

Aλq,´q Āλp,t´p

Āλq,´q Aλp,t´p

˛

‹

‚

det

¨

˚

˝

Aq,´q Āp,t´p

Āq,´q Ap,t´p

˛

‹

‚

. (3.2.15)

Proof. We will think of the first nqpλq components of ρp,q as coming from λpqq and the
remaining as coming from λppq. Using the Schur polynomial expression (2.3.1), we see
that the numerator of sρp,q pX t, X

t
q is

det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

x
tpλ

ppq

1 `λ
pqq

j `2n´jq

i

˙

1ďiďn
1ďjďnqpλq

ˆ

x
tpλ

ppq

1 ´λ
ppq

2n`1´j`2n´jq

i

˙

1ďiďn
nqpλq`1ďjď2n

ˆ

x̄
tpλ

ppq

1 `λ
pqq

j `2n´jq

i

˙

1ďiďn
1ďjďnqpλq

ˆ

x̄
tpλ

ppq

1 ´λ
ppq

2n`1´j`2n´jq

i

˙

1ďiďn
nqpλq`1ďjď2n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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Multiplying row i in the top blocks and bottom blocks of the numerator by x̄tpλ
ppq

1 `nppλqq

i

and x
tpλ

ppq

1 `nppλqq

i respectively, for each i “ 1, 2, . . . , n and then reversing the last nppλq

columns, we see that the numerator equals

p´1q
nppλqpnppλq´1q

2 det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

x
β

pqq

j pλq´q

i

˙

1ďiďn
1ďjďnqpλq

ˆ

x̄
β

ppq

j pλq´p`t

i

˙

1ďiďn
1ďjďnppλq

ˆ

x̄
β

pqq

j pλq´q

i

˙

1ďiďn
1ďjďnqpλq

ˆ

x
β

ppq

j pλq´p`t

i

˙

1ďiďn
1ďjďnppλq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ p´1q
nppλqpnppλq´1q

2 det

¨

˚

˝

Aλq,´q Āλp,t´p

Āλq,´q Aλp,t´p

˛

‹

‚

.

(3.2.16)

Since nppH, tnqq “ nqpH, tnqq “ n and the denominator in the expression (2.3.1) is the
same as its numerator evaluated at the empty partition, we see that the denominator is

p´1q
npn´1q

2 det

¨

˚

˝

Aq,´q Āp,t´p

Āq,´q Ap,t´p

˛

‹

‚

.

Hence, (3.2.15) holds.

The next result shows that the role of p and q in these kind of Schur evaluations can
be interchanged.

Lemma 3.30. Using the same notation as in Lemma 3.29, we see that

sρp,q pX,Xq “ sρq,ppX,Xq.

Proof. Since x̄tiAλp,t´p “ Aλp,´p and xtiĀ
λ
p,t´p “ Āλp,´p, we observe

˜

0 x̄tiIn

xtiIn 0

¸

¨

˚

˝

Aλq,´q Āλp,t´p

Āλq,´q Aλp,t´p

˛

‹

‚

˜

0 Inqpλq

Inppλq 0

¸

“

¨

˚

˝

Aλp,´p Āλq,t´q

Āλp,´p Aλq,t´q

˛

‹

‚

,
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where Im is the m ˆ m identity matrix. Evaluating the determinant on both sides,

p´1q
n2 det

¨

˚

˝

Aλq,´q Āλp,t´p

Āλq,´q Aλp,t´p

˛

‹

‚

p´1q
nppλqnqpλq

“ det

¨

˚

˝

Aλp,´p Āλq,t´q

Āλp,´p Aλq,t´q

˛

‹

‚

.

Since

n2
`
nppλqpnppλq ´ 1q

2 ` nppλqnqpλq `
nqpλqpnqpλq ´ 1q

2 “ n2
` 2n2

´ n “ npn ´ 1q

is even, the sign cancels, and p and q can be interchanged.

The remaining results in this section deal with determinants of block matrices, which
will prove useful in evaluating the other classical characters. We note that we have not
found our identities in Krattenthaler’s treatises [67, 68].

Lemma 3.31. For i “ 1, . . . , k, let Ti be matrices of order ℓiˆmi such that ℓ1`¨ ¨ ¨`ℓk “

m1 ` ¨ ¨ ¨ ` mk “ d. Define block-diagonal and block-antidiagonal matrices

U :“

¨

˚

˚

˚

˚

˚

˝

T1

T2 0
. . .

0 Tk

˛

‹

‹

‹

‹

‹

‚

and V :“

¨

˚

˚

˚

˚

˚

˝

T1

0 T2

. .
.

Tk 0

˛

‹

‹

‹

‹

‹

‚

.

Then

detpUq “ p´1q
ř

1ďiăjďk mimj detpV q “

$

’

’

&

’

’

%

0 if ℓi ‰ mi for some i,
k
ź

i“1
detpTiq otherwise.

Proof. It is easy to see that if ℓi “ mi for all i, then

detpUq “

k
ź

i“1
detpTiq, detpV q “ p´1q

ř

1ďiăjďk mimj detpUq.

Now, assume Ti is not a square matrix for some i P rks. We use M t to denote
the transpose of a matrix M . Suppose first that ℓi ă mi. Then, since rank(T ti Tiq ď

rank(Tiq ď ℓi ăorder(T ti Ti), detpT ti Tiq “ 0. Therefore,

pdetUq
2

“ detU tU “

k
ź

j“1
detpT tjTjq “ 0,
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which implies detpUq “ 0, and thus detpV q “ 0. If ℓi ą mi, a similar calculation using
the rank of TiT ti yields the same result.

Lemma 3.32. Suppose u1, . . . , uk are positive integers summing up to kn. Further, let
pγi,jq1ďiďk,1ďjďk`1 be a matrix of parameters such that γi,k`1 “ γi,k, 1 ď i ď k and Γ be
the square matrix consisting of its first k columns. Let Uj and Vj be matrices of order
n ˆ uj for j P rks. Finally, define a kn ˆ kn matrix with k ˆ k blocks as

Π :“
ˆ

pγi,2j´1Uj ´ γi,2jVjq 1ďiďk
1ďjďt k`1

2 u
pγi,2k`2´2jUj ´ γi,2k`1´2jVjq 1ďiďk

t k`3
2 uďjďk

˙

.

1. If up ` uk`1´p ‰ 2n for some p P rks, then det Π “ 0.

2. If up ` uk`1´p “ 2n for all p P rks, then

det Π “ p´1q
Σ

pdet Γq
n

t k`1
2 u
ź

i“1
detWi, (3.2.17)

where

Wi “

$

’

’

’

&

’

’

’

%

¨

˝

Ui ´Vk`1´i

´Vi Uk`1´i

˛

‚ 1 ď i ď
X

k
2

\

,

´

U k`1
2

´ V k`1
2

¯

k odd and i “ k`1
2 ,

and

Σ “

t k
2 u
ÿ

i“1
pn ` uiq `

$

’

’

&

’

’

%

0 k even,

n

k´1
2
ÿ

i“1
ui k odd.

Proof. Consider the permutation ζ in Skn which rearranges the columns of Π blockwise
in the following order: 1, k, 2, k ´ 1, . . . . In other words, ζ can be written in one line
notation as

ζ “ p1, . . . , u1
looomooon

u1

, kn ´ uk ` 1, . . . , kn
looooooooooomooooooooooon

uk

,

u1 ` 1, . . . , u1 ` u2
loooooooooomoooooooooon

u2

, kn ´ uk ´ uk´1 ` 1, . . . , kn ´ uk
loooooooooooooooooooomoooooooooooooooooooon

uk´1

, . . . q.
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Then, the number of inversions of ζ is

invpζq “

k
ÿ

i“t k`3
2 u

uipkn´pu1 ` ¨ ¨ ¨ ` uk`1´iq ´ pui ` ¨ ¨ ¨ ` ukqq

“

t k
2 u
ÿ

i“1
uk`1´ipkn ´ pu1 ` ¨ ¨ ¨ ` uk`1´iq ´ pui ` ¨ ¨ ¨ ` ukqq.

(3.2.18)

Then it can be seen that

det Π “ sgnpζq det
´

γi,jUj2 ´ γi,j1Vj2

¯

1ďi,jďk
, (3.2.19)

where

j1
“ j ´ p´1q

j and j2
“

$

&

%

j`1
2 j odd,

k ` 1 ´
j
2 j even.

Now note that

´

γi,jUj2 ´ γi,j1Vj2

¯

1ďi,jďk
“

´

γi,jIn

¯

1ďi,jďk
ˆ

¨

˚

˚

˚

˚

˚

˚

˝

W1

W2 0
. . .

0 Wt k`1
2 u

˛

‹

‹

‹

‹

‹

‹

‚

.

Now, the matrix pγi,jInq1ďi,jďk can be written as a tensor product ΓbIn and therefore
detpγi,jInq1ďi,jďk “ pdet Γq

n. Therefore,

det
´

γi,jUj2 ´ γi,j1Vj2

¯

1ďi,jďk
“ pdet Γq

n det

¨

˚

˚

˚

˚

˚

˚

˝

W1

W2 0
. . .

0 Wt k`1
2 u

˛

‹

‹

‹

‹

‹

‹

‚

. (3.2.20)

If up ` uk`1´p ‰ 2n, for some p P r
X

k`1
2

\

s, then Wp is not a square matrix. Using
Lemma 3.31, we see that the latter determinant is zero, Hence, by (3.2.20) and (3.2.19),

det Π “ 0.

Now suppose up ` uk`1´p “ 2n, @ p P r
X

k`1
2

\

s. Then Wp is a square matrix @ p P r
X

k`1
2

\

s.
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So, by (3.2.20), we get,

det
´

γi,jUj2 ´ γi,j1Vj2

¯

1ďi,jďk
“ pdet Γq

n

t k`1
2 u
ź

i“1
detWi.

All that remains is to compute the sign. By (3.2.18), we get

invpζq “

t k
2 u
ÿ

i“1
p2n ´ uiqpkn ´ 2pk ´ i ´ 1qq.

Therefore, if k is even, then invpζq is even and sgnpζq is 1. If k is odd, then the only

contribution for sgnpζq comes from n

k´1
2
ÿ

i“1
ui, since other terms are even. Summing the

terms gives Σ, completing the proof.

3.3 Schur factorization

We first give a self-contained proof of Theorem 3.1, the result of Littlewood [74]. We
note that Littlewood’s strategy of proof is, although in a different language, essentially
the same as ours. Next, we consider the monomial symmetric functions with the spe-
cialization X,ωX, . . . , ωt´1X, where we recall that X “ px1, . . . , xnq and ω is a primitive
tth root of unity. Then we use the result to count the number of terms in the expansion
of ΘpZ{tZqn, where ΘpZ{tZq is the group determinant of the cyclic group Z{tZ. Finally,
we consider forgotten symmetric functions with the same specialization.

Proof of Theorem 3.1. Recall that λ has length at most tn. From the definition (2.3.1),
the desired Schur polynomial is

sλpX,ωX, . . . , ωt´1Xq “

det
ˆ

`

pωp´1xiq
βjpλq

˘

1ďiďn
1ďjďtn

˙

1ďpďt

det
ˆ

ppωp´1xiqtn´jq 1ďiďn
1ďjďtn

˙

1ďpďt

. (3.3.1)

Permuting the columns of the determinant in the numerator of (3.3.1) by σλ from (3.1.1),
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we see that the numerator of (3.3.1) is

sgnpσλq det
˜

´

pωp´1xiq
βσλpjqpλq

¯

1ďiďn
1ďjďtn

¸

1ďpďt

“ sgnpσλq det

¨

˝ωpp´1qpq´1q

ˆ

x
β

pq´1q

j pλq

i

˙

1ďiďn
1ďjďnq´1pλq

˛

‚

1ďp,qďt

“ sgnpσλq det
`

ωpp´1qpq´1qAλq´1
˘

1ďp,qďt
,

(3.3.2)

where Aλq´1 is defined in (3.2.9). Note that

`

ωpp´1qpq´1qAλq´1
˘

1ďp,qďt
“
`

ωpp´1qpq´1q
b In

˘

1ďp,qďt
ˆ

¨

˚

˚

˚

˚

˚

˝

Aλ0

Aλ1 0
0 . . .

Aλt´1

˛

‹

‹

‹

‹

‹

‚

,

where In is the n ˆ n identity matrix. Hence,

det
`

ωpp´1qpq´1qAλq´1
˘

1ďp,qďt

“

´

det
`

ωpp´1qpq´1q
˘

1ďp,qďt

¯n

ˆ det

¨

˚

˚

˚

˚

˚

˝

Aλ0

Aλ1 0
0 . . .

Aλt´1

˛

‹

‹

‹

‹

‹

‚

.
(3.3.3)

If coretpλq is not empty, then using Corollary 3.27, we see that nqpλq ‰ n for some
0 ď q ď t ´ 1. So, Aλq is not a square matrix for some 0 ď q ď t ´ 1. By Lemma 3.31,
det

`

ωpp´1qpq´1qAλq´1
˘

1ďp,qďt
“ 0 and hence

sλpX,ωX, . . . , ωt´1Xq “ 0.

If coretpλq is empty, then Corollary 3.27 shows that nqpλq “ n for all 0 ď q ď t ´ 1
and Aλq is a square matrix for all 0 ď q ď t ´ 1. Applying Lemma 3.31 again to (3.3.3),
we see that

det
`

ωpp´1qpq´1qAλq´1
˘

1ďp,qďt
“

´

det
`

ωpp´1qpq´1q
˘

1ďp,qďt

¯n t´1
ź

q“0
detAλq .
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Substituting in (3.3.2), we see that the numerator of (3.3.1) is

sgnpσλq

´

det
`

ωpp´1qpq´1q
˘

1ďp,qďt

¯n t´1
ź

q“0
detAλq . (3.3.4)

Evaluating (3.3.4) for the empty partition and using (3.1.2), we see that the denominator
of (3.3.1) is

p´1q
tpt´1q

2
npn`1q

2

´

det
`

ωpp´1qpq´1q
˘

1ďp,qďt

¯n t´1
ź

q“0
detAq. (3.3.5)

Substitution of the values (3.3.4) and (3.3.5) in (3.3.1) gives

sλpX,ωX, . . . , ωt´1Xq “ p´1q
tpt´1q

2
npn`1q

2 sgnpσλq

t´1
ź

q“0

detAλq
detAq

, (3.3.6)

where Aq is defined in (3.2.10). Hence, using (3.2.11) in (3.3.6) gives

sλpX,ωX, . . . , ωt´1Xq “ p´1q
tpt´1q

2
npn`1q

2 sgnpσλq

t´1
ź

i“0
sλpiqpX t

q,

completing the proof.

Now we consider the specialized monomial symmetric function evaluated at the ele-
ments X,ωX, . . . , ωt´1X, where we recall that X “ px1, . . . , xnq and ω is a primitive tth

root of unity.

Theorem 3.33. Let λ be a partition of length at most tn. Then the monomial symmetric
function mλpX,ωX, . . . , ωt´1Xq is given by

1. If |λ| ı 0 pmod tq, then

mλpX,ωX, . . . , ωt´1Xq “ 0. (3.3.7)

2. If |λ| ” 0 pmod tq, then

mλpX,ωX, . . . , ωt´1Xq

“p´1q
npn`1q

2
tpt´1q

2

¨

˚

˚

˝

ÿ

µĲλ,
coretpµq“H

sgnpσµqK´1
λ,µsµp0qpX t

q . . . sµpt´1qpX t
q

˛

‹

‹

‚

,

(3.3.8)

where Kλ,µ is the number of tableaux of shape λ and weight µ
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Proof of Theorem 3.33. Assume |λ| ı 0 pmod tq. If µ is a partition of size |λ|, then
coretpµq is non-empty and sµpX,ωX, . . . , ωt´1Xq “ 0. Recall, by (2.3.6), the desired
monomial symmetric function is

mλpX,ωX, . . . , ωt´1Xq “
ÿ

µĲλ

K´1
λ,µsµpX,ωX, . . . , ωt´1Xq, (3.3.9)

where Kλ,µ is the number of tableaux of shape λ and weight µ. This implies

mλpX,ωX, . . . , ωt´1Xq “ 0.

If |λ| ” 0 pmod tq, then using Theorem 3.1 in (3.3.9) completes the proof.

Theorem 3.34. Let λ be a partition of length at most tn. Then mλpX,ωX, . . . , ωt´1Xq “

0 if and only if |λ| ı 0 pmod tq.

Proof. Assume mλpX,ωX, . . . , ωt´1Xq “ 0. Then by (2.3.6), we have

ÿ

µĲλ

K´1
λ,µsµpX,ωX, . . . , ωt´1Xq “ 0. (3.3.10)

Since Kλ,µ ą 0 for all µ Ĳ λ, we have

sµpX,ωX, . . . , ωt´1Xq “ 0, for all µ Ĳ λ.

So, by Theorem 3.1, coretpµq is non-empty for all µ Ĳ λ. Since p1, . . . , 1q
loooomoooon

|λ|

is the smallest

partition in the dominance partial order, coretpp1, . . . , 1q
loooomoooon

|λ|

q is non-empty. Therefore, |λ| ı

0 pmod tq. Hence mλpX,ωX, . . . , ωt´1Xq “ 0 implies |λ| ı 0 pmod tq. The converse
follows from Theorem 3.33.

Remark 3.35. For a finite group G “ tg1, . . . , gnu, the group determinant ΘpGq of G
is defined as follows

ΘpGq :“
ÿ

σPSn

sgnpσqxg1g
´1
σp1q
xg2g

´1
σp2q

. . . xgng
´1
σpnq

.

Recently in [121], the authors gave an expression ([121, Theorem 3.2]) for ΘpZ{tZqn,
where the coefficient of xλ1

1 . . . xλn
n is mλp1, ω, . . . , ωtn´1q. Therefore by Theorem 3.34,

the number of terms in the expansion of ΘpZ{tZqn is the same as the number of partitions
λ of length tn such that |λ| ” 0 pmod tq and λi ď t for all i.
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A similar calculation as in the proof of Theorem 3.33 using (2.3.7) proves the following
result for the specialized forgotten symmetric functions.

Theorem 3.36. Let λ be a partition of length at most tn. Then the forgotten symmetric
function fλpX,ωX, . . . , ωt´1Xq is given by

1. If |λ| ı 0 pmod tq, then

fλpX,ωX, . . . , ωt´1Xq “ 0. (3.3.11)

2. If |λ| ” 0 pmod tq, then

fλpX,ωX, . . . , ωt´1Xq

“p´1q
npn`1q

2
tpt´1q

2

¨

˚

˚

˝

ÿ

µ$|λ|,
coretpµq“H

sgnpσµq pK´1Jqλ,µsµp0qpX t
q . . . sµpt´1qpX t

q

˛

‹

‹

‚

,

(3.3.12)

where Kλ,µ is the number of tableaux of shape λ and weight µ

3.4 Factorization of other classical characters

In this section, we will prove all the other classical character factorizations using results
from Section 3.2. We will give the most details for the symplectic case in Section 3.4.1
and will be a little more sketchy for the even orthogonal case in Section 3.4.2 and the
odd orthogonal case in Section 3.4.3. We will assume ℓpλq ď tn throughout this section.

3.4.1 Symplectic characters

We first recall the matrices Aλp,q and Āλp,q from (3.2.9). If
t´2
ÿ

i“0
nipλq “ pt ´ 1qn, then

consider the pt ´ 1qn ˆ pt ´ 1qn matrix

Π1 “
`

ωpqAλq´1,1 ´ ω̄pqĀλq´1,1
˘

1ďp,qďt´1 .

Substitution of Uj “ Aλj´1,1, Vj “ Āλj´1,1 for 1 ď j ď t ´ 1 and

γi,j “

$

&

%

ω
ipj`1q

2 j odd,

ω´
ij
2 j even,
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in Lemma 3.32 proves the following corollary.

Corollary 3.37. 1. If nipλq`nt´2´ipλq ‰ 2n for some i P r0,
X

t´2
2

\

s, then det Π1 “ 0.

2. If nipλq ` nt´2´ipλq “ 2n for all i P t0, 1, . . . ,
X

t´2
2

\

u, then

det Π1 “ p´1q
Σ1 pdetpγi,jq1ďi,jďt´1q

n

t t´1
2 u
ź

q“1
det

¨

˚

˝

Aq´1,1 Āt´q´1,1

Āq´1,1 At´q´1,1

˛

‹

‚

ˆ

$

&

%

det
´

A t
2 ´1,1 ´ Ā t

2 ´1,1

¯

t even,

1 t odd,
(3.4.1)

where

Σ1 “

t t´1
2 u
ÿ

q“1
pn ` nq´1pλqq `

$

’

’

&

’

’

%

n

t´2
2
ÿ

q“1
nq´1pλq t even,

0 t odd.

Proof of Theorem 3.5. Using the formula for symplectic characters in (2.4.3), we see that
the symplectic polynomial considered here is

spλpX,ωX, . . . , ωt´1Xq “

det
ˆ

`

pωpxiq
βjpλq`1 ´ pω̄px̄iq

βjpλq`1˘ 1ďiďn
1ďjďtn

˙

0ďpďt´1

det
ˆ

ppωpxiqtn´j`1 ´ pω̄px̄iqtn´j`1q 1ďiďn
1ďjďtn

˙

0ďpďt´1

. (3.4.2)

Since the denominator of the right hand side of (3.4.2) is the same as its numerator
evaluated at the empty partition, we compute the factorization for the numerator and use
that to get factorization for the denominator. Permuting the columns of the determinant
in the numerator of (3.4.2) by σλ from (3.1.1), we see that the numerator of (3.4.2) is

sgnpσλq det
˜

´

pωpxiq
βσλpjqpλq`1

´ pω̄px̄iq
βσλpjqpλq`1

¯

1ďiďn
1ďjďtn

¸

0ďpďt´1

“ sgnpσλq det

¨

˝

ˆ

ωppq`1qx
β

pqq

j pλq`1
i ´ ω̄ppq`1qx̄

β
pqq

j pλq`1
i

˙

1ďiďn
1ďjďnqpλq

˛

‚

0ďp,qďt´1

“ sgnpσλq det
`

ωppq`1qAλq,1 ´ ω̄ppq`1qĀλq,1
˘

0ďp,qďt´1 .

(3.4.3)

Applying the blockwise row operations R1 Ñ R1`R2`¨ ¨ ¨`Rt followed by Ri Ñ Ri´
1
t
R1,
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for 2 ď i ď t, we get

det
`

ωppq`1qAλq,1 ´ ω̄ppq`1qĀλq,1
˘

0ďp,qďt´1

“ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 . . . 0 tpAλt´1,1 ´ Āλt´1,1q

ωAλ0,1 ´ ωt´1Āλ0,1 . . . ωt´1Aλt´2,1 ´ ωĀλt´2,1 0

ω2Aλ0,1 ´ ωt´2Āλ0,1 . . . ωt´2Aλt´2,1 ´ ω2Āλt´2,1 0

...
. . .

...
...

ωt´1Aλ0,1 ´ ωĀλ0,1 . . . ωAλt´2,1 ´ ωt´1Āλt´2,1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
(3.4.4)

This is now a 2 ˆ 2 block determinant with anti-diagonal blocks. We apply Lemma 3.31,
for k “ 2 and d “ tn, to evaluate this determinant.

If coretpλq is not a symplectic t-core, then by Corollary 3.22, either nt´1pλq ‰ n or
nipλq ` nt´2´ipλq ‰ 2n for some i P

␣

0, 1, . . . ,
X

t´2
2

\(

. In the first case, i.e. if nt´1pλq ‰

n, then Lemma 3.31 shows the determinant is (3.4.4) is 0. If nt´1pλq “ n, then the
determinant in (3.4.4) is

p´1q
pt´1qn2

tn det
`

Aλt´1,1 ´ Āλt´1,1
˘

ˆ det
`

ωpqAλq´1,1 ´ ω̄pqĀλq´1,1
˘

1ďp,qďt´1 , (3.4.5)

using Lemma 3.31. Observe that the pt´ 1qnˆ pt´ 1qn block matrix of the determinant
in (3.4.5) is of the form Π1 in Corollary 3.37. Now if nipλq ` nt´2´ipλq ‰ 2n for some
i P

␣

0, 1, . . . ,
X

t´2
2

\(

, then the determinant in (3.4.5) is 0 by Lemma 3.32 and therefore,
in both cases,

spλpX,ωX, . . . , ωt´1Xq “ 0.

If coretpλq is a symplectic t-core, then by Corollary 3.22, nt´1pλq “ n and nipλq `

nt´2´ipλq “ 2n, i P
␣

0, 1, . . . ,
X

t´2
2

\(

. Using Corollary 3.37(2) in (3.4.5), we see that the
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determinant in the numerator of (3.4.2) is

sgnpσλqpp´1q
pt´1qntqn det

`

Aλt´1,1 ´ Āλt´1,1
˘

p´1q
Σ1pdetpγi,jq1ďi,jďt´1q

n

ˆ

t t´1
2 u
ź

q“1
det

¨

˚

˝

Aλq´1,1 Āλt´q´1,1

Āλq´1,1 Aλt´q´1,1

˛

‹

‚

ˆ

$

&

%

det
´

Aλt
2 ´1,1 ´ Āλt

2 ´1,1

¯

t even,

1 t odd.

(3.4.6)

We now simplify the 2 ˆ 2 block determinants. For 1 ď q ď
X

t´1
2

\

, multiplying row i in
the top blocks of the matrix by x̄qi and row i in the bottom blocks by xqi for each i P rns,
we get

det

¨

˚

˝

Aλq´1,1 Āλt´q´1,1

Āλq´1,1 Aλt´q´1,1

˛

‹

‚

“ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

x
β

pq´1q

j pλq`1´q

i

˙

1ďiďn
1ďjďnq´1pλq

ˆ

x̄
β

pt´1´qq

j pλq`1`q

i

˙

1ďiďn
1ďjďnt´1´qpλq

ˆ

x̄
β

pq´1q

j pλq`1´q

i

˙

1ďiďn
1ďjďnq´1pλq

ˆ

x
β

pt´1´qq

j pλq`1`q

i

˙

1ďiďn
1ďjďnt´1´qpλq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ det

¨

˚

˝

Aλq´1,1´q Āλt´q´1,q`1

Āλq´1,1´q Aλt´q´1,q`1

˛

‹

‚

.

(3.4.7)

Combining (3.4.6) and (3.4.7), we see that the numerator of (3.4.2) is given by

sgnpσλqpp´1q
pt´1qntqn det

`

Aλt´1,1 ´ Āλt´1,1
˘

p´1q
Σ1pdetpγi,jq1ďi,jďt´1q

n

ˆ

t t´1
2 u
ź

q“1
det

¨

˚

˝

Aλq´1,1´q Āλt´q´1,q`1

Āλq´1,1´q Aλt´q´1,q`1

˛

‹

‚

ˆ

$

&

%

det
´

Aλt
2 ´1,1 ´ Āλt

2 ´1,1

¯

t even,

1 t odd.
.

(3.4.8)

Evaluating (3.4.8) at the empty partition and using (3.1.2), we see that the denominator
of (3.4.2) is given by
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p´1q
tpt´1q

2
npn`1q

2 pp´1q
pt´1qntqn det

`

At´1,1 ´ Āt´1,1
˘

p´1q
Σ0

1pdetpγi,jq1ďi,jďt´1q
n

ˆ

t t´1
2 u
ź

q“1
det

¨

˚

˝

Aq´1,1´q Āt´q´1,q`1

Āq´1,1´q At´q´1,q`1

˛

‹

‚

ˆ

$

&

%

det
´

A t
2 ´1,1 ´ Ā t

2 ´1,1

¯

t even,

1 t odd,

(3.4.9)

where

Σ0
1 “

t t´1
2 u
ÿ

q“1
2n `

$

’

’

&

’

’

%

0 t odd,

n

t´2
2
ÿ

q“1
n t even.

For 0 ď i ď
X

t´3
2

\

, let µp1q

i “ λ
pt´2´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´2´iq
q
˘

. Since nipλq `

nt´2´ipλq “ 2n, Lemma 3.29 gives

s
µ

p1q

i
pX t, X

t
q “

p´1qp
nt´i´2pλq

2 q

p´1qpn
2q

det

¨

˚

˝

Aλi,´i Āλt´2´i,i`2

Āλi,´i Aλt´2´i,i`2

˛

‹

‚

det

¨

˚

˝

Ai,´i Āt´2´i,i`2

Āi,´i At´2´i,i`2

˛

‹

‚

. (3.4.10)

Now substitute (3.4.8) and (3.4.9) in (3.4.2), and then use (3.2.12) for p “ t´ 1, (3.2.13)
for p “ t

2 ´ 1 and (3.4.10) for 0 ď i ď
X

t´3
2

\

. The symplectic character is thus given by

spλpX,ωX, . . . , ωt´1Xq

“ p´1q
ϵ sgnpσλqspλpt´1qpX t

q

t t´3
2 u
ź

i“0
s
µ

p1q

i
pX t, X

t
q ˆ

$

&

%

so
λp

t
2 ´1qpX tq t even,

1 t odd,

where

ϵ “
tpt ´ 1q

2
npn ` 1q

2 `

t t´3
2 u
ÿ

q“0
pnqpλq ´ nq ˆ

$

&

%

n ` 1 t even

1 t odd

`

t t´3
2 u
ÿ

i“0

ˆ

npn ´ 1q

2 ´
nt´i´2pλqpnt´i´2pλq ´ 1q

2

˙

.
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It remains to compute the sign by simplifying the expression for ϵ. Since for 0 ď q ď
X

t´3
2

\

, nqpλq`nt´2´qpλq “ 2n, replacing nqpλq´n by n´nt´2´qpλq in the first summation
and then using the facts that pt´1qpt`1q

2
npn`1q

2 is even for odd t and the parity of npn`1q

2
pt2´2q

2

is the same as the parity of npn`1q

2 for odd t shows that ϵ has the same parity as

´

t t´3
2 u
ÿ

i“0

ˆ

nt´2´ipλq ` 1
2

˙

`

$

&

%

npn`1q

2 ` nr t even,

0 t odd,

“ ´

t´2
ÿ

i“t t
2 u

ˆ

nipλq ` 1
2

˙

`

$

&

%

npn`1q

2 ` nr t even,

0 t odd,

where r is the rank from Lemma 3.28(1). This completes the proof.

3.4.2 Even orthogonal characters

We first recall the matrices Aλp,q and Āλp,q from (3.2.9). If
t´1
ÿ

i“1
nipλq “ pt ´ 1qn, then

consider the pt ´ 1qn ˆ pt ´ 1qn block matrix

Π2 “
`

ωpqAλq ` ω̄pqĀλq
˘

1ďp,qďt´1 .

Substitution of Uj “ Aλj , Vj “ ´Āλj and for 1 ď j ď t ´ 1,

γi,j “

$

&

%

ω
ipj`1q

2 j odd ,

ω´
ij
2 j even ,

in Lemma 3.32 proves the following corollary.

Corollary 3.38. 1. If nipλq ` nt´ipλq ‰ 2n for some i P r
X

t
2

\

s, then det Π2 “ 0.

2. If nipλq ` nt´ipλq “ 2n for all i P r
X

t
2

\

s, then

det Π2 “ p´1q
Σ2 pdetpγi,jq1ďi,jďt´1q

n

t t´1
2 u
ź

q“1
det

¨

˚

˝

Aλq Āλt´q

Āλq Aλt´q

˛

‹

‚

ˆ

$

&

%

det
´

Aλt
2

` Āλt
2

¯

t even

1 t odd

(3.4.11)
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where

Σ2 “

$

’

’

&

’

’

%

n

t´2
2
ÿ

q“1
nqpλq t even,

0 t odd.

We now give a sketch of the proof of Theorem 3.9 following similar ideas as in the
proof of Theorem 3.5.

Proof of Theorem 3.9. Using the formula for even orthogonal characters is (2.4.5), we
see that desired polynomial is

oeven
λ pX,ωX, . . . , ωt´1Xq “

2 det
ˆ

`

pωp´1xiq
βjpλq ` pω̄p´1x̄iq

βjpλq
˘

1ďiďn
1ďjďtn

˙

1ďpďt

p1 ` δλtn,0q det
ˆ

ppωp´1xiqtn´j ` pω̄p´1x̄iqtn´jq 1ďiďn
1ďjďtn

˙

1ďpďt

.

(3.4.12)
After permuting the columns of the determinant in the numerator of (3.4.12) by σλ from
(3.1.1), we see that the numerator of (3.4.12) becomes

2 sgnpσλq det
`

ωpp´1qpq´1qAλq´1 ` ω̄pp´1qpq´1qĀλq´1
˘

1ďp,qďt
. (3.4.13)

By applying the block operation R1 Ñ R1 ` R2 ` ¨ ¨ ¨ ` Rt and then Ri Ñ Ri ´ 1
t
R1,

2 ď i ď t, we see that the numerator of (3.4.12) is

2 sgnpσλq det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Aλ0 ` Āλ0 0 . . . 0 0

0 ωAλ1 ` ωt´1Āλ1 . . . ωt´2Aλt´2 ` ω2Āλt´2 ωt´1Aλt´1 ` ωĀλt´1

0 ω2Aλ1 ` ωt´2Āλ1 . . . ωt´4Aλt´2 ` ω4Āλt´2 ωt´2Aλt´1 ` ω2Āλt´1

...
...

. . .
...

...

0 ωt´1Aλ1 ` ωĀλ1 . . . ω2Aλt´2 ` ωt´2Āλt´2 ωAλt´1 ` ωt´1Āλt´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

This is a 2 ˆ 2 block diagonal matrix.
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If coretpλq is not an orthogonal t-core, then by Corollary 3.23, either n0pλq ‰ n or
nipλq ` nt´ipλq ‰ 2n for some i P r

X

t
2

\

s. If n0pλq ‰ n, then the above determinant is 0
by Lemma 3.31. If n0pλq “ n, then the numerator of (3.4.12) is

2 sgnpσλqtn det
`

Aλ0 ` Āλ0
˘

det
´

`

ωpp´1qpq´1qAλq´1 ` ω̄pp´1qpq´1qĀλq´1
˘

2ďp,qďt

¯

. (3.4.14)

where the last determinant in (3.4.14) is the determinant of Π2, computed in Corol-
lary 3.38. If nipλq ` nt´ipλq ‰ 2n for some i P r

X

t
2

\

s, then this is 0 by Corollary 3.38(1).
In both cases,

oeven
λ pX,ωX, . . . , ωt´1Xq “ 0.

If coretpλq is an orthogonal t-core, then by Corollary 3.23, n0pλq “ n and nipλq `

nt´ipλq “ 2n, i P r
X

t
2

\

s. Using (3.4.14) and Corollary 3.38(2), we see that the numerator
of (3.4.12) is

2 sgnpσλqtn det
`

Aλ0 ` Āλ0
˘

detppγi,jq1ďi,jďt´1q
n
p´1q

Σ2

ˆ

t t´1
2 u
ź

q“1
det

¨

˚

˝

Aλq Āλt´q

Āλq Aλt´q

˛

‹

‚

ˆ

$

&

%

det
´

Aλt
2

` Āλt
2

¯

t even,

1 t odd.

(3.4.15)

The rest of the proof proceeds in almost complete analogy with the proof of Theo-
rem 3.5. Using (3.1.2) and the fact that λtn “ 0 if and only if λp0q

n “ 0, we see that the
denominator of (3.4.12) is

p´1q
tpt´1q

2
npn`1q

2 tnp1 ` δ
λ

p0q
n ,0q det

`

A0 ` Ā0
˘

detppγi,jq1ďi,jďt´1q
n
p´1q

Σ0
2

ˆ

t t´1
2 u
ź

q“1
det

¨

˚

˝

Aq,´q Āt´q,q

Āq,´q At´q,q

˛

‹

‚

ˆ

$

&

%

det
´

A t
2

` Ā t
2

¯

t even

1 t odd

(3.4.16)

where

Σ0
2 “

$

’

’

&

’

’

%

n

t´2
2
ÿ

q“1
n t even.

0 t odd.

Taking ratios, we see that one of the factors is exactly the even orthogonal character of
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λp0q and the i’th determinant in the product of (3.4.15) is calculated using

s
µ

p2q

i
pX t, X

t
q “

p´1q
nt´ipλqpnt´ipλq´1q

2

p´1q
npn´1q

2

det

¨

˚

˝

Aλi,´i Āλt´i,i

Āλi,´i Aλt´i,i

˛

‹

‚

det

¨

˚

˝

Ai,´i Āt´i,i

Āi,´i At´i,i

˛

‹

‚

, (3.4.17)

where µp2q

i “ λ
pt´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´iq
q
˘

. The only new part is the final deter-
minant, which is calculated using (3.2.14) and (2.4.8), and we get

det
´

Aλt
2

` Āλt
2

¯

det
´

A t
2

` Ā t
2

¯ “
oeven
λpt{2q`1{2pX tq

n
ź

i“1
px

t{2
i ` x̄

t{2
i q

“ p´1q
řn

i“1 λ
pt{2q

i soλpt{2qp´X t
q. (3.4.18)

Finally, the even orthogonal character is given by

oeven
λ pX,ωX, . . . , ωt´1Xq

“ p´1q
ϵ sgnpσλqoeven

λp0q pX t
q

t t´1
2 u
ź

i“1
s
µ

p2q

i
pX t, X

t
q ˆ

$

&

%

p´1q
řn

i“1 λ
pt{2q

i soλpt{2qp´X t
q t even,

1 t odd,

where

ϵ “
tpt ´ 1q

2
npn ` 1q

2 `

t t´1
2 u
ÿ

q“1
pnqpλq ´ nq ˆ

$

&

%

n t even

0 t odd

`

t t´1
2 u
ÿ

i“1

ˆ

npn ´ 1q

2 ´
nt´ipλqpnt´ipλq ´ 1q

2

˙

.

After similar simplifications, the parity of ϵ shown to be the same as

´

t´1
ÿ

i“t t`2
2 u

ˆ

nipλq

2

˙

`

$

&

%

npn`t´1q

2 ` nr t even,
pt´1qn

2 t odd,

where r is the rank by Lemma 3.28(2), completing the proof.
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3.4.3 Odd orthogonal characters

Recall the matrices Aλp,q and Āλp,q from (3.2.9). Consider the tn ˆ tn block matrix

Π3 “
`

ωpp´1qqAλq´1,1 ´ ω̄pp´1qpq´1qĀλq´1,0
˘

1ďp,qďt
.

Substitution of Uj “ Aλj´1,1, Vj “ Āλj´1,0 for 1 ď j ď t and

γi,j “

$

&

%

ω
pi´1qpj`1q

2 j odd

ω´
pi´1qpj´2q

2 j even

in Lemma 3.32 proves the following corollary.

Corollary 3.39. 1. If nipλq`nt´1´ipλq ‰ 2n for some i P r0,
X

t´1
2

\

s, then det Π3 “ 0.

2. If nipλq ` nt´1´ipλq “ 2n for all i P t0, 1, . . . ,
X

t´1
2

\

u, then

det Π3 “ pdetpγi,jq1ďi,jďtq
n
p´1q

Σ3

t t
2 u
ź

q“1
det

¨

˚

˝

Aλq´1,1 Āλt´q,0

Āλq´1,0 Aλt´q,1

˛

‹

‚

ˆ

$

&

%

det
´

Aλt´1
2 ,1 ´ Āλt´1

2 ,0

¯

t odd,

1 t even,

(3.4.19)

where

Σ3 “

t t
2 u
ÿ

q“1
pn ` nq´1pλqq `

$

’

’

&

’

’

%

n

t´1
2
ÿ

q“1
nq´1pλq t odd,

0 t even.

Proof of Theorem 3.11. Starting from the formula for the odd orthogonal character in
(2.4.1), we see that the desired polynomial is

soλpX,ωX, . . . , ωt´1Xq “

det
ˆ

`

pωp´1xiq
βjpλq`1 ´ pω̄p´1x̄iq

βjpλq
˘

1ďiďn
1ďjďtn

˙

1ďpďt

det
ˆ

ppωp´1xiqtn´j`1 ´ pω̄p´1x̄iqtn´jq 1ďiďn
1ďjďtn

˙

1ďpďt

. (3.4.20)

We again proceed as in the proof of Theorem 3.5. Permuting the columns of the deter-
minant in the numerator in (3.4.20) by the permutation σλ from (3.1.1), we see that the
numerator in (3.4.20) is

sgnpσλq det
`

ωpp´1qqAλq´1,1 ´ ω̄pp´1qpq´1qĀλq´1
˘

1ďp,qďt
, (3.4.21)
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where the last determinant in (3.4.14) is the determinant of Π2, computed in Corol-
lary 3.39. If coretpλq is not self-conjugate, then by Corollary 3.18, nipλq`nt´1´ipλq ‰ 2n
for some i P t0, 1, . . . ,

X

t´1
2

\

u. In that case, the determinant is 0 by Corollary 3.39(1).
Hence

soλpX,ωX, . . . , ωt´1Xq “ 0.

If coretpλq is self-conjugate, then by Corollary 3.18, nipλq ` nt´1´ipλq “ 2n for all
i P t0, 1, . . . ,

X

t´1
2

\

u. By Corollary 3.39(2), the numerator in (3.4.20) is

sgnpσλqpdetpγi,jq1ďi,jďtq
n
p´1q

Σ3

t t
2 u
ź

q“1
det

¨

˚

˝

Aλq´1,1 Āλt´q

Āλq´1 Aλt´q,1

˛

‹

‚̂

$

&

%

1 t even,

det
´

Aλt´1
2 ,1 ´ Āλt´1

2

¯

t odd.

(3.4.22)
We now evaluate the 2 ˆ 2 block determinant as follows: for 1 ď q ď

X

t
2

\

, we multiply
row i in the top blocks by x̄qi and row i in the bottom blocks by xq´1

i , for each i. We
then end up with

sgnpσλqpdetpγi,jq1ďi,jďtq
n
p´1q

Σ3

t t
2 u
ź

q“1

¨

˚

˝

x̄1x̄2 . . . x̄n det

¨

˚

˝

Aλq´1,1´q Āλt´q,q

Āλq´1,1´q Aλt´q,q

˛

‹

‚

˛

‹

‚

ˆ

$

&

%

1 t even,

det
´

Aλt´1
2 ,1 ´ Āλt´1

2

¯

t odd.

(3.4.23)

The denominator in (3.4.20) is therefore

p´1q
tpt´1q

2
npn`1q

2 pdetpγi,jq1ďi,jďtq
n
p´1q

Σ0
3

t t
2 u
ź

q“1

¨

˚

˝

x̄1x̄2 . . . x̄n det

¨

˚

˝

Aq´1,1´q Āt´q,q

Āq´1,1´q At´q,q

˛

‹

‚

˛

‹

‚

ˆ

$

&

%

1 t even,

det
´

A t´1
2 ,1 ´ Ā t´1

2

¯

t odd,

(3.4.24)

where

Σ0
3 “

t t
2 u
ÿ

q“1
2n `

$

’

’

&

’

’

%

n

t´1
2
ÿ

q“1
n t odd,

0 t even.

Taking ratios, we see that the block determinants are proportional to Schur functions
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using Lemma 3.29,

s
µ

p3q

i
pX t, X

t
q “

p´1q
nt´1´ipλqpnt´1´ipλq´1q

2

p´1q
npn´1q

2

det

¨

˚

˝

Aλi,´i Āλt´1´i,i`1

Āλi,´i Aλt´1´i,i`1

˛

‹

‚

det

¨

˚

˝

Ai,´i Āt´i,i

Āi,´i At´i,i

˛

‹

‚

, (3.4.25)

where µ
p3q

i “ λ
pt´1´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´1´iq
q
˘

. The last ratio of determinants
gives an odd orthogonal character. Finally, the odd orthogonal character is given by

soλpX,ωX, . . . , ωt´1Xq “ p´1q
ϵ sgnpσλq

t t´2
2 u
ź

i“0
s
µ

p3q

i
pX t, X

t
q ˆ

$

&

%

so
λp

t´1
2 qpX tq t odd,

1 t even,

where

ϵ “
tpt ´ 1q

2
npn ` 1q

2 `

t t´2
2 u
ÿ

q“0
pnqpλq ´ nq ˆ

$

&

%

n ` 1 t odd,

1 t even,

`

t t´2
2 u
ÿ

i“0

ˆ

npn ´ 1q

2 ´
nt´1´ipλqpnt´1´ipλq ´ 1q

2

˙

.

After similar simplifications, ϵ turns out to have the same parity as

´

t´1
ÿ

i“t t`1
2 u

ˆ

nipλq ` 1
2

˙

`

$

&

%

nr t odd

0 t even

where r is the rank by Lemma 3.28(3), completing the proof.

3.5 Generating functions

We now give enumerative results for z-asymmetric partitions defined in Definition 3.3.
We first recall that the q-Pochhammer symbol is given by

pa; qqm “

m´1
ź

j“0
p1 ´ aqjq, (3.5.1)
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so that pa; qq0 “ 1. We also define the limiting infinite product

pa; qq8 “

8
ź

j“0
p1 ´ aqjq. (3.5.2)

Many generating functions in the theory of partitions can be naturally expressed in
terms of q-Pochhammer symbols. For example, the generating function for all partitions
is 1{pq; qq8 and that of strict partitions is p´q; qq8.

Proposition 3.40. The number of z-asymmetric partitions of m is equal to the number
of partitions of m with distinct parts of the form 2k ` 1 ` z, k ě 0.

Proof. To prove the proposition, we construct a bijection from the set Pz to the set of
partitions of n with distinct parts of the form 2k ` 1 ` z, k ě 0. If λ “ pα|α ` zq is a
z-symmetric partition of rank r, then define µ of length r by µi “ 2αi ` z ` 1. Then all
the parts of µ are distinct and of the desired form. This map is clearly invertible.

Proposition 3.40 immediately gives an expression of the generating function for z-asymmetric
partitions.

Corollary 3.41. For z P Z,

ÿ

λPPz

q|λ|
“
ź

kě0
p1 ` qz`1`2k

q “ p´qz`1; q2
q8.

We now move on to enumerating z-asymmetric partitions which are also t-cores.
Recall from Lemma 3.20 that there are no nontrivial partitions if z ą t ´ 2.

Theorem 3.42. Let z ď t ´ 2. Represent elements of Zt t´z
2 u by pz0, . . . , zt t´z´2

2 uq and

define b P Zt t´z
2 u by b⃗i “ t ´ z ´ 1 ´ 2i. Then there exists a bijection ϕ : Pz,t Ñ Zt t´z

2 u

satisfying |λ| “ t} ⃗ϕpλq}2 ´ b⃗ ¨ ⃗ϕpλq, where ¨ represents the standard inner product.

Proof. Suppose λ P Pz,t, of length at most tn for some n ě 1. Define the map ϕ by

pϕpλqqi :“ nipλq ´ n, 0 ď i ď

Z

t ´ z ´ 2
2

^

.

Since n is not unique, it is not a priori clear that ϕ is well-defined. But from the definition
of nipλq, it is easy to see that nipλq ´ n “ nipλ, tn ` tq ´ n ´ 1. Hence, ϕpλq is indeed
well-defined.
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To show that ϕ is a bijection, we define the inverse of ϕ as follows. For a vector
v⃗ “

´

v0, v1, . . . , vt t´z´2
2 u

¯

, let n “ maxt|v0|, |v1|, . . . , |vt t´z´2
2 u|u and for 0 ď i ď t ´ 1,

mi “

$

’

’

’

&

’

’

’

%

n ` vi 0 ď i ď
X

t´z´2
2

\

,

n ´ vt´z´1´i

X

t´z`1
2

\

ď i ď t ´ z ´ 1,

n otherwise

.

By construction,
t´1
ÿ

i“0
mi “ tn, mi ` mt´z´1´i “ 2n for 0 ď i ď

X

t´z´1
2

\

, mi “ n for

t´ z ď i ď t´ 1. By Lemma 3.21, there is a unique t-core λ P Pz,t satisfying nipλq “ mi.
and we set ϕ´1pv⃗q “ λ. Moreover the size of λ is computed as

|λ| “

tn
ÿ

i“1
βipλq ´

tnptn ´ 1q

2 . (3.5.3)

Since λ is a t-core, tj ` i, 0 ď j ď nipλq ´ 1, 0 ď i ď t ´ 1 are the parts of βpλq (see
Proposition 2.3). So,

tn
ÿ

i“1
βipλq “

t´1
ÿ

i“0

ˆ

ipnipλqq `
nipλqpnipλq ´ 1qt

2

˙

“

t´1
ÿ

i“0
pipnipλq ´ nqq `

tnpt ´ 1q

2 `
t

2

t´1
ÿ

i“0
nipλq

2
´
t2n

2 .

Substituting this in (3.5.3), we get

|λ| “

t´1
ÿ

i“0
pipnipλq ´ nqq `

t

2

˜

t´1
ÿ

i“0
nipλq

2
´ tn2

¸

“

t´1
ÿ

i“0
pipnipλq ´ nqq `

t

2

t´1
ÿ

i“0
pnipλq ´ nq

2 .

Now observe that

⃗́b ¨ v⃗ “

t t´z´2
2 u
ÿ

i“0
pz ` 1 ´ t ` 2iqvi “

t t´z´2
2 u
ÿ

i“0
pz ` 1 ´ t ` 2iqpnipλq ´ nq.
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Since λ P Pz,t, using Lemma 3.21, we have

⃗́b ¨ v⃗ “

t´1
ÿ

i“0
i pnipλq ´ nq ,

t´1
ÿ

i“0
pnipλq ´ nq

2
“2

t t´z´2
2 u
ÿ

i“0
pnipλq ´ nq

2
“ 2}v⃗}

2.

Hence |λ| “ t}v⃗}2 ´ b⃗ ¨ v⃗, completing the proof.

Define the Ramanujan theta function [23, Equation (18.1)],

fpa, bq “

8
ÿ

n“´8

a
npn`1q

2 b
npn´1q

2 , (3.5.4)

which is related to the Jacobi theta function. We consider fpa, bq to be an element of the
ring of formal power series Zrra, bss. There are several nice identities satisfied by f . For
example, fpa, bq “ fpb, aq, fp1, aq “ 2fpa, a3q and fp´1, aq “ 0 [23, Chapter 16, Entry
18]. In addition, because of the Jacobi triple product identity, we have [23, Chapter 16,
Entry 19],

fpa, bq “ p´a; abq8p´b; abq8pab; abq8.

Let pz,tpmq be the cardinality of partitions in Pz,t of size m.

Corollary 3.43. For z ď t ´ 2, we have

ÿ

mě0
pz,tpmqqm “

tpt´z´2q{2u
ź

i“0
fpq2i`z`1, q2t´2i´z´1

q.

Proof. As a consequence of Theorem 3.42,

ÿ

mě0
pz,tpmqqm “

ÿ

v⃗PZt t´z
2 u

t t´z´2
2 u
ź

i“0
qtv

2
i ´pt´z´1´2iqvi

Rewriting the exponent and interchanging the order of summation, we see that the
generating function becomes

t t´z´2
2 u
ź

i“0

ÿ

viPZ

qp2i`z`1q
vipvi`1q

2 `p2t´2i´z´1q
vipvi´1q

2 “

tpt´z´2q{2u
ź

i“0
fpq2i`z`1, q2t´2i´z´1

q,

completing the proof.
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We remark that the special case of z “ 0 (i.e. self-conjugate t-cores) in Corollary 3.43
was obtained by Garvan–Kim–Stanton [41, Equations (7.1a) and (7.1b)]. Thus, our result
can be viewed as a generalization of theirs for symplectic and orthogonal partitions,
leading to an immediate proof of Theorem 3.15.
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Chapter 4

Factorization of universal characters
twisted by roots of unity

In this chapter, we give different proofs of the factorization results of other classical
characters (Theorem 3.5, Theorem 3.9 and Theorem 3.11) using the Jacobi–Trudi iden-
tities. Chen, Garsia and Remmel [28] gave an alternate proof of the Schur factorization
result (Theorem 3.1) based on the Jacobi–Trudi identity. Recently using a similar proof
strategy, Albion [2] lifted all the factorization results to the level of universal characters.
In Section 4.1, we prove some determinantal identities. We give alternate proofs of the
factorization results of other classical characters in Section 4.2.

4.1 Background results

For r P Z, define

urpx1, . . . , xnq “

n
ÿ

i“1

xn`r´1
i

śn
j“1, j‰ipxi ´ xjq

,

The following Lemma expresses urpx1, . . . , xnq in terms of the complete symmetric func-
tions. It is the q “ 1 case of classical Bernstein operator,

Brpx; qq “

n
ÿ

i“1

xn`r´1
i

śn
j“1, j‰ipxi ´ xjq

Tq,xi
,

where pTq,xi
fqpx1, . . . , xnq “ fpx1, . . . , xi´1, qxi, xi`1, . . . , xnq, which can be used to con-

struct the modified Hall–Littlewood polynomials [55].

67
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Lemma 4.1. For r P Z,

urpXq “

$

&

%

hrpXq r ą ´n,

p´1qn´1

x1...xn
h´r´npXq r ď ´n.

Given an n-tuple α “ pα1, . . . , αnqą P Zn, let

Vαpx1, . . . , xnq “ det
1ďi,jďn

´

x
αj`n´j
i

¯

and Uαpx1, . . . , xnq “ det
1ďi,jďn

puαi´i`jpXqq . (4.1.1)

Remark 4.2. If α is a partition, then Uαpx1, . . . , xnq “ sαpx1, . . . , xnq.

Theorem 4.3. For an n-tuple α “ pα1, . . . , αnqą P Zn,

Uαpx1, . . . , xnq “
Vαpx1, . . . , xnq

V0px1, . . . , xnq
.

Proof. We note that urpx1, . . . , xn´1q “ urpx1, . . . , xnq ´ xnur´1px1, . . . , xnq. The proof
of the theorem follows from the similar ideas as in [16, Theorem 2] with Hkpx1, . . . , xnq

replaced by Uα.

Corollary 4.4. For k P Z, we have

Uα`kpx1, . . . , xn, x̄1, . . . , x̄nq “ Uαpx1, . . . , xn, x̄1, . . . , x̄nq.

Lemma 4.5. Let λ be a partition of length at most tn. If p, q P t0, 1, . . . , t´1u such that
nppλq `nqpλq “ 2n, then we define ρp,q “ λ

ppq

1 ` pλpqq, 0, . . . , 0,´ revpλppqqq, where we pad
01s in the middle so that ρp,q is of length 2n. Then the Schur function sρp,q pX t, X

t
q can

be written as

sρp,q pX t, X
t
q

“
p´1q

nppλqpnppλq`1q

2

p´1q
npn`1q

2
det

¨

˚

˚

˚

˚

˚

˚

˝

phβipλpqqq´n`jpX,Xqq1ďiďnq

1ďjďn
phβipλpqqq´n´j`1pX,Xqq1ďiďnq

1ďjďn

phβipλppqq´n´j`1pX,Xqq1ďiďnp

1ďjďn
phβipλppqq´n`jpX,Xqq1ďiďnp

1ďjďn

˛

‹

‹

‹

‹

‹

‹

‚

.

(4.1.2)

Corollary 4.6.
λ

ppq

1 ` βipλ
pqq

q ´ nq ` j´λ
ppq

1 ´ np
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´pλ
ppq

1 ´ β
ppq

np`1´ipλq ´ np ` j ´ 1q ` pλ
ppq

1 ´ npq

det

¨

˚

˚

˚

˚

˚

˚

˝

ph
λ

ppq

1 `βipλpqqq´nq`j
pX,Xqq1ďiďnq

1ďjďn
ph

λ
ppq

1 `βipλpqqq´nq`n`j`1pX,Xqq1ďiďnq

1ďjďn

ph
λ

ppq

1 ´β
ppq

np`1´ipλq´np`j´1pX,Xqq1ďiďnp

1ďjďn
ph

λ
ppq

1 ´β
ppq

np`1´ipλq´np`j`n´1pX,Xqq1ďiďnp

1ďjďn

˛

‹

‹

‹

‹

‹

‹

‚

.

Proof. Using Lemma 4.1, we note that

Ur :“ urpX,Xq “

$

&

%

hrpX,Xq r ą ´2n,

´h´r´2npX,Xq r ď ´2n.
(4.1.3)

Since the complete symmetric functions in the determinant in the right hand side of
(4.1.2) are indexed by integers greater than ´2n, using (4.1.3), we see that the determi-
nant in right hand side of (4.1.2) is

det

¨

˚

˚

˚

˚

˚

˚

˝

pUβipλpqqq´n`jq1ďiďnq

1ďjďn
pUβipλpqqq´n´j`1q1ďiďnq

1ďjďn

pUβipλppqq´n´j`1q1ďiďnp

1ďjďn
pUβipλppqq´n`jq1ďiďnp

1ďjďn

˛

‹

‹

‹

‹

‹

‹

‚

.

Substitution of Ur “ ´U´r´2n, r ě ´2n in bottom blocks gives

det

¨

˚

˚

˚

˚

˚

˚

˝

pUβipλpqqq´n`jq1ďiďnq

1ďjďn
pUβipλpqqq´n´j`1q1ďiďnq

1ďjďn

p´U´βipλppqq´n`j´1q1ďiďnp

1ďjďn
p´U´βipλppqq´n´jq1ďiďnp

1ďjďn

˛

‹

‹

‹

‹

‹

‹

‚

.

Applying Cj Ø Cn`j, for all j P rns, we get

p´1q
n det

¨

˚

˚

˚

˚

˚

˚

˝

pUβipλpqqq´n´j`1q1ďiďnq

1ďjďn
pUβipλpqqq´n`jq1ďiďnq

1ďjďn

p´U´βipλppqq´n´jq1ďiďnp

1ďjďn
p´U´βipλppqq´n`j´1q1ďiďnp

1ďjďn

˛

‹

‹

‹

‹

‹

‹

‚

.
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Reversing the last np rows and then the first n columns, we have

p´1q
nppnp`1q

2

p´1q
npn`1q

2
det

¨

˚

˚

˚

˚

˚

˚

˝

pUβipλpqqq´2n`jq1ďiďnq

1ďjďn
pUβipλpqqq´n`jq1ďiďnq

1ďjďn

pU´βnp`1´ipλppqq´2n`j´1q1ďiďnp

1ďjďn
pU´βnp`1´ipλppqq´n`j´1q1ďiďnp

1ďjďn

˛

‹

‹

‹

‹

‹

‹

‚

.

Using (4.1.1) and then by Corollary 4.4, we see that the determinant is

p´1q
nppnp`1q

2

p´1q
npn`1q

2
Upλpqq´np,0,...,0,´ revpλppqq´npqpX,Xq

“
p´1q

nppnp`1q

2

p´1q
npn`1q

2
U
λ

ppq

1 `pλpqq,0,...,0,´ revpλppqqq
pX,Xq.

Using Remark 4.2 completes the proof.

Lemma 4.7. For a partition of length at most n, the odd orthogonal character soλpXq

is given by

soλpXq “ det
`

hβipλq´n`jpX,Xq ` hβipλq´n´j`1pX,Xq
˘

1ďi,jďn
.

Proof. Using (2.4.9), we see that the odd orthogonal character is

soλpXq “ det
`

hλi´i`jpX,X, 1q ´ hλi´i´jpX,X, 1q
˘

1ďi,jďn

“ det
˜

λi´i`j
ÿ

p“0
hppX,Xq ´

λi´i´j
ÿ

p“0
hppX,Xq

¸

1ďi,jďn

“ det
˜

λi´i`j
ÿ

p“λi´i´j`1
hppX,Xq

¸

1ďi,jďn

.

(4.1.4)

Applying Cj ´ Cj´1 for 2 ď j ď n, we get the required expression.

Corollary 4.8. For a partition of length at most n, the odd orthogonal character soλp´Xq

is given by

soλp´Xq “ p´1q
ř

i λi det
`

hβipλq´n`jpX,Xq ´ hβipλq´n´j`1
˘

1ďi,jďn
pX,Xq.

Lemma 4.9. Let λ be a partition of length at most tn and βi “ tn´ i. Fix 0 ď z ď t´ 1

and 0 ď y ď
X

t´z´1
2

\

. Assume
t´1´z´y
ÿ

i“y

ni “ pt´z´2yqn. Define a pt´z´2yqnˆpt´z´2yqn
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matrix with pt ´ z ´ 2yq ˆ pt ´ z ´ 2yq blocks as

Π˘ :“

˜

´

H 1

β
ppq

i pλq´βjt´q
˘H 1

β
ppq

i pλq`βjt´q´2tn`z`1

¯

1ďiďnp

1ďjďn

¸

yďp,qďt´z´1´y

,

where H 1
m “ hmpX,ωX, . . . , ωt´1X,X, ωX, . . . , ωt´1Xq.

1. If np ` nt´z´1´p ­“ 2n for some p P ry,
X

t´z´1
2

\

s, then det Π “ 0.

2. If np ` nt´z´1´p “ 2n for all p P ry,
X

t´z´1
2

\

s, then

det Π`
“ p´1q

ϵ`

t t´z´2
2 u
ź

i“y

s
µ

pzq

i
pX t, X

t
q ˆ

$

&

%

so
λp

t´z´1
2 qpX tq t ´ z odd,

1 t ´ z even,

and

det Π´
“ p´1q

ϵ´

t t´z´2
2 u
ź

i“y

s
µ

pzq

i
pX t, X

t
qˆ

$

&

%

p´1q
ř

i λ
pt´z´1{2q

i so
λp

t´z´1
2 qp´X tq t ´ z odd,

1 t ´ z even,

where

ϵ˘
“

t´z´y´1
ÿ

i“t t´z`1
2 u

ˆ

nipλqpnipλq˘1q

2 ´
npn˘1q

2

˙

`

$

’

’

&

’

’

%

n
t´z´y´1
ÿ

i“ t´z`1
2

pni ´ nq t ´ z odd,

0 t ´ z even,

and µpzq

i “ λ
pt´z´1´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´z´1´iq
q
˘

has 2n parts.

Proof. Consider the permutations ζ and η in Spt´z´2yqn which rearranges the columns and
rows of Π˘ respectively, blockwise in the following order: 1, t´z´2y, 2, t´z´2y´1, . . . .
In other words, ζ and η can be written in one line notation as

ζ “ p1, . . . , ny
looomooon

ny

, pt ´ z ´ 2yqn ´ nt´z´y´1 ` 1, . . . , pt ´ z ´ 2yqn
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

nt´z´y´1

, ny ` 1, . . . , ny ` ny`1
loooooooooooomoooooooooooon

ny`1

,

pt ´ z ´ 2yqn ´ nt´z´y´1 ´ nt´z´y´2 ` 1, . . . , pt ´ z ´ 2yqn ´ nt´z´y´1
loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

nt´z´y´2

, . . . q
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and η “ p1, . . . , n
looomooon

n

, pt ´ z ´ 2y ´ 1qn ` 1, . . . , pt ´ z ´ 2yqn
looooooooooooooooooooooooomooooooooooooooooooooooooon

n

,

n ` 1, . . . , 2n
loooooomoooooon

n

, pt ´ z ´ 2y ´ 2qn ` 1, . . . , pt ´ z ´ 2y ´ 1qn
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

n

, . . . q.

Then, the number of inversions of ζ and η is

invpζq “

t´z´y
ÿ

i“t t´z`3
2 u

ni´1ppt´z´2yqn´pny`¨ ¨ ¨`nt´z´iq´pni´1 `¨ ¨ ¨`nt´z´y´1qq (4.1.5)

and

invpηq “

t´z´y
ÿ

i“t t´z`3
2 u

n2
p2i ´ 2 ´ t ` zq. (4.1.6)

Then permuting the columns and rows of Π by ζ and η respectively and then using
Theorem 2.6, it can be seen that

det Π˘
“ sgnpζq sgnpηq

¨

˚

˚

˚

˚

˚

˚

˝

W˘
y

W˘
y`1 0

. . .

0 W˘

t t´z´1
2 u

˛

‹

‹

‹

‹

‹

‹

‚

, (4.1.7)

where

W˘
s “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˜

h
β

psq

i
pλq´βjt´s

t

pX,Xq

¸

1ďiďns
1ďjďn

˜

˘H
β

psq

i
pλq`βpj´1qt`s`z`1´2tn`z`1

t

¸

1ďiďns
1ďjďn

˜

˘H
β

pt´z´1´sq

i
pλq`βjt´s´2tn`z`1q

t

¸

1ďiďnt´z´1´s
1ďjďn

˜

H
β

pt´z´1´sq

i
pλq´βpj´1qt`s`z`1

t

¸

1ďiďnt´z´1´s
1ďjďn

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and

W˘
t´z´1

2
“

¨

˚

˝

H
β
p t´z´1

2 q
i

pλq´β
jt´

t´z´1
2

t

˘H
β
p t´z´1

2 q
i

pλq`β
jt´

t´z´1
2

´2tn`z`1

t

˛

‹

‚

.

Using Proposition 2.3 to simplify indices of complete symmetric functions in the above
matrices, we have
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W˘
s “

¨

˚

˚

˚

˚

˚

˝

`

Hβipλpsqq´n`j

˘

1ďiďns
1ďjďn

`

˘Hβipλpsqq´n´j`1
˘

1ďiďns
1ďjďn

`

˘Hβipλpt´z´1´sqq´n´j`1
˘

1ďiďnt´z´1´s
1ďjďn

`

Hβipλpt´z´1´sqq´n`j

˘

1ďiďnt´z´1´s
1ďjďn

˛

‹

‹

‹

‹

‹

‚

and

W˘
t´z´1

2
“

¨

˝H
βi

˜

λp
t´z´1

2 q
¸

´n`j
˘H

βi

˜

λp
t´z´1

2 q
¸

´n´j`1

˛

‚.

If ns ` nt´z´1´s ­“ 2n for some s P ry,
X

t´z´1
2

\

s, then W˘
s is not a square matrix. This

implies
det Π˘

“ 0.

If ns `nt´z´1´s “ 2n for all s P ry,
X

t´z´1
2

\

s, then applying Cj Ø Cn`j for all j P rns and
then using Lemma 4.5, we see that

detW˘
s “

p´1q
nt´z´1´spλqpnt´z´1´spλq˘1q

2

p´1q
npn˘1q

2

s
µ

pzq
s

pX t, X
t
q, (4.1.8)

where µpzq
s “ λ

pt´z´1´sq

1 `
`

λpsq, 0, . . . , 0,´ revpλpt´z´1´sq
q
˘

, y ď s ď
X

t´z´2
2

\

. Using
Lemma 4.7 and , we have

detW`
t´z´1

2
“ so

λp
t´z´1

2 qpX t
q, detW´

t´z´1
2

“ p´1q
ř

i λ
pt´z´1{2q

i so
λp

t´z´1
2 qp´X t

q. (4.1.9)

Substituting (4.1.8) and (4.1.9) in (4.1.7), we see that

det Π˘
“ sgnpζq sgnpηq

t t´z´2
2 u
ź

i“y

p´1q
nt´z´1´ipλqpnt´z´1´ipλq˘1q

2

p´1q
npn˘1q

2
s
µ

pzq

i
pX t, X

t
q

ˆ

$

&

%

detW˘
t´z´1

2
t ´ z odd,

1 t ´ z even.

All that remains is to compute the sign. By (4.1.5) and (4.1.6), we get

invpζq ´ invpηq “

t´z´y´1
ÿ

i“t t´z`1
2 u

pni ´ nqp2i ´ 2 ´ t ` zqn
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Therefore, if t ´ z is even, then invpζq ´ invpηq is even and sgnpζq sgnpηq is 1. If t ´ z

is odd, then the only contribution for sgnpζq sgnpηq comes from n
t´z´y´1
ÿ

i“ t´z`1
2

pni ´ nq, since

other terms are even. Substituting the terms completes the proof.

4.2 Factorization of other classical characters

Proof of Theorem 3.5. Using the Jacobi–Trudi identity (2.4.10) for the symplectic char-
acters, we see that the desired symplectic character is

spλpX,ωX, . . . , ωt´1Xq

“ det
´

H 1
λi´i`1 H 1

λi´i`2 ` H 1
λi´i . . . H 1

λi´i`tn ` H 1
λi´i´tn`2

¯

1ďiďtn

“ det
´

H 1
βipλq´β1

H 1
βipλq´β2

` H 1
βipλq`β2´2tn`2 . . . H 1

βipλq´βtn
` H 1

βipλq`βtn´2tn`2

¯

1ďiďtn
,

where H 1
m “ hmpX,ωX, . . . , ωt´1X,X, ωX, . . . , ωt´1Xq and βi “ tn ´ i. Permuting

the rows and the columns of the determinant by σλ and σH from (6.1.3) and (6.1.4),
respectively and then using (2.2.9), we see that the symplectic character is

sgnpσλq sgnpσHq det

¨

˝

Ppt´1qnˆ
řt´2

i“0 nipλq 0

0 Qnˆnt´1pλq

˛

‚, (4.2.1)

where

P “

˜

´

H 1

β
ppq

i pλq´βjt´q
` H 1

β
ppq

i pλq`βjt´q´2tn`2

¯

1ďiďnp

1ďjďn

¸

0ďp,qďt´2

and

Q “

ˆ

H 1

β
pt´1q

i pλq´β1

ˆ

H 1

β
pt´1q

i pλq´βpj´1qt`1
` H 1

β
pt´1q

i pλq`βpj´1qt`1´2tn`2

˙

2ďjďn

˙

1ďiďnt´1

.

(4.2.2)
If coretpλq is not a symplectic t-core, then by Corollary 3.22, either nt´1pλq ‰ n or
nipλq ` nt´2´ipλq ‰ 2n for some i P r0,

X

t´2
2

\

s. In the first case, i.e. if nt´1pλq ‰ n, then
by (4.2.1),

spλpX,ωX, . . . , ωt´1Xq “ 0.
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In the second case, if ni ` nt´2´i ‰ 2n, for some i P r0,
X

t´2
2

\

s, then using Lemma 4.9 for
y “ 0 and z “ 1, detP is zero. Hence,

spλpX,ωX, . . . , ωt´1Xq “ 0.

Now suppose ni ` nt´2´i “ 2n, @ i P r0,
X

t´2
2

\

s. Then using Lemma 4.9 for y “ 0 and
z “ 1, detP is

detP “ p´1q
ϵ1

t t´3
2 u
ź

i“0
s
µ

pzq

i
pX t, X

t
q ˆ

$

&

%

so
λp

t´2
2 qpX tq t even,

1 t odd,
(4.2.3)

where

ϵ1
“

t´2
ÿ

i“t t
2 u

ˆ

nipλqpnipλq ` 1q

2 ´
npn ` 1q

2

˙

`

$

’

’

&

’

’

%

n
t´2
ÿ

i“ t
2

pni ´ nq t even,

0 t odd,

and µp1q

i “ λ
pt´2´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´2´iq
q
˘

has 2n parts for 0 ď i ď
X

t´3
2

\

. Using
Proposition 2.3, we have

λ
pt´1q

i ´ i ` j “
1
t

pβ
pt´1q

i pλq ´ βpj´1qt`1q (4.2.4)

and
λ

pt´1q

i ´ i ´ j “
1
t

pβ
pt´1q

i pλq ´ βpj´1qt`1 ´ 2tpj ´ 1qq. (4.2.5)

Using (2.2.9) and then Substituting (4.2.4) and (4.2.5) in (4.2.2), we see that the deter-
minant of Q is

detQ

“ det
´

h
λ

pt´1q

i ´i`1pX,Xq

´

h
λ

pt´1q

i ´i`j
pX,Xq ` h

λ
pt´1q

i ´i´j`2pX,Xq

¯

2ďjďn

¯

“spλpt´1qpX t
q.

(4.2.6)

Substituting (4.2.3) and (4.2.6) in (4.2.1) gives the desired symplectic character (3.1.6)
and

ϵ “
tpt ´ 1q

2
npn ` 1q

2 `

t´2
ÿ

i“t t
2 u

ˆ

nipλqpnipλq ` 1q

2 ´
npn ` 1q

2

˙

`

$

’

’

&

’

’

%

n
t´2
ÿ

i“ t
2

pni ´ nq t even,

0 t odd,
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Now to compute the sign, we simplify the expression for ϵ. Since pt´1qpt`1q

2
npn`1q

2 is even
for odd t and the parity of npn`1q

2
pt2´2t`2q

2 is the same as the parity of npn`1q

2 for even t,
ϵ has the same parity as

´

t´2
ÿ

i“t t
2 u

ˆ

nipλq ` 1
2

˙

`

$

&

%

npn`1q

2 ` nr t even,

0 t odd,

where r is the rank from (3.2.6). This completes the proof.

For the even orthogonal characters, we have G “ O2tn, the orthogonal group of
p2tnq ˆ p2tnq square matrices.

Proof of Theorem 3.9. Using the Jacobi–Trudi identity (2.4.11) for the even orthogonal
characters, the required even orthogonal character is

oeven
λ pX,ωX, . . . , ωt´1Xq “ det

`

H 1
λi´i`j ´ H 1

λi´i´j

˘

1ďi,jďtn

“ det
´

H 1
βipλq´βj

´ H 1
βipλq`βj´2tn

¯

1ďi,jďtn
,

(4.2.7)

where H 1
m “ hmpX,ωX, . . . , ωt´1X,X, ωX, . . . , ωt´1Xq and βj “ tn ´ j. Permuting the

rows and columns of the determinant by σλ and σH from (6.1.3) and (6.1.4) respectively
and then using (2.2.9), we see that the even orthogonal character is

sgnpσλq sgnpσHq det

¨

˝

P1ďiďn0pλq
1ďjďn

0

0 Qpt´1qnˆ
řt´1

i“1 nipλq

˛

‚,

where
P “

´

H 1

β
p0q

i pλq´βtj
´ H 1

β
p0q

i pλq`βtj´2tn

¯

1ďiďn0pλq

1ďjďn

and

Q “

˜

´

H 1

β
ppq

i pλq´βtj´q
´ H 1

β
ppq

i pλq`βtj´q´2tn

¯

1ďiďnppλq

1ďjďn

¸

1ďp,qďt´1

.

If coretpλq is not an orthogonal t-core, then by Corollary 3.23, either n0pλq ‰ n or
nipλq ` nt´ipλq ‰ 2n for some i P

␣

1, . . . ,
X

t
2

\(

. In the first case, i.e. if n0pλq ‰ n, then

oeven
λ pX,ωX, . . . , ωt´1Xq “ 0.

In the second case, if ni ` nt´i ‰ 2n, for some i P r
X

t
2

\

s, then using Lemma 4.9 for y “ 1
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and z “ ´1, detQ is zero. Hence,

oeven
λ pX,ωX, . . . , ωt´1Xq “ 0.

If coretpλq is not an orthogonal t-core, then by Corollary 3.23, ni `nt´i “ 2n, @ i P r
X

t
2

\

s.
Then using Lemma 4.9 for y “ 1 and z “ ´1, detQ is

detQ “ p´1q
ϵ

t t´1
2 u
ź

i“1
s
µ

p2q

i
pX t, X

t
q ˆ

$

&

%

p´1q
ř

i λ
pt{2q

i so
λp

t
2 qp´X tq t even,

1 t odd,

where

ϵ “

t´1
ÿ

i“t t`2
2 u

ˆ

nipλqpnipλq ´ 1q

2 ´
npn ´ 1q

2

˙

`

$

’

’

&

’

’

%

n
t´1
ÿ

i“ t`2
2

pni ´ nq t even,

0 t odd,

and µ
p2q

i “ λ
pt´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´iq
q
˘

has 2n parts for 1 ď i ď
X

t´1
2

\

. Using
Proposition 2.3, we have

λ
p0q

i ´i`j “ λ
p0q

i `n´i´n`j “
1
t

pβ
p0q

i q´n`j “
1
t

pβ
p0q

i ´tn`tjq “
1
t

pβ
pt´1q

i ´βtjq, (4.2.8)

So, the detP “ oeven
λp0q pX tq. Finally, the even orthogonal character is given by

p´1q
ϵ1 sgnpσλq oeven

λp0q pX t
q

t t´1
2 u
ź

i“1
s
µ

p2q

i
pX t, X

t
q ˆ

$

&

%

p´1q
řn

i“1 λ
pt{2q

i soλpt{2qp´X t
q t even,

1 t odd,

where

ϵ1
“
tpt ´ 1q

2
npn ` 1q

2 `

t´1
ÿ

i“t t`2
2 u

ˆ

nipλqpnipλq ´ 1q

2 ´
npn ´ 1q

2

˙

`

$

’

’

&

’

’

%

n
t´1
ÿ

i“ t`2
2

pni ´ nq t even,

0 t odd.

After simplifications, the parity of ϵ1 shown to be the same as

ϵ “ ´

t´1
ÿ

i“t t`2
2 u

ˆ

nipλq

2

˙

`

$

&

%

npn`t´1q

2 ` nr t even,
pt´1qn

2 t odd,
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This completes the proof.

For the odd orthogonal characters, we have G “ SO2tn`1, the orthogonal group of
p2tn ` 1q ˆ p2tn ` 1q square matrices.

Proof of Theorem 3.11. Using Lemma 4.7 for the odd orthogonal characters, the desired
odd orthogonal character is

soλpX,ωX, . . . , ωt´1Xq “ det
´

H 1
βipλq´βj

` H 1
βipλq`βj´2tn`1

¯

1ďi,jďtn
. (4.2.9)

whereH 1
m “ hmpX,ωX, . . . , ωt´1X,X, ωX, . . . , ωt´1Xq. Permuting the rows and columns

by σλ and σH from (6.1.3) and (6.1.4) respectively, we see that the odd orthogonal char-
acter is

sgnpσλq sgnpσHq det
˜

´

H 1

β
ppq

i pλq´βtj´q
` H 1

β
ppq

i pλq`βtj´q´2tn`1

¯

1ďiďnp

1ďjďn

¸

0ďp,qďt´1

.

If coretpλq is not self-conjugate, then using Corollary 3.18, np ` nt´1´p ‰ 2n for some
p P r0,

X

t´1
2

\

s. Applying Lemma 4.9 for z “ y “ 0, we get

soλpX,ωX, . . . , ωt´1Xq “ 0.

If coretpλq is self-conjugate with rank r, then using Corollary 3.18, np ` nt´1´p ‰ 2n for
all p P r0,

X

t´1
2

\

s. Applying Lemma 4.9 for z “ y “ 0

p´1q
ϵ sgnpσλq sgnpσHq

t t´2
2 u
ź

i“0
s
µ

p3q

i
pX t, X

t
q ˆ

$

&

%

so
λp

t´1
2 qpX tq t odd,

1 t even,

where

ϵ “

t´1
ÿ

i“t t`1
2 u

ˆ

nipλqpnipλq ` 1q

2 ´
npn ` 1q

2

˙

`

$

’

’

&

’

’

%

n
t´1
ÿ

i“ t`1
2

pni ´ nq t odd,

0 t even,

and µ
p3q

i “ λ
pt´1´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´1´iq
q
˘

has 2n parts for 0 ď i ď
X

t´2
2

\

.

ϵ1
“
tpt ´ 1q

2
npn ` 1q

2 ´

t´1
ÿ

i“t t`1
2 u

ˆ

nipλqpnipλq ` 1q

2 ´
npn ` 1q

2

˙

`

$

’

’

&

’

’

%

n
t´1
ÿ

i“ t`1
2

pni ´ nq t odd,

0 t even,
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After similar simplifications, ϵ1 turns out to have the same parity as

´

t´1
ÿ

i“t t`1
2 u

ˆ

nipλq ` 1
2

˙

`

$

&

%

nr t odd,

0 t even,

where r is the rank from (3.2.8). This completes the proof.
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Chapter 5

Factorization of classical characters
twisted by roots of unity: II

In this chapter, we extend the results to the groups GLtn`m p0 ď m ď t ´ 1q, SO2tn`3,
Sp2tn`2 and O2tn`2 evaluated at similar specializations: (1) for the GLtn`mpCq case, we
set the first tn elements to ωjxi for 0 ď j ď t ´ 1 and 1 ď i ď n and the remaining
m to y, ωy, . . . , ωm´1y; (2) for the other three families, the same specializations but
with m “ 1. Our motivation is the conjectures of Wagh and Prasad [91] relating the
irreducible representations of Spin2n`1 and SL2n, SL2n`1 and Sp2n as well as Spin2n`2 and
Sp2n. In each case, we characterize partitions for which the character value is nonzero in
terms of what we call pz1, z2, kq-asymmetric partitions, where z1, z2 and k are integers
which depend on the group. We give statements of results and illustrative examples in
Section 5.1. We formulate results on beta sets, generating functions and determinant
identities in Section 5.2. We prove the Schur factorization result in Section 5.3. We
prove the new factorizations of other classical characters in Section 5.4. Finally, we
prove generating function formulas for pz1, z2, kq-asymmetric partitions and pz1, z2, kq-
asymmetric t-cores in Section 5.5. A preprint of this work has appeared on arXiv [70].

5.1 Main results

Recall, X “ px1, . . . , xnq and ω is a primitive t’th root of unity. Fix 0 ď m ď t ´ 1. We
first consider the specialized Schur polynomial evaluated at elements twisted by the t’th
roots of unity. We denote the indeterminates by X,ωX, ω2X, . . . , ωt´1X, y, . . . , ωm´1y.

Let E “ pe1, . . . , emq such that t ´ 1 ě e1 ą ¨ ¨ ¨ ą em ě 0. We extend E for enumer-
ating the set t0, . . . , t ´ 1uzteiuiPrms as tem`1 ă ¨ ¨ ¨ ă etu, denoted Ē, for convenience.
For a partition λ of length at most tn`m, let σEλ be the permutation in Stn`m such that
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it rearranges parts of βpλq in the following way:

βσE
λ

pjqpλq ” eq pmod tq, for
q´1
ÿ

i“1
nei

pλq ` 1 ď j ď

q
ÿ

i“1
nei

pλq, (5.1.1)

arranged in decreasing order for each q P t1, . . . , tu. For simplicity, we write σH

λ as σλ.
For the empty partition, βpH, tn ` 1q “ ptn, tn ´ 1, tn ´ 2, . . . , 0q with

nqpH, tn ` 1q “

$

&

%

n ` 1 q “ 0,

n 1 ď q ď t ´ 1,

and
σH “ p1, t ` 1, . . . , nt ` 1, t, . . . , nt, . . . , 2, . . . , pn ´ 1qt ` 2q (5.1.2)

in one-line notation with sgnpσHq “ p´1q
tpt´1q

2
npn`1q

2 .

Theorem 5.1. Fix 0 ď m ď t ´ 1. Let λ be a partition of length at most tn ` m

indexing an irreducible representation of GLtn`m and quotpλq “ pλp0q, . . . , λpt´1qq. Then
the GLtn`m-character sλpX,ωX, . . . , ωt´1X, y, ωy, . . . , ωm´1yq is as follows:

1. If coretpλq “ ν :“ pν1, . . . , νmq for some ν1 ď t ´ m, then

sλpX,ωX, . . . , ωt´1X, y, ωy, . . . ,ωm´1yq “ sgnpσ
βpνq

λ q sgnpσ
βpνq

H q

ˆsνp1, ω, . . . , ωm´1
q

m
ź

i“1
sλpβipνqqpX t, ytq

t´1
ź

j“0
j Rβpνq

sλpjqpX t
q.

(5.1.3)

2. Otherwise,
sλpX,ωX, . . . , ωt´1X, y, ωy, . . . , ωm´1yq “ 0. (5.1.4)

In other words, the nonzero GLtn`m character is the product of m GLn`1 and pt´mq

GLn characters. For m “ 0 and m “ 1, Theorem 5.1 is proved by Littlewood [74, Equa-
tion (7.3;3)], [74, Chapter VII, Section IX] and independently by Prasad [90, Theorem
2], [76, Theorem 4.5] for t “ 2. For m “ 0 the result is also proven in Chapter 3. In the
case when X “ p1, . . . , 1q and coretpλq is empty, (5.1.3) is proved in [87].

Example 5.2. For t “ 2, m “ 1, Theorem 5.1 says that the character of the group
GL3 of the representation indexed by the partition pa, b, cq, a ě b ě c ě 0, evaluated at
px,´x, yq is non-zero if and only if a and b have the same parity or a and c have the
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opposite parity. If core2pa, b, cq is empty, then

spa,b,cqpx,´x, yq “

$

’

’

’

&

’

’

’

%

´s
p a

2 ,
b`1

2 q
px2, y2qsp

c´1
2 qpx

2q a even, b and c odd,

sp a
2 ,

c
2 qpx

2, y2qsp b
2 qpx

2q a, b, c even,

´s
p

b´1
2 , c

2 q
px2, y2qsp

a`1
2 qpx

2q a and b odd, c even,

and if core2pa, b, cq “ p1q, then

spa,b,cqpx,´x, yq “

$

’

’

’

&

’

’

’

%

y sp
a´1

2 , b
2 qpx

2, y2qsp c
2 qpx

2q a odd, b and c even,

´y sp
a´1

2 , c´1
2 qpx

2, y2qs
p

b`1
2 q

px2q a, b, c odd,

y s
p

b´2
2 , c´1

2 q
px2, y2qsp

a`2
2 qpx

2q a and b even, c odd.

We now generalize Theorem 5.1 to other classical characters for m “ 1. We first need
some definitions.

Definition 5.3. Suppose z1 ą z2 ě 0 and λ is a partition of rank r. We say λ is pz1, z2, kq-
asymmetric for some 0 ď k ď r, if λ “ pα1, . . . , αk, . . . , αr|α1 ` z1, . . . , {αk ` z1, . . . , αr `

z1, z2q, in Frobenius coordinates for some strict partition α, where a hat on a coordinate
denotes its omission. pHere k “ 0 means no part is omitted and therefore no part is
addedq. If in addition a pz1, z2, kq-asymmetric partition is also a t-core, we call it a
pz1, z2, kq-asymmetric t-core. We denote the set of pz1, z2, kq-asymmetric partitions and
pz1, z2, kq-asymmetric t-cores by Qz1,z2,k and Qptq

z1,z2,k respectively.

Note that the pz, 0, 0q-asymmetric partition is the z-asymmetric partition defined in
Chapter 3. Recall that a partition λ is z-asymmetric if λ “ pα|βq where βi “ αi ` z for
1 ď i ď rkpλq.

To state our results, define, for λ “ pλ1, . . . , λnq, the reverse of λ as revpλq “

pλn, . . . , λ1q. Moreover, if µ “ pµ1, . . . , µjq is a partition such that µ1 ď λn, then we
write the concatenated partition pλ, µq “ pλ1, . . . , λn, µ1, . . . , µjq.

For the odd orthogonal case, we take G “ SO2tn`3, the orthogonal group of p2tn `

3q ˆ p2tn` 3q square matrices. For a partition λ, if coretpλq is either p2, 0, kq- or p2, 1, kq-
asymmetric for some k P rrkpcoretpλqqs, then by Corollary 5.20, there exists a unique
i0 P r0,

X

t´1
2

\

s such that

nipλq ` nt´1´ipλq “

$

&

%

2n ` 1 ` δi0, t´1
2

if i “ i0,

2n otherwise,
0 ď i ď

Z

t ´ 1
2

^

.



84 5. Factorization of classical characters twisted by roots of unity: II

For such a partition λ, let

ϵ1pλq :“
˜

t´1
ÿ

i“t´i0

nipλq

¸

`

t´1
ÿ

i“t t`1
2 u

ˆˆ

nipλq ` 1
2

˙

` tnpnipλq ´ nq

˙

, (5.1.5)

and πp1q

i :“ λ
pt´1´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´1´iq
q
˘

has 2n` δi,i0 parts for 0 ď i ď
X

t´1
2

\

.
We note that the empty partition is vacuously p2, 0, 0q-asymmetric with i0 “ 0. Our
result for the factorization of odd orthogonal characters is as follows.

Theorem 5.4. Let λ be a partition of length at most tn ` 1. Then the odd orthogonal
character soλpX, ωX, . . . , ωt´1X, yq is as follows:

1. If coretpλq is either p2, 0, kq or p2, 1, kq-asymmetric for some k P rrkpcoretpλqqs and
i0 “ t´1

2 , then

soλpX, ωX, . . . ,ωt´1X, yq

“ p´1q
ϵ1pλq`n sgnpσλq sop t´1

2 qpyq so
λp

t´1
2 qpX t, ytq ˆ

t´3
2
ź

i“0
s
π

p1q

i
pX t, X

t
q.

(5.1.6)

2. If coretpλq is either p2, 0, kq or p2, 1, kq-asymmetric for some k P rrkpcoretpλqqs and
i0 ­“ t´1

2 , then

soλpX, ωX, . . . , ωt´1X, yq

“ sgnpσλqp´1q
ϵ1pλq

´

y´µ
p1q

i0
`1s

π
p1q

i0
pX t, X

t
, ytq ´ yµ

p1q

i0 s
π

p1q

i0
pX t, X

t
, ȳtq

¯

py ´ 1q

ˆ

t t´2
2 u
ź

i“0
i‰i0

s
π

p1q

i
pX t, X

t
q ˆ

$

&

%

so
λp

t´1
2 qpX tq t odd,

1 t even,

(5.1.7)

where µp1q

i0 “ tpλ
pt´1´i0q

1 ` npt´1´i0qpλq ´ nq ´ i0.

3. If neither of the above conditions hold, then

soλpX, ωX, . . . , ωt´1X, yq “ 0. (5.1.8)

Remark 5.5. We note that the first factor on the right side of (5.1.7) is a Laurent
polynomial and approaches to p1 ´ 2µp1q

i0 qs
π

p1q

i0
pX t, X

t
, 1q as y Ñ 1.
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Example 5.6. For t “ 2, Theorem 5.4 says that the character of the group SO7 of the
representation indexed by the partition pa, b, cq, a ě b ě c ě 0, evaluated at px,´x, yq is
non-zero. If core2pa, b, cq is empty, which is p2, 0, 0q-asymmetric and i0 “ 0, then

sopa,b,cqpx,´x, yq

“

$

’

’

’

&

’

’

’

%

´
y2´c

y´1 sp a`c´1
2 , b`c

2 qpx2, x̄2, y2q `
yc´1

y´1 sp a`c´1
2 , b`c

2 qpx2, x̄2, ȳ2q a even, b and c odd,
y1´b

y´1 sp a`b
2 , b`c

2 qpx2, x̄2, y2q ´
yb

y´1sp a`b
2 , b`c

2 qpx2, x̄2, ȳ2q a, b, c even,

´
y´a

y´1sp a`b
2 ,a`c`1

2 qpx2, x̄2, y2q `
ya`1

y´1 sp a`b
2 ,a`c`1

2 qpx2, x̄2, ȳ2q a and b odd, c even.

If core2pa, b, cq “ p1q “ p0|0q, which is p2, 0, 1q-asymmetric and i0 “ 0, then

sopa,b,cqpx,´x, yq

“

$

’

’

’

&

’

’

’

%

´
y´a

y´1 sp
a`c´1

2 ,a´b´1
2 q

px2, x̄2, y2q `
ya`1

y´1 sp
a`c´1

2 ,a´b´1
2 q

px2, x̄2, ȳ2q a odd, b and c even,
y´a

y´1 sp
a`b

2 ,a´c
2 q

px2, x̄2, y2q ´
ya`1

y´1 sp
a`b

2 ,a´c
2 q

px2, x̄2, ȳ2q a, b, c odd,

´
y1´b

y´1 sp
a`b

2 , b´c´1
2 q

px2, x̄2, y2q `
yb

y´1sp
a`b

2 , b´c´1
2 q

px2, x̄2, ȳ2q a and b even, c odd.

If core2pa, b, cq “ p2, 1q “ p1|1q, which is p2, 1, 1q-asymmetric and i0 “ 0, then

sopa,b,cqpx,´x, yq “
y3

y ´ 1sp
a´2

2 , b´1
2 , c

2 q
px2, x̄2, y2

q ´
y´2

y ´ 1sp
a´2

2 , b´1
2 , c

2 q
px2, x̄2, ȳ2

q.

Lastly, if core2pa, b, cq “ p3, 2, 1q “ p2, 0|2, 0q pa and c are odd, and b is evenq, which is
p2, 0, 1q-asymmetric and i0 “ 0, then

sopa,b,cqpx,´x, yq “
y´a

y ´ 1sp
a´c´2

2 ,a´b´1
2 q

px2, x̄2, y2
q ´

ya`1

y ´ 1sp
a´c´2

2 ,a´b´1
2 q

px2, x̄2, ȳ2
q.

For the symplectic case, we take G “ Sp2tn`2, the symplectic group of p2tn ` 2q ˆ

p2tn ` 2q matrices. If λ is a partition such that coretpλq is either p3, 0, kq or p3, 2, kq-
asymmetric for some k P rrkpcoretpλqqs, then by Corollary 5.21, there exists a unique
i0 P r0,

X

t´2
2

\

s Y tt ´ 1u such that

nipλq ` nt´2´ipλq “

$

&

%

2n ` 1 ` δi0, t´2
2

if i “ i0,

2n otherwise,
for 0 ď i ď

Z

t ´ 2
2

^

,

and nt´1pλq “

$

&

%

n ` 1 if i “ i0,

n otherwise.
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For such a partition λ, let

ϵ2pλq :“
t´1
ÿ

i“t´i0

ni´1pλq `

t´1
ÿ

i“t t`2
2 u

ˆˆ

ni´1pλq ` 1
2

˙

` pt ´ 1qnpni´1pλq ´ nq

˙

, (5.1.9)

and πp2q

i :“ λ
pt´2´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´2´iq
q
˘

has 2n` δi,i0 parts for 0 ď i ď
X

t´3
2

\

.
We note that the empty partition is vacuously p3, 0, 0q-asymmetric with i0 “ 0.

Theorem 5.7. Let λ be a partition of length at most tn ` 1. The symplectic character
spλpX, ωX, . . . , ωt´1X, yq is as follows:

1. If coretpλq is either p3, 0, kq or p3, 2, kq-asymmetric, for some k P rrkpcoretpλqqs

and i0 “ t ´ 1, then

spλpX, ωX, . . . , ωt´1X, yq “ p´1q
ϵ2pλq sgnpσλq sppt´1qpyq spλpt´1qpX t, ytq

ˆ

t t´3
2 u
ź

i“0
s
π

p2q

i
pX t, X

t
q ˆ

$

&

%

so
λp

t´2
2 qpX tq t even,

1 t odd.
(5.1.10)

2. If coretpλq is either p3, 0, kq or p3, 2, kq-asymmetric, for some k P rrkpcoretpλqqs

and i0 “ t´2
2 , then

spλpX, ωX, . . . , ωt´1X, yq “ p´1q
ϵ2pλq`n sgnpσλq spp t´2

2 qpyq spλpt´1qpX t
q

ˆ

t t´3
2 u
ź

i“0
s
π

p2q

i
pX t, X

t
q ˆ so

λp
t´2

2 qpX t, ytq.

(5.1.11)

3. If coretpλq is either p3, 0, kq or p3, 2, kq-asymmetric, for some k P rrkpcoretpλqqs

and i0 ‰ t ´ 1, t´2
2 , then

spλpX, ωX, . . . , ωt´1X, yq

“ sgnpσλqp´1q
ϵ2pλq

´

y´µ
p2q

i0 s
π

p2q

i0
pX t, X

t
, ytq ´ yµ

p2q

i0 s
π

p2q

i0
pX t, X

t
, ȳtq

¯

py ´ ȳq

ˆ

t t´3
2 u
ź

i“0
i‰i0

s
π

p2q

i
pX t, X

t
q ˆ spλpt´1qpX t

q ˆ

$

&

%

so
λp

t´2
2 qpX tq t is even,

1 t is odd,

(5.1.12)
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where µp2q

i0 “ tpλ
pt´2´i0q

1 ` npt´2´i0qpλq ´ nq ´ i0.

4. If none of the above conditions hold, then

spλpX, ωX, . . . , ωt´1X, yq “ 0. (5.1.13)

Remark 5.8. We note that the first factor on the right side of (5.1.12) is a Laurent
polynomial and approaches to ´µ

p2q

i0 sπp2q

i0
pX t, X

t
, 1q as y Ñ 1.

Example 5.9. For t “ 2, Theorem 5.7 says that the character of the group Sp6 of the
representation indexed by the partition pa, b, cq, a ě b ě c ě 0, evaluated at px,´x, yq

is non-zero if and only if a and b have the same parity or a and c have the opposite
parity same as in Example 5.2. If core2pa, b, cq is empty, which is p3, 0, 0q-asymmetric
and i0 “ 0, then

sppa,b,cqpx,´x, yq “

$

’

’

’

&

’

’

’

%

so
p a

2 ,
b`1

2 q
px2, y2qspp

c´1
2 qpx

2q a even, b and c odd,

sop a
2 ,

c
2 qpx

2, y2qspp b
2 qpx

2q a, b, c even,

´ so
p

b´1
2 , c

2 q
px2, y2qspp

a`1
2 qpx

2q a and b odd, c even,

and if core2pa, b, cq “ p1q “ p0|0q, which is p3, 0, 1q-asymmetric and i0 “ 1, then

sppa,b,cqpx,´x, yq “

$

’

’

’

&

’

’

’

%

py ` ȳqspp
a´1

2 , b
2 qpx

2, y2q sop c
2 qpx

2q a odd, b and c even,

´py ` ȳqspp
a´1

2 , c´1
2 qpx

2, y2q so
p

b`1
2 q

px2q a, b, c odd,

py ` ȳqsp
p

b´2
2 , c´1

2 q
px2, y2q sop

a`2
2 qpx

2q a and b even, c odd.

For the even orthogonal case, we take G “ O2tn`2, the orthogonal group of p2tn`2qˆ

p2tn ` 2q square matrices. If λ is a partition such that coretpλq is p1, 0, kq-asymmetric
for some k P rrkpcoretpλqqs, then by Corollary 5.19, there exists a unique i0 P r

X

t
2

\

s such
that

n0pλq “ n, nipλq ` nt´ipλq “

$

&

%

2n ` 1 ` δi0, t
2

if i “ i0

2n otherwise
1 ď i ď

Z

t

2

^

.

For such a partition λ, let

ϵ3pλq :“
˜

t´1
ÿ

i“t`1´i0

nipλq

¸

`

t´1
ÿ

i“t t`2
2 u

ˆˆ

nipλq

2

˙

` pt ´ 1qnpnipλq ´ nq

˙

, (5.1.14)
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and π
p3q

i “ λ
pt´iq
1 `

`

λpiq, 0, . . . , 0,´ revpλpt´iq
q
˘

has 2n ` δi,i0 parts for 1 ď i ď
X

t´1
2

\

.
Note that for p1, 0, 0q-asymmetric t-cores, i0 “ 0.

Theorem 5.10. Let λ be a partition of length at most tn ` 1. The even orthogonal
character oeven

λ pX, ωX, . . . , ωt´1X, yq is as follows:

1. If coretpλq is p1, 0, 0q-asymmetric, then

oeven
λ pX,ωX, . . . , ωt´1X, yq “ p´1q

ϵ3pλq sgnpσλqoeven
λp0q pX t, ytq

t t´1
2 u
ź

i“1
s
π

p3q

i
pX t, X

t
q

ˆ

$

&

%

p´1q
ř

i λ
pt{2q

i soλpt{2qp´X tq t even,

1 t odd.
(5.1.15)

2. If coretpλq is p1, 0, kq-asymmetric for some k P rrkpcoretpλqqs and i0 “ t
2 , then

oeven
λ pX,ωX, . . . , ωt´1X, yq “ p´1q

ϵ3pλq sgnpσλq oeven
p t

2 q
pyq oeven

λp0q pX t
q

ˆ

t´2
2
ź

q“1
s
π

p3q
q

pX t, X
t
qˆp´1q

ř

i λ
pt{2q

i soλpt{2qp´X t,´ytq.

(5.1.16)

3. If coretpλq is p1, 0, kq-asymmetric for some k P rrkpcoretpλqqs and i0 ‰ t
2 , then

oeven
λ pX,ωX, . . . , ωt´1X, yq “ p´1q

ϵ3pλq`n sgnpσλqoeven
λp0q pX t

q

ˆ

ˆ

y´µ
p3q

i0 s
π

p3q

i0
pX t, X

t
, ytq ` yµ

p3q

i0 s
π

p3q

i0
pX t, X

t
, ȳtq

˙ t t´1
2 u
ź

j“1
j‰i0

s
π

p3q

j
pX t, X

t
q

ˆ

$

&

%

p´1q
ř

i λ
pt{2q

i soλpt{2qp´X tq t even,

1 t odd,
(5.1.17)

where µp3q

i0 “ tpλ
pt´i0q

1 ` npt´i0qpλq ´ nq ´ i0.

4. If none of the above conditions hold, then

oeven
λ pX,ωX, . . . , ωt´1X, yq “ 0.
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Example 5.11. For t “ 2, Theorem 5.10 says that the character of the group O6 of the
representation indexed by the partition pa, b, cq, a ě b ě c ě 0, evaluated at px,´x, yq

is non-zero if and only if a and b have the same parity or a and c have the opposite
parity same as in Example 5.2 and Example 5.9. If core2pa, b, cq is empty, which is
p1, 0, 0q-asymmetric, then

oeven
pa,b,cqpx,´x, yq “

$

’

’

’

&

’

’

’

%

p´1q
c`1

2 oeven
p a

2 ,
b`1

2 q
px2, y2q sop

c´1
2 qp´x2q a even, b and c odd,

p´1q
b
2 oeven

p a
2 ,

c
2 qpx

2, y2q sop b
2 qp´x2q a, b, c even,

p´1q
a`1

2 oeven
p

b´1
2 , c

2 q
px2, y2q sop

a`1
2 qp´x2q a and b odd, c even,

and if core2pa, b, cq “ p1q “ p0|0q, which is p1, 0, 1q-asymmetric and i0 “ 1, then

oeven
pa,b,cqpx,´x, yq “

$

’

’

’

&

’

’

’

%

p´1q
a`b´1

2 py ` ȳq sop
a´1

2 , b
2 qp´x2,´y2q oeven

p c
2 q px2q a odd, b and c even,

p´1q
a`c

2 py ` ȳq sop
a´1

2 , c´1
2 qp´x2,´y2q oeven

p
b`1

2 q
px2q a, b, c odd,

p´1q
b`c´3

2 py ` ȳq so
p

b´2
2 , c´1

2 q
p´x2,´y2q oeven

p
a`2

2 q
px2q a and b even, c odd.

Remark 5.12. The factorization of characters of classical groups of type B, C and
D specialized with tn variables are considered in Chapter 3. We will not recover the
factorization results proved in Chapter 3 by substituting y “ 0 in the above factorization
results as these are Laurent polynomials in Crx1, x

´1
1 , . . . , xn, x

´1
n , y, y´1s. pSee [64]q.

It is natural to ask if there are infinitely many pz1, z2, kq-asymmetric t-cores. Our last
result answers this question in a special case. For z1 ą z2, let Qptq

z1,z2
:“

ď

k

Qptq
z1,z2,k.

Theorem 5.13. There are infinitely many t-cores Qptq
z`2,0 Y Qptq

z`2,z`1 for t ě z.

This is proved in Section 5.5.

5.2 Background results

5.2.1 Properties of beta sets

We use the shorthand notations rms “ t1, . . . ,mu, rm1,m2s “ tm1, . . . ,m2u and m` :“
maxpm, 0q. We first recall a useful property of the beta numbers. For a partition λ of
length at most m, we see by (3.2.1) in Chapter 3:

nipλ,mq “ nipcoretpλq,mq, 0 ď i ď t ´ 1. (5.2.1)
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Lemma 5.14. If λ is a t-core of length at most tn ` 1, then

rkpλq “ pn0pλq ´ n ´ 1q` `

t´1
ÿ

i“1
pnipλq ´ nq`. (5.2.2)

Proof. If ℓpλq ď tn, then using n0pλ, tn ` 1q “ nt´1pλ, tnq ` 1 and nipλ, tn ` 1q “

ni´1pλ, tnq, 1 ď i ď t ´ 1 in Equation (3.2.5), we see that the result holds. Assume
ℓpλq “ tn ` 1. Since λ is a t-core, n0pλq “ 0. Let 1 ď ik ă ¨ ¨ ¨ ă i1 ď t ´ 1 such that
nij pλq ą n for 1 ď j ď k. Since λ is a t-core, the parts of βpλq greater than tn for each
j are:

ij ` tn ă ij ` tpn ` 1q ă ¨ ¨ ¨ ă ij ` tpnij pλq ´ 1q.

If r is the number of parts of βpλq greater than tn, then

r “

k
ÿ

j“1
pnij pλq ´ nq “

t´1
ÿ

i“1
pnipλq ´ nq`.

Moreover, βrpλq is the smallest part of βpλq greater than tn and is therefore equal to
ik ` tn. This implies λr “ βrpλq ´ ptn` 1 ´ rq “ tn` ik ´ ptn` 1 ´ rq “ ik ` r ´ 1 ě r

and λr`1 ď tn ´ ptn ´ rq ď r, which implies the rank of λ is r.

Recall the following corollary from Chapter 3.

Lemma 5.15. Let λ be a partition of length at most tn. Then coretpλq is p1, 0, 0q-
asymmetric if and only if

nipλ, tnq ` nt´2´ipλ, tnq “ 2n, 0 ď i ď t ´ 2, nt´1pλ, tnq “ n ` 1.

Lemma 5.16. Let λ be a partition of length at most tn ` 1. Then coretpλq is p1, 0, 0q-
asymmetric if and only if

n0pλ, tn ` 1q “ n ` 1, nipλ, tn ` 1q ` nt´ipλ, tn ` 1q “ 2n, 1 ď i ď t ´ 1.

Proof. As ℓpλq ď tn ` 1 ď tpn ` 1q, considering λ with ℓpλq ď tn ` t, we get by
Lemma 5.15:

nipλ, tn ` tq ` nt´2´ipλ, tn ` tq “ 2n ` 2, 0 ď i ď t ´ 2, nt´1pλ, tn ` tq “ n ` 1.
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Now the proof of the lemma follows by noting:

nipλ, tn ` 1q “

$

&

%

nt´1pλ, tn ` tq i “ 0,

ni´1pλ, tn ` tq ´ 1 1 ď i ď t ´ 1.

Recall the definitions Qz1,z2,k and Qptq
z1,z2,k from Definition 5.3.

Lemma 5.17. Let λ be a partition of length at most ℓ and rank r. Then the following
statements are equivalent.

1. λ P Qz1,z2,k.

2. βpλ, ℓq is obtained from the sequence pα1 ` ℓ, . . . , αr ` ℓ, ℓ´ 1, . . . , 1, 0q by deleting
the numbers ℓ´1´z2 ą ℓ´1´z1 ´αr ą ¨ ¨ ¨ ą ℓ´1´z1 ´αk`1 ą ℓ´1´z1 ´αk´1 ą

¨ ¨ ¨ ą ℓ ´ 1 ´ z1 ´ α1.

Proof. First, note that λ P Qz1,z2,k if and only if λ is of the form

λ “ pα1 ` 1, . . . , αr ` r, r, . . . , r
loomoon

z2

, r ´ 1, . . . , r ´ 1
loooooooomoooooooon

αr`z1´z2´1

, r ´ 2, . . . , r ´ 2
loooooooomoooooooon

αr´1´αr´1

, . . . , k, . . . , k
looomooon

αk`1´αk`2´1

,

k ´ 1, . . . , k ´ 1
loooooooomoooooooon

αk´1´αk`1´1

, k ´ 2, . . . , k ´ 2
loooooooomoooooooon

αk´2´αk´1´1

. . . , 1, . . . , 1
loomoon

α1´α2´1

q.

In that case, its beta set reads as:

βpλ, ℓq “ pα1 ` ℓ, . . . , αr ` ℓ, ℓ ´ 1, . . . , ℓ ´ z2
loooooooomoooooooon

z2

, ℓ ´ z2 ´ 2, . . . , ℓ ´ pαr ` z1q
looooooooooooooooomooooooooooooooooon

αr`z1´z2´1

,

{ℓ ´ αr ´ z1 ´ 1, ℓ ´ αr ´ z1 ´ 2, . . . , ℓ ´ pαr´1 ` z1q
loooooooooooooooooooooomoooooooooooooooooooooon

αr´1´αr´1

, {ℓ ´ αr´1 ´ z1 ´ 1,

. . . , {ℓ ´ αk`2 ´ z1 ´ 1, ℓ ´ αk`2 ´ z1 ´ 2, . . . , ℓ ´ pαk`1 ` z1q
loooooooooooooooooooooooomoooooooooooooooooooooooon

αk`1´αk`2´1

, {ℓ ´ αk`1 ´ z1 ´ 1,

ℓ ´ αk`1 ´ z1 ´ 2, . . . , ℓ ´ αk ´ z1, . . . , ℓ ´ pαk´1 ` z1q
looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

αk´1´αk`1´1

, {ℓ ´ αk´1 ´ z1 ´ 1

ℓ ´ αk´1 ´ z1 ´ 2, . . . , ℓ ´ pαk´2 ` z1q
loooooooooooooooooooooooomoooooooooooooooooooooooon

αk´2´αk´1´1

, {ℓ ´ αk´2 ´ z1 ´ 1, . . . , {ℓ ´ α2 ´ z1 ´ 1,

ℓ ´ α2 ´ z1 ´ 2, . . . , ℓ ´ pα1 ` z1q
loooooooooooooooooooomoooooooooooooooooooon

α1´α2´1

, {ℓ ´ α1 ´ z1 ´ 1, ℓ ´ α1 ´ z1 ´ 2, . . . , 0
loooooooooooomoooooooooooon

ℓ´α1´z1´1

q.

So, Item 1 and Item 2 are equivalent.
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Lemma 5.18. Let λ be a t-core of length at most tn ` 1 and 0 ă z ` 2 ď t ` 2. Then
for i0 P r0,

X

t´z´1
2

\

s Y rt ´ z, t ´ 1s,

nipλq ` nt´z´1´ipλq “

$

&

%

2n ` 1 ` δi0, t´z´1
2

if i “ i0,

2n otherwise,
for 0 ď i ď

Z

t ´ z ´ 1
2

^

,

and nipλq “

$

&

%

n ` 1 if i “ i0,

n otherwise,
for t ´ z ď i ď t ´ 1,

(5.2.3)

if and only if λ P Qptq
z`2,0,k Y Qptq

z`2,z`1,k for some 1 ď k ď rkpλq.

Proof. Assume (5.2.3) holds for λ. Suppose we have 0 ď im ă im´1 ă ¨ ¨ ¨ ă i1 ď t´z´1
such that nij pλq ą n for all j P rms. Since λ is a t-core, for each j, the parts of βpλq

greater than and equal to tn are:

ij ` tpnij pλq ´ 1q ą ¨ ¨ ¨ ą ij ` tpn ` 1q ą ij ` tn

Note that by Lemma 5.14, the rank r of λ is same as the number of parts of βpλq greater
than tn. Let γs, 1 ď s ď r be the sequence of these parts greater than tn arranged
in decreasing order. Note that γs “ αs ` tn ` 1 for some αs ą 0, 1 ď s ď r. Since
nt´z´1´ij pλq ď n for j P rms, ij ‰ t´z´1

2 , the parts of βpλq lesser than tn are obtained
from the sequence ptn ´ 1, tn ´ 2, . . . , 0q by deleting the numbers

tpnt´z´1´ij pλq ` 1q ´ ij ´ z ´ 1 ă tpnt´z´1´ij pλq ` 2q ´ z ´ ij ´ 1 ă ¨ ¨ ¨ ă tn´ ij ´ z ´ 1.

Suppose i0 P r0, t´ z´ 1s. Then either ni0pλq ą n, or nt´z´1´i0pλq ą n. If n0pλq ě n,
then tn P βpλq, and the deleted numbers are tn ´ z ´ 1, 2tn ´ z ´ 1 ´ γs, s P rrs,
γs ‰ i0 ` tpni0pλq ´ 1q or t ´ z ´ 1 ´ i0 ` tpnt´z´1´i0pλq ´ 1q. So, βpλ, tn ` 1q is
obtained from the sequence pα1 ` tn ` 1, . . . , αr ` tn ` 1, tn, . . . , 1, 0q by deleting the
numbers tn ´ z ´ 1 ą tn ´ z ´ 2 ´ αr ą ¨ ¨ ¨ ą tn ´ z ´ 2 ´ αk`1 ą tn ´ z ´ 2 ´

αk´1 ą ¨ ¨ ¨ ą tn ´ z ´ 2 ´ α1. Therefore by Lemma 5.17, λ P Qz`2,z`1,k. Here k is
the position of tpni0pλq ´ 1q ` i0 or t ´ z ´ 1 ´ i0 ` tpnt´z´1´i0pλq ´ 1q in βpλ, tn ` 1q,
because their counterpart 2tn´ z ´ 1 ´ tpni0pλq ´ 1q ´ i0 “ t nt´z´1´i0pλq ´ i0 ´ z ´ 1 or
2tn ´ z ´ 1 ´ t ` z ` 1 ` i0 ´ tpnt´z´1´i0pλq ´ 1q “ tpni0pλq ´ 1q ` i0 weren’t removed
from the sequence ptn ´ 1, tn ´ 2, . . . , 0q. If n0pλq ă n, then βpλ, tn ` 1q is obtained
from the sequence pα1 ` tn` 1, . . . , αr ` tn` 1, tn´ 1, . . . , 1, 0) by deleting the numbers
tn ´ z ´ 2 ´ αr ą ¨ ¨ ¨ ą tn ´ z ´ 2 ´ αk`1 ą tn ´ z ´ 2 ´ αk´1 ą ¨ ¨ ¨ ą tn ´ z ´ 2 ´ α1.
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Therefore by Lemma 5.17, λ P Qz`2,0,k.
Suppose i0 P rt´z, t´1s. In this case ni0pλq “ n`1. If n0pλq ě n, then tn P βpλq. and

βpλ, tn`1q is obtained from the sequence pα1`tn`1, . . . , αr`tn`1, tn, tn´1, . . . , 1, 0) by
deleting the numbers tn´z´1 ą tn´z´2´αr ą ¨ ¨ ¨ ą tn´z´2´αk`1 ą tn´z´2´αk´1 ą

¨ ¨ ¨ ą tn´z´2´α1. So by Lemma 5.17, λ P Qz`2,z`1,k. If n0pλq ď n, then βpλ, tn`1q is
obtained from the sequence pα1 ` tn` 1, . . . , αr ` tn` 1, tn´ 1, . . . , 1, 0) by deleting the
numbers tn´z´2´αr ą ¨ ¨ ¨ ą tn´z´2´αk`1 ą tn´z´2´αk´1 ą ¨ ¨ ¨ ą tn´z´2´α1.
So, λ P Qz`2,0,k.

Conversely, suppose λ P Qz`2,0,k and rkpλq “ r. By Lemma 5.17, βpλq is obtained
from the sequence pα1 ` tn` 1, . . . , αr ` tn` 1, tn´ 1, . . . , 1, 0) by deleting the numbers
tn ´ z ´ 2 ´ αr ą ¨ ¨ ¨ ą tn ´ z ´ 2 ´ αk`1 ą tn ´ z ´ 2 ´ αk´1 ą ¨ ¨ ¨ ą tn ´ z ´ 2 ´ α1.
Note that if tn´ z ´ 2 ´ αi ” θi pmod tq, then αi ` tn` 1 ” t´ z ´ 1 ´ θi pmod tq for
i P rrs. In that case nt´z´1´θi

pλq increases by one and nθi
pλq decreases by one. Since λ

is a t-core and tn R βpλq, θi, for all i P rrs, i ‰ k can not be equal to t ´ z ´ 1. If

i0 “

$

&

%

t ´ z ´ 1 ´ θk if t ´ z ´ 1 ´ θk P r0,
X

t´z´1
2

\

s Y rt ´ z, t ´ 1s,

θk otherwise,

then it is suffices to show that θi P r0, t ´ z ´ 2s, for each i P rrsztku, to prove (5.2.3).
We prove this successively in reverse order starting from θr and going all the way to
θ1. Since λ is a t-core, if tn ´ z ´ 2 ´ αr does not occur in βpλq, then neither does
tn´z´2´αr ` t. Since tn´z´2´αr is the largest number deleted from ptn´1, . . . , 0q

to get βpλq, tn ´ z ´ 2 ´ αr ` t ě tn. So, αr ` z ` 2 P rz ` 2, ts; and θr P r0, t ´ z ´ 2s.
There is nothing to show if θr´1 “ θr. So, assume θr´1 ‰ θr. Similarly, since λ is a t-core,
if tn´ z´ 2 ´αr´1 does not occur in βpλq, then neither does tn´ z´ 2 ´αr´1 ` t. Since
tn ´ z ´ 2 ´ αr´1 is the largest number congruent to θr´1 deleted from ptn ´ 1, . . . , 0q

to get βpλq, αr´1 ` z ` 2 P rz ` 2, ts and θr´1 P r0, t ´ z ´ 2s. Proceeding in this way,
θi P r0, t ´ z ´ 2s @i P rrsztku. Also, if λ P Qz`2,z`1,k then (5.2.3) holds by similar
arguments.

The following three corollaries are needed in the proof of the main results. These are
easily shown by applying Lemma 5.18 for z “ ´1, 0, 1 respectively, and using the facts
that ℓpcoretpλqq ď ℓpλq ď tn ` 1 and (5.2.1) for m “ tn ` 1.

Corollary 5.19. Let λ be a partition of length at most tn ` 1, and i0 P r1,
X

t
2

\

s. Then

n0pλq “ n, nipλq `nt´ipλq “

$

&

%

2n ` 1 ` δi0, t
2

if i “ i0

2n otherwise
for 1 ď i ď

Z

t

2

^

, (5.2.4)
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if and only if coretpλq P Qptq
1,0,k for some 1 ď k ď rkpcoretpλqq.

Corollary 5.20. Let λ be a partition of length at most tn` 1, and i0 P r0,
X

t´1
2

\

s. Then

nipλq ` nt´1´ipλq “

$

&

%

2n ` 1 ` δi0, t´1
2

if i “ i0

2n otherwise
for 0 ď i ď

Z

t ´ 1
2

^

, (5.2.5)

if and only if coretpλq P Qptq
2,0,k Y Qptq

2,1,k for some 1 ď k ď rkpcoretpλqq.

Corollary 5.21. Let λ be a partition of length at most tn`1, and i0 P r0,
X

t´2
2

\

sYtt´1u.
Then

nipλq ` nt´2´ipλq “

$

&

%

2n ` 1 ` δi0, t´2
2

if i “ i0

2n otherwise
for 0 ď i ď

Z

t ´ 2
2

^

,

and nt´1pλq “

$

&

%

n ` 1 if i0 “ t ´ 1

n otherwise

(5.2.6)

if and only if coretpλq P Qptq
3,0,k Y Qptq

3,2,k for some 1 ď k ď rkpcoretpλqq.

5.2.2 Determinantal identities

Let λ be a partition with ℓpλq ď tn` 1. Recall, βppq

j pλq, for 0 ď p ď t´ 1, 1 ď j ď nppλq

are the parts of βpλq that are congruent to p modulo t, arranged in decreasing order.
Additionly, for q P Z Y pZ ` 1{2q, define n ˆ nppλq matrices

Aλp,q “

´

x
βp

j pλq`q

i

¯

1ďiďn
1ďjďnppλq

, Āλp,q “

´

x̄
βp

j pλq`q

i

¯

1ďiďn
1ďjďnppλq

, (5.2.7)

and 1 ˆ nppλq matrices

Bλ
p,q “

´

yβ
p
j pλq`q

¯

1ďjďnppλq
, B̄λ

p,q “

´

ȳβ
p
j pλq`q

¯

1ďjďnppλq
. (5.2.8)

The corresponding matrices for the empty partition are denoted by

Ap,q “

´

x
tpn`δp,0´jq`p`q
i

¯

1ďiďn
1ďjďn`δp,0

, Āp,q “

´

x̄
tpn`δp,0´jq`p`q
i

¯

1ďiďn
1ďjďn`δp,0

, (5.2.9)

and

Bp,q “
`

ytpn`δp,0´jq`p`q
˘

1ďjďn`δp,0
, B̄p,q “

`

ytpn`δp,0´jq`p`q
˘

1ďjďn`δp,0
. (5.2.10)
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In all cases, whenever q “ 0, we will omit it. For example, we will write Aλp instead of
Aλp,0. We write down alternate formulas for the classical characters using the relation(s):

tβjpλ
ppq

q “ β
ppq

j pλq ´ p, 1 ď j ď n.

Recall, X t “ pxt1, . . . , x
t
nq. If nppλq “ n, then using (2.3.1)–(2.4.5) respectively, we have:

sλppqpX tq “
detAλp,´p

det
´

x
tpn´jq

i

¯

1ďi,jďn

, (5.2.11)

spλppqpX tq “
det

`

Aλp,t´p ´ Āλp,t´p
˘

det
´

x
tpn`1´jq

i ´ x̄
tpn`1´jq

i

¯

1ďi,jďn

, (5.2.12)

soλppqpX tq “
det

`

Aλp,t´p ´ Āλp,´p
˘

det
´

x
tpn`1´jq

i ´ x̄
tpn´jq

i

¯

1ďi,jďn

, (5.2.13)

oeven
λppq pX tq “

2 det
`

Aλp,´p ` Āλp,´p
˘

p1 ` δn,0q det
´

x
tpn´jq

i ´ x̄
tpn´jq

i

¯

1ďi,jďn

(5.2.14)

corresponding to the Schur polynomial, the symplectic character, the even orthogonal
and the odd orthogonal character. If nppλq “ n ` 1, then using formulas (2.3.1)–(2.4.5)
respectively, we have:

sλppqpX t, ytq “

det
˜

Aλp,´p

Bλ
p,´p

¸

det
˜

A0

B0

¸ , (5.2.15)

spλppqpX t, ytq “

det

¨

˝

Aλp,t´p ´ Āλp,t´p

Bλ
p,t´p ´ B̄λ

p,t´p

˛

‚

det

¨

˝

A0,t ´ Ā0,t

B0,t ´ B̄0,t

˛

‚

(5.2.16)

soλppqpX t, ytq “

det

¨

˚

˝

Aλp,t´p ´ Āλp,´p

Bλ
p,t´p ´ B̄λ

p,´p

˛

‹

‚

det

¨

˚

˝

A0,t ´ Ā0

B0,t ´ B̄0

˛

‹

‚

, (5.2.17)
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oeven
λppq pX t, ytq “

2 det

¨

˚

˝

Aλp,´p ` Āλp,´p

Bλ
p,´p ` B̄λ

p,´p

˛

‹

‚

p1 ` δn`1,0q det

¨

˚

˝

A0 ` Ā0

B0 ` B̄0

˛

‹

‚

(5.2.18)

corresponding to the Schur polynomial, the symplectic character, the even orthogonal
and the odd orthogonal character. Recall the following lemma from Chapter 3.

Lemma 5.22. Let λ be a partition of length at most tn with quotpλq “ pλp0q, . . . , λpt´1qq.
If p, q P t0, 1, . . . , t ´ 1u such that nppλq ` nqpλq “ 2n, then we define ρp,q “ λ

ppq

1 `

pλpqq, 0,´ revpλppqqq, where we pad 01s in the middle so that ρp,q is of length 2n. Then the
Schur function sρp,q pX t, X

t
q can be written as

sρp,q pX t, X
t
q “

p´1q
nppλqpnppλq´1q

2

p´1q
npn´1q

2

det

¨

˚

˝

Aλq,´q Āλp,t´p

Āλq,´q Aλp,t´p

˛

‹

‚

det

¨

˚

˝

Aq,´q Āp,t´p

Āq,´q Ap,t´p

˛

‹

‚

. (5.2.19)

Lemma 5.23. Let λ be a partition of length at most tn ` 1 and 0 ď p, q ď t ´ 1. If
nppλq ` nqpλq “ 2n ` 1, then define ρ˚

p,q “ λ
ppq

1 ` pλpqq, 0,´ revpλppqqq, where we pad 01s
in the middle so that ρ˚

p,q is of length 2n ` 1. Then the Schur function sρ˚
p,q

pX t, X
t
, ytq

can be written as

sρ˚
p,q

pX t, X
t
, ytq “

p´1q
nppλqpnppλq´1q

2 ytpλ
ppq

1 `nppλqq

V
´

X t, X
t
, yt

¯ det

¨

˚

˚

˚

˚

˝

Aλq,´q Āλp,t´p

Āλq,´q Aλp,t´p

Bλ
q,´q B̄λ

p,t´p

˛

‹

‹

‹

‹

‚

, (5.2.20)

where V
`

X,X, y
˘

:“
ź

1ďiăjďn

pxi´xjqpxi´ x̄jqpxj ´ x̄iqpx̄i´ x̄jq
n
ź

i“1
pxi´yqpxi´ x̄iqpx̄i´yq.

Proof. We think of the first nqpλq parts of ρ˚
p,q as coming from λpqq, and the rest from

λppq. Using the Schur polynomial expression (2.3.1) for sρ˚
p,q

pX t, X
t
, ytq, the numerator
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in the expression is

det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

x
tpλ

ppq

1 `λ
pqq

j `2n`1´jq

i

˙

1ďiďn
1ďjďnqpλq

ˆ

x
tpλ

ppq

1 ´λ
ppq

2n`2´j`2n`1´jq

i

˙

1ďiďn
nqpλq`1ďjď2n`1

ˆ

x̄
tpλ

ppq

1 `λ
pqq

j `2n`1´jq

i

˙

1ďiďn
1ďjďnqpλq

ˆ

x̄
tpλ

ppq

1 ´λ
ppq

2n`2´j`2n`1´jq

i

˙

1ďiďn
nqpλq`1ďjď2n`1

´

ytpλ
ppq

1 `λ
pqq

j `2n`1´jq
¯

1ďjďnqpλq

´

ytpλ
ppq

1 ´λ
ppq

2n`2´j`2n`1´jq
¯

nqpλq`1ďjď2n`1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Multiplying row i in the top block and middle block of the numerator by x̄
tpλ

ppq

1 `nppλqq

i

and x
tpλ

ppq

1 `nppλqq

i respectively, for each i “ 1, 2, . . . , n, the last row by ȳtpλ
ppq

1 `nppλqq and
then reversing the last nppλq columns, the numerator equals

p´1q
nppλqpnppλq´1q

2 ytpλ
ppq

1 `nppλqq det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

x
tpλ

pqq

j `nq´jq

i

˙

1ďiďn
1ďjďnqpλq

ˆ

x̄
tpλ

ppq

j `np`1´jq

i

˙

1ďiďn
1ďjďnppλq

ˆ

x̄
tpλ

pqq

j `nq´jq

i

˙

1ďiďn
1ďjďnqpλq

ˆ

x
tpλ

ppq

j `np`1´jq

i

˙

1ďiďn
1ďjďnppλq

´

ytpλ
pqq

j `nq´jq
¯

1ďjďnqpλq

´

ȳtpλ
ppq

j `np`1´jq
¯

1ďjďnppλq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“p´1q
nppλqpnppλq´1q

2 ytpλ
ppq

1 `nppλqq det

¨

˚

˚

˚

˚

˝

Aλq,´q Āλp,t´p

Āλq,´q Aλp,t´p

Bλ
q,´q B̄λ

p,t´p

˛

‹

‹

‹

‹

‚

.

Hence, (5.2.20) holds.
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Lemma 5.24 ([68, Lemma 2]). The following identities hold true.

det
`

xn`2´j
i ´ x̄n`2´j

i

˘

1ďi,jďn`1

“ p´1q
nx´n

n`1pxn`1 ´ x̄n`1q

n
ź

i“1
pxi ´ xn`1qpx̄i ´ xn`1q det

`

xn`1´j
i ´ x̄n`1´j

i

˘

1ďi,jďn
.

det
`

xn`1´j
i ` x̄n`1´j

i

˘

1ďi,jďn`1

“ p´1q
nx´n

n`1

n
ź

i“1
pxi ´ xn`1qpx̄i ´ xn`1q det

`

xn´j
i ` x̄n´j

i

˘

1ďi,jďn
.

detpxn´j`3{2
i ` x̄

n´j`3{2
i q1ďi,jďn`1

“ p´1q
nx

´n´1{2
n`1 pxn`1 ` 1q

n
ź

i“1
pxi ´ xn`1qpx̄i ´ xn`1q detpxn´j`1{2

i ` x̄
n´j`1{2
i q1ďi,jďn.

detpxn´j`3{2
i ´ x̄

n´j`3{2
i q1ďi,jďn`1

“ p´1q
nx

´n´1{2
n`1 pxn`1 ´ 1q

n
ź

i“1
pxi ´ xn`1qpx̄i ´ xn`1q detpxn´j`1{2

i ´ x̄
n´j`1{2
i q1ďi,jďn.

Lemma 5.25. For i “ 1, . . . , k, fix ℓi, mi P Z` such that 1`ℓ1`¨ ¨ ¨`ℓk “ m1`¨ ¨ ¨`mk “

d. Let Si and Ti be matrices of order 1ˆmi and ℓiˆmi respectively. Define a pk`1q ˆk

block matrix

Uk :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

S1 S2 . . . Sk

T1

T2 0
. . .

0 Tk

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

1. If for some i0 P rks,

mj “

$

&

%

ℓj ` 1 j “ i0,

ℓj otherwise,
1 ď j ď k,

then

detpUkq “ p´1q
ř

iăi0
ℓi det

˜

Si0

Ti0

¸

k
ź

i“1
i‰i0

det pTiq . (5.2.21)
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2. Otherwise
detpUkq “ 0.

Proof. It is easy to see that the lemma holds in the case when m1 ě ℓ1 ` 1. If m1 ď ℓ1,
then applying the blockwise row operations R1 Ø R2, we see that

detUk “

$

&

%

0 m1 ă ℓ1,

p´1qℓ1Uk´1 m1 “ ℓ1.

Proceeding recursively in the case m1 “ ℓ1, (5.2.21) holds. This completes the proof.

Recall the following lemma from Chapter 3.

Lemma 5.26. Suppose u1, . . . , uk are positive integers summing up to kn. Further, let
pγi,jq1ďiďk,1ďjďk`1 be a matrix of parameters such that γi,k`1 “ γi,k, 1 ď i ď k and Γ be
the square matrix consisting of its first k columns. Let Uj and Vj be matrices of order
n ˆ uj for j P rks. Finally, define a kn ˆ kn matrix with k ˆ k blocks as

Π :“
ˆ

pγi,2j´1Uj ´ γi,2jVjq 1ďiďk
1ďjďt k`1

2 u
pγi,2k`2´2jUj ´ γi,2k`1´2jVjq 1ďiďk

t k`3
2 uďjďk

˙

.

1. If up ` uk`1´p ‰ 2n for some p P rks, then det Π “ 0.

2. Else if up ` uk`1´p “ 2n for all p P rks, then

det Π “ p´1q
Σ

pdet Γq
n

t k`1
2 u
ź

i“1
detWi, (5.2.22)

where

Wi “

$

’

’

’

&

’

’

’

%

¨

˝

Ui ´Vk`1´i

´Vi Uk`1´i

˛

‚ 1 ď i ď
X

k
2

\

,

´

U k`1
2

´ V k`1
2

¯

k odd and i “ k`1
2 ,

and

Σ “

$

’

’

&

’

’

%

0 k even,

n
k
ÿ

i“ k`3
2

ui k odd.

Lemma 5.27. Suppose u1, . . . , uk are positive integers summing up to kn` 1. Further,
let pγi,jq1ďiďk,1ďjďk`1 be a matrix of parameters such that γi,k`1 “ γi,k, 1 ď i ď k and
Γ be the square matrix consisting of its first k columns. Let Mj and Nj be matrices of
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order 1 ˆ uj for j P rks, and Uj and Vj be matrices of order n ˆ uj for j P rks. Finally,
define a pkn ` 1q ˆ pkn ` 1q matrix with pk ` 1q ˆ k blocks as

∆ :“

¨

˚

˚

˚

˚

˚

˚

˝

pMj ˘ Njq1ďjďt k`1
2 u pMj ˘ Njqt k`3

2 uďjďk

pγi,2j´1Uj ´ γi,2jVjq 1ďiďk
1ďjďt k`1

2 u
pγi,2k`2´2jUj ´ γi,2k`1´2jVjq 1ďiďk

t k`3
2 uďjďk

˛

‹

‹

‹

‹

‹

‹

‚

.

1. If for some 1 ď i0 ď
X

k`1
2

\

,

uj ` uk`1´j “

$

&

%

2n ` 1 ` δi0, k`1
2

j “ i0,

2n otherwise,

then

det ∆ “ p´1q
χ
pdet Γq

n det
˜

Oi0

Wi0

¸ t k`1
2 u
ź

i“1
i‰i0

detWi, (5.2.23)

where

Oi “

$

&

%

´

Mi ˘ Ni Mk`1´i ˘ Nk`1´i

¯

if 1 ď i ď
X

k
2

\

,
´

M k`1
2

˘ N k`1
2

¯

k odd and i “ k`1
2 ,

Wi “

$

’

’

’

&

’

’

’

%

¨

˝

Ui ´Vk`1´i

´Vi Uk`1´i

˛

‚ 1 ď i ď
X

k
2

\

,

´

U k`1
2

´ V k`1
2

¯

k odd and i “ k`1
2 ,

and

χ “

˜

k
ÿ

i“k`2´i0

ui

¸

`

k
ÿ

i“t k`3
2 u

knui.

2. Otherwise
det ∆ “ 0.

Proof. Consider the permutation ζ in Skn`1 which rearranges the columns of ∆ blockwise
in the following order: 1, k, 2, k ´ 1, . . . . In other words, ζ can be written in one-line
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notation as

ζ “ p1, . . . , u1
looomooon

u1

, kn ´ uk ` 2, . . . , kn ` 1
loooooooooooooomoooooooooooooon

uk

,

u1 ` 1, . . . , u1 ` u2
loooooooooomoooooooooon

u2

, kn ´ uk ´ uk´1 ` 2, . . . , kn ` 1 ´ uk
looooooooooooooooooooooomooooooooooooooooooooooon

uk´1

, . . . q.

Then, the number of inversions of ζ is

invpζq “

k
ÿ

i“t k`3
2 u

uipkn ` 1 ´ pu1 ` ¨ ¨ ¨ ` uk`1´iq ´ pui ` ¨ ¨ ¨ ` ukqq. (5.2.24)

Here we note that

det ∆ “ sgnpζq det

¨

˚

˚

˚

˚

˝

Mj2 ˘ Nj2

γi,jUj2 ´ γi,j1Vj2

˛

‹

‹

‹

‹

‚

1ďi,jďk

, (5.2.25)

where

j1
“ j ´ p´1q

j and j2
“

$

&

%

j`1
2 j odd,

k ` 1 ´
j
2 j even.

Now we see that

¨

˚

˚

˚

˚

˝

Mj2 ˘ Nj2

γi,jUj2 ´ γi,j1Vj2

˛

‹

‹

‹

‹

‚

1ďi,jďk

“

¨

˚

˚

˚

˚

˝

1 0

0 pγi,jInq1ďi,jďk

˛

‹

‹

‹

‹

‚

ˆ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

O1 O2 Ot k`1
2 u

W1

W2 0
. . .

0 Wt k`1
2 u

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Since the matrix pγi,jInq1ďi,jďk is the tensor product Γ b In,

det

¨

˚

˚

˚

˚

˝

1 0

0 pγi,jInq1ďi,jďk

˛

‹

‹

‹

‹

‚

“ pdet Γq
n .
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Therefore,

det

¨

˚

˚

˚

˚

˝

Mj2 ˘ Nj2

γi,jUj2 ´ γi,j1Vj2

˛

‹

‹

‹

‹

‚

1ďi,jďk

“ pdet Γq
n det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

O1 O2 Ot k`1
2 u

W1

W2 0
. . .

0 Wt k`1
2 u

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (5.2.26)

If

uj ` uk`1´j “

$

&

%

2n ` 1 ` δi0, k`1
2

j “ i0,

2n otherwise,

for some 1 ď i0 ď
X

k`1
2

\

, then using Lemma 5.25 in (5.2.26) and substituting in (5.2.25),
we have

det ∆ “ p´1q
χ
pdet Γq

n det
˜

Oi0

Wi0

¸ t k`1
2 u
ź

i“1
i‰i0

detWi. (5.2.27)

Otherwise, using Lemma 5.25, the determinant of the last matrix in (5.2.26) is zero.
Hence, by (5.2.25),

det ∆ “ 0.

This completes the proof.

5.3 Schur factorization

In this section, we give a proof of Theorem 5.1.

Lemma 5.28. Fix 0 ď m ď t ´ 1 and 0 ď νm ď ¨ ¨ ¨ ď ν1 ď t ´ m. Let λ be a partition
of length at most tn ` m. Then

coretpλq “ pν1, . . . , νmq if and only if nipλq “

$

&

%

n ` 1 if i “ νi ` m ´ i for some i

n otherwise.

Proof. It is obvious that coretpλq “ pν1, . . . , νmq if and only if βpcoretpλqq “ pν1 ` tn `

m´1, . . . , νm` tn, tn´1, . . . , 0q. This further implies that coretpλq “ pν1, . . . , νmq if and
only if

nipλq “

$

&

%

n ` 1 if i “ νi ` m ´ i for some i

n otherwise.



5.3. Schur factorization 103

Proof of Theorem 5.1. By Definition (2.3.1), we see that the desired Schur polynomial
is

sλpX, . . . , ωt´1X, y, . . . , ωm´1yq “

det

¨

˚

˚

˚

˝

ˆ

`

pωp´1xiq
βjpλq

˘

1ďiďn
1ďjďtn`m

˙

1ďpďt

`

pωi´1yqβjpλq
˘

1ďiďm
1ďjďtn`m

˛

‹

‹

‹

‚

det

¨

˚

˚

˚

˝

ˆ

ppωp´1xiq
tn`m´jq 1ďiďn

1ďjďtn`m

˙

1ďpďt

ppωi´1yqtn`m´jq 1ďiďm
1ďjďtn`m

˛

‹

‹

‹

‚

. (5.3.1)

We first consider the case when ncpλq ą n ` 1 for some 0 ď c ď t ´ 1. Permuting the
columns of the matrix in the numerator in (5.3.1) by σcλ from (5.1.1) pm “ 1, e1 “ cq, we
see that the numerator in the right hand side of (5.3.1) is

sgnpσcλq det

¨

˚

˚

˚

˚

˚

˝

pωpp´1qpcqAλc q1ďpďt pωpp´1qpj´1qAλj´1q1ďpďt
1ďjďt
j‰c`1

pωpp´1qpcqBλ
c q1ďpďm pωpp´1qpj´1qBλ

j´1q1ďpďm
1ďjďt
j‰c`1

˛

‹

‹

‹

‹

‹

‚

, (5.3.2)

where
Aλs “

ˆ

x
β

psq

j pλq

i

˙

1ďiďn
1ďjďnspλq

and Bλ
s “

´

yβ
psq

j pλq
¯

1ďjďnspλq
.

For p P rts, multiplying the rows of the pth block by ωp1´pqc and for p P rms and multi-
plying the row of the pt ` pqth block by ωp1´pqc, we get

sgnpσcλq det

¨

˚

˚

˚

˚

˚

˝

pAλc q1ďpďt pωpp´1qpj´c´1qAλj´1q1ďpďt
1ďjďt
j‰c`1

pBλ
c q1ďpďm pωpp´1qpj´c´1qBλ

j´1q1ďpďm
1ďjďt
j‰c`1

˛

‹

‹

‹

‹

‹

‚

(5.3.3)

Applying the blockwise row operations Ri Ñ Ri ´ R1 for i P r2, ts, Ri Ñ Ri ´ Rt`1 for
i P rt ` 2, t ` ms and then permuting rows Ri, i P r2, t ` 1s cyclically, we have
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sgnpσcλqp´1q
t´1 det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Aλc pAλj´1q1ďjďt
j‰c`1

Bλ
c pBλ

j´1q1ďjďt
j‰c`1

p0q2ďpďt ppωpp´1qpj´c´1q ´ 1qAλj´1q2ďpďt
1ďjďt
j‰c`1

p0q2ďpďm ppωpp´1qpj´c´1q ´ 1qBλ
j´1q2ďpďm

1ďjďt
j‰c`1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (5.3.4)

Since ncpλq ą n ` 1, the determinant in (5.3.4) is zero. Substituting in (5.3.1), we see
that the required Schur polynomial vanishes. Now consider the case when nipλq ď n` 1
for all i P r0, t ´ 1s. Since

ř

i nipλq “ tn ` m, using pigeonhole principle there exist
te1, . . . , emu Ă r0, t ´ 1s such that nei

pλq “ n ` 1, i P rms. Let ei “ νi ` m ´ i for all
i P rms. Permuting the columns of the determinant in the numerator of (5.3.1) by σEλ

from (5.1.1), we see that the numerator is

sgnpσν`δm
λ q det

¨

˚

˚

˚

˝

pωpp´1qpejqAλej
q 1ďpďt

1ďjďm
pωpp´1qpj´1qAλj´1q 1ďp,jďt

j‰e1`1,...,em`1

pωpp´1qpejqBλ
ej

q1ďpďm
1ďjďm

pωpp´1qpj´1qBλ
j´1q 1ďp,jďt

j‰e1`1,...,em`1

˛

‹

‹

‹

‚

(5.3.5)

Consider the permutation σ˚ in Stn`m which rearranges the rows of the numerator block-
wise as: 1, t`1, 2, t`2, . . . ,m, t`m,m`1, . . . , t. Then it can be seen that the numerator
is

sgnpσ˚
q sgnpσν`δm

λ q detpΓmpλqq det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˜

Aλe1

Bλ
e1

¸

. . . 0
˜

Aλem

Bλ
em

¸

Aλem`1

0 . . .

Aλet

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

(5.3.6)
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where the set tem`1 ă ¨ ¨ ¨ ă etu is same as t0, . . . , t ´ 1uzteiuiPrms and

Γmpλq :“

¨

˚

˚

˚

˚

˚

˚

˚

˝

`

ωpi´1qpejqIn`1ˆn`1
˘

1ďiďm
1ďjďm

`

ωpi´1qpj´1qIn`1ˆn

˘

1ďiďm
1ďjďt

j‰e1`1,...,em`1

`

ωpi´1qpejqInˆn`1
˘

m`1ďiďt
1ďjďm

`

ωpi´1qpj´1qInˆn

˘

m`1ďiďt
1ďjďt

j‰e1`1,...,em`1

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

We note that the last determinant in (5.3.6) is non-zero if and only if

njpλq “

$

&

%

n ` 1 if j “ e1, . . . , em,

n otherwise.

So, by Lemma 5.28, we see that the Schur polynomial is non-zero if and only if coretpλq “

pν1, . . . , νmq. In this case, the numerator is

sgnpσ˚
q sgnpσν`δm

λ q detpΓmpλqq

m
ź

i“1
det

˜

Aλei

Bλ
ei

¸

t´1
ź

i“0
i‰ei,iPrms

detAλi . (5.3.7)

Permuting the columns Csn`s, . . . , Ctn`m of Γmpλq cyclically in succession for s “ 1, . . . ,m
and then rows in the similar way, we have

det Γmpλq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

`

ωpi´1qpejqInˆn

˘

1ďiďt
1ďjďm

`

ωpi´1qpj´1qInˆn

˘

1ďiďt
1ďjďt

j‰e1`1,...,em`1

0

0 0 `

ωpi´1qpejq
˘

1ďi,jďm

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Finally, we evaluate det Γmpλq at the empty partition and note that

det Γmpλq

det ΓmpHq
“ scoretpλqp1, ω, . . . , ωm´1

q. (5.3.8)

Since the denominator in (5.3.1) is same as the numerator evaluated at the empty par-
tition. Evaluating (5.3.7) for the empty partition and substituting in (5.1.3) completes
the proof.
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5.4 Factorization of other classical characters

In this section, we prove Theorem 5.4, Theorem 5.7 and Theorem 5.10. Recall, the
matrices Aλp,q, Āλp,q from (5.2.7) and Bλ

p,q, B̄λ
p,q from (5.2.8).

5.4.1 odd orthogonal

Consider the ptn ` 1q ˆ ptn ` 1q block matrix

∆1 :“

¨

˚

˚

˚

˚

˝

pBλ
q´1,1 ´ B̄λ

q´1,0q1ďqďt

`

ωpp´1qqAλq´1,1 ´ ω̄pp´1qpq´1qĀλq´1,0
˘

1ďp,qďt

˛

‹

‹

‹

‹

‚

. (5.4.1)

Substituting Mj “ Bλ
j´1,1, Nj “ B̄λ

j´1,0, Uj “ Aλj´1,1, Vj “ Āλj´1,0 for 1 ď j ď t and

γi,j “

$

&

%

ω
pi´1qpj`1q

2 j odd

ω´
pi´1qpj´2q

2 j even

in Lemma 5.27 proves the following corollary.

Corollary 5.29. 1. If

nipλq ` nt´1´ipλq “

$

&

%

2n ` 1 ` δi0, t´1
2

if i “ i0,

2n otherwise,
0 ď i ď

Z

t ´ 1
2

^

, (5.4.2)

for some 0 ď i0 ď
X

t´1
2

\

, then

det ∆1 “ p´1q
χ1pdet Γq

n det

¨

˝

O
p1q

i0

W
p1q

i0

˛

‚

t t´1
2 u
ź

i“0
i‰i0

detW p1q

i , (5.4.3)

where

O
p1q

i “

$

&

%

´

Bλ
i,1 ´ B̄λ

i,0 Bλ
t´1´i,1 ´ B̄λ

t´1´i,0

¯

if 0 ď i ď
X

t´2
2

\

´

Bλ
t´1

2 ,1 ´ B̄λ
t´1

2 ,0

¯

t odd and i “ t´1
2 ,
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W
p1q

i “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˚

˚

˝

Aλi,1 ´Āλt´1´i,0

´Āλi,0 Aλt´1´i,1

˛

‹

‹

‚

0 ď i ď
X

t´2
2

\

,

´

Aλt´1
2 ,1 ´ Āλt´1

2 ,0

¯

t odd and i “ t´1
2 ,

and

χ1 “

˜

t
ÿ

i“t`1´i0

ni´1pλq

¸

`

t
ÿ

i“t t`3
2 u

tnni´1pλq.

2. Otherwise
det ∆1 “ 0. (5.4.4)

Proof of Theorem 5.4. By (2.4.1), we see that the numerator of desired odd orthogonal
character is given by

det

¨

˚

˚

˚

˝

ˆ

`

pωp´1xiq
βjpλq`1 ´ pω̄p´1x̄iq

βjpλq
˘

1ďiďn
1ďjďtn`1

˙

1ďpďt

`

yβjpλq`1 ´ ȳβjpλq
˘

1ďjďtn`1

˛

‹

‹

‹

‚

. (5.4.5)

Permuting the columns of the matrix in (5.4.5) by σλ from (5.1.1) pm “ 1, d1 “ 0q and
then the t ` 1 row blocks of the numerator cyclically, the numerator is

sgnpσλqp´1q
t det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Bλ
0,1 ´ B̄λ

0 Bλ
1,1 ´ B̄λ

1 . . . Bλ
t´1,1 ´ B̄λ

t´1

Aλ0,1 ´ Āλ0 Aλ1,1 ´ Āλ1 . . . Aλt´1,1 ´ Āλt´1

ωAλ0,1 ´ Āλ0 ω2Aλ1,1 ´ ωt´1Āλ1 . . . Aλt´1,1 ´ ωĀλt´1

...
... . . .

...

ωt´1Aλ0,1 ´ Āλ0 ωt´2Aλ1,1 ´ ωĀλ1 . . . Aλt´1,1 ´ ωt´1Āλt´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

(5.4.6)
where Aλp,q, Āλp , Bλ

p,q and B̄λ
p are defined in (5.2.7) and (5.2.8). We note that the matrix

in (5.4.6) is ∆1 defined in (5.4.1). We use Corollary 5.29 to get the determinant. Since
the denominator in (2.4.1) is same as its numerator evaluated at the empty partition and
n0pH, tn` 1q “ n` 1, nipH, tn` 1q “ n for all i P r1, t´ 1s, evaluating the numerator in
(5.4.6) and then using (5.4.3), we see that the denominator of the desired odd orthogonal
character is
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sgnpσHqp´1q
t
p´1q

χ
p0q

1 pdet Γq
n det

¨

˚

˚

˚

˚

˚

˚

˝

B0,1 ´ B̄0,0 Bt´1,1 ´ B̄t´1,0

A0,1 ´Āt´1,0

´Ā0,0 At´1,1

˛

‹

‹

‹

‹

‹

‹

‚

ˆ

t t´2
2 u
ź

q“1
det

¨

˚

˝

Aq,1 ´Āt´1´q,0

´Āq,0 At´1´q,1

˛

‹

‚

ˆ

$

&

%

det
´

A t´1
2 ,1 ´ Ā t´1

2 ,0

¯

t is odd,

1 t is even,

(5.4.7)

where
χ

p0q

1 “

t
ÿ

i“t t`3
2 u

tn2.

If coretpλq R Qptq
2,0,kYQptq

2,1,k for all k P rrkpcoretpλqqs, then by Corollary 5.20 and (5.4.4), the
numerator in (5.4.6) is 0. So, soλpX, ωX, . . . , ωt´1X, yq “ 0. If coretpλq P Qptq

2,0,k Y Qptq
2,1,k

for some 1 ď k ď rkpcoretpλqq, then we use Corollary 5.20 and (5.4.3) to factorize the
numerator in (5.4.6).

Case 1. If t is odd and i0 “ t´1
2 , then the numerator is

sgnpσλqp´1q
t
p´1q

χ1pdet Γq
n det

¨

˚

˝

Bλ
t´1

2 ,1 ´ B̄λ
t´1

2 ,0

Aλt´1
2 ,1 ´ Āλt´1

2 ,0

˛

‹

‚

t´3
2
ź

q“0
det

¨

˚

˝

Aλq,1 ´Āλt´1´q,0

´Āλq,0 Aλt´1´q,1

˛

‹

‚

.

(5.4.8)
By Lemma 5.24, we have

det

¨

˚

˚

˚

˚

˚

˚

˝

B0,1 ´ B̄0,0 Bt´1,1 ´ B̄t´1,0

A0,1 ´Āt´1,0

´Ā0,0 At´1,1

˛

‹

‹

‹

‹

‹

‹

‚

“ ȳtnpy ´ 1q

n
ź

i“1

`

pxti ´ ytqpx̄ti ´ ytq
˘

det

¨

˚

˝

A0,1 ´Āt´1,0

´Ā0,0 At´1,1

˛

‹

‚
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and det

¨

˚

˝

B0, t`1
2

´ B̄0, t´1
2

A0, t`1
2

´ Ā0, t´1
2

˛

‹

‚

“ p´1q
ny´tn`p1´tq{2

pyt ´ 1q

n
ź

i“1

`

pxti ´ ytqpx̄ti ´ ytq
˘

det
´

A t´1
2 ,1 ´ Ā t´1

2 ,0

¯

.

Substituting in (5.4.7), we see that the denominator in this case is

sgnpσHqp´1q
t`n

p´1q
χ

p0q

1 pdet Γq
n y ´ 1
yp1´tq{2pyt ´ 1q

t´3
2
ź

q“0
det

¨

˚

˝

Aq,1 ´Āt´1´q,0

´Āq,0 At´1´q,1

˛

‹

‚

ˆ det

¨

˚

˝

B0, t`1
2

´ B̄0, t´1
2

A0, t`1
2

´ Ā0, t´1
2

˛

‹

‚

.

(5.4.9)

For q P r0, t´3
2 s, multiplying by x´q´1

i and x̄´q
i to the ith row in upper and lower blocks

respectively for i P rns, both in numerator and denominator, by Lemma 5.22, we have

det

¨

˚

˝

Aλq,1 ´Āλt´1´q,0

´Āλq,0 Aλt´1´q,1

˛

‹

‚

det

¨

˚

˝

Aq,1 ´Āt´1´q,0

´Āq,0 At´1´q,1

˛

‹

‚

“
p´1q

nt´1´qpλqpnt´1´qpλq`1q

2

p´1q
npn`1q

2
s
π

p1q
q

pX t, X
t
q. (5.4.10)

Taking the ratio of (5.4.8) and (5.4.9) and using (5.1.2), (5.4.10) and (5.2.17), we see
that the required odd orthogonal character is

sgnpσλqp´1q
ϵ`n y ´ 1

yp1´tq{2pyt ´ 1q

t´3
2
ź

q“0
s
π

p1q
q

pX t, X
t
q ˆ so

λp
t´1

2 qpX t
q,

where

ϵ “
tpt ´ 1q

2
npn ` 1q

2 `

˜

t
ÿ

i“t`1´i0

ni´1pλq

¸

`

t
ÿ

i“t t`3
2 u

tnpni´1pλq ´ nq

`

t t´2
2 u
ÿ

q“0

ˆ

nt´1´qpλqpnt´1´qpλq ` 1q

2 ´
npn ` 1q

2

˙

.

(5.4.11)
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Since pt`1qpt´1q

2
npn`1q

2 is even for odd t, the parity of ϵ is same as ϵ1pλq defined in (5.1.5).

Case 2. If i0 ‰ t´1
2 , then (5.4.3) for the determinant in (5.4.6), we see that the

numerator is

sgnpσλqp´1q
χ1`t

pdet Γq
n det

¨

˚

˚

˚

˚

˚

˚

˝

Bλ
i0,1 ´ B̄λ

i0,0 Bλ
t´1´i0,1 ´ B̄λ

t´1´i0,0

Aλi0,1 ´Āλt´1´i0,0

´Āλi0,0 Aλt´1´i0,1

˛

‹

‹

‹

‹

‹

‹

‚

ˆ

t t´2
2 u
ź

q“0
q‰i0

det

¨

˚

˝

Aλq,1 ´Āλt´1´q,0

´Āλq,0 Aλt´1´q,1

˛

‹

‚

ˆ

$

&

%

det
´

Aλt´1
2 ,1 ´ Āλt´1

2 ,0

¯

t is odd.

1 t is even.

(5.4.12)

For q P r0,
X

t´3
2

\

szti0u, multiplying by x´q´1
i to the ith row in upper blocks and by x̄´q

i

to the ith row in lower blocks for i P rns, both in numerator and denominator, and then
by Lemma 5.22, we have

det

¨

˚

˝

Aλq,1 ´Āλt´1´q,0

´Āλq,0 Aλt´1´q,1

˛

‹

‚

det

¨

˚

˝

Aq,1 ´Āt´1´q,0

´Āq,0 At´1´q,1

˛

‹

‚

“
p´1q

nt´1´qpλqpnt´1´qpλq`1q

2

p´1q
npn`1q

2
s
π

p1q
q

pX t, X
t
q. (5.4.13)

Evaluating one of the factors in (5.4.7), we have

det

¨

˚

˚

˚

˚

˚

˚

˝

B0,1 ´ B̄0,0 Bt´1,1 ´ B̄t´1,0

A0,1 ´Āt´1,0

´Ā0,0 At´1,1

˛

‹

‹

‹

‹

‹

‹

‚

“ p´1q
npn´1q

2 x1 . . . xn
`

y1´tn
´ y´tn

˘

V pX t, X
t
, ytq

“p´1q
npn´1q

2 x1 . . . xn
`

y1`tn
´ ytn

˘

V pX t, X
t
, ȳtq,

(5.4.14)

where V pX t, X
t
, ȳtq “

ś

1ďiăjďnpxti ´ xtjqpxti ´ x̄tjqpxtj ´ x̄tiqpx̄ti ´ x̄tjq
n
ź

i“1
pxti ´ ytqpxti ´

x̄tiqpx̄ti ´ ytq. Using Lemma 5.23 and (5.4.14), we see that
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det

¨

˚

˝

Bλ
i0,1 ´ B̄λ

i0,0 Bλ
t´1´i0,1 ´ B̄λ

t´1´i0,0

Aλi0,1 ´Āλt´1´i0,0

´Āλi0,0 Aλt´1´i0,1

˛

‹

‚

det

¨

˚

˝

B0,1 ´ B̄0,0 Bt´1,1 ´ B̄t´1,0

A0,1 ´Āt´1,0

´Ā0,0 At´1,1

˛

‹

‚

“
p´1q

nt´1´i0 pλqpnt´1´i0 pλq`1q

2

p´1q
npn`1q

2

1
py ´ 1q

ˆ

´

y´tpλ
pt´1´i0q

1 `npt´1´i0qpλq´nq`i0`1s
π

p1q

i0
pX t, X

t
, ytq

´ ytpλ
pt´1´i0q

1 `nt´1´i0 pλq´nq´i0s
π

p1q

i0
pX t, X

t
, ȳtq

¯

. (5.4.15)

Thus, using (5.4.13), (5.4.15) and

det
´

Aλt´1
2 ,1 ´ Āλt´1

2 ,0

¯

det
´

A t´1
2 ,1 ´ Ā t´1

2 ,0

¯ “ so
λp

t´1
2 qpX t

q,

the ratio of (5.4.12) and (5.4.7) is:

sgnpσλq
p´1qϵ

py ´ 1q

´

y´tpλ
pt´1´i0q

1 `npt´1´i0qpλq´nq`i0`1s
π

p1q

i0
pX t, X

t
, ytq ´ ytpλ

pt´1´i0q

1 `nt´1´i0 pλq´nq´i0

s
π

p1q

i0
pX t, X

t
, ȳtq

¯

ˆ

t t´2
2 u
ź

i“0
i‰i0

s
π

p1q

i
pX t, X

t
q ˆ

$

&

%

so
λp

t´1
2 qpX tq t is odd,

1 t is even,

where ϵ is defined in (5.4.11). Since tpt´2q

2
npn`1q

2 is even for even t and pt`1qpt´1q

2
npn`1q

2

is even for odd t, the parity of ϵ is same as ϵ1pλq defined in (5.1.5), completing the
proof.

5.4.2 Symplectic characters

If
t´2
ÿ

i“0
nipλq “ pt ´ 1qn, then consider the pt ´ 1qn ˆ pt ´ 1qn matrix

Π2 “
`

ωpqAλq´1,1 ´ ω̄pqĀλq´1,1
˘

1ďp,qďt´1 .
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Substituting Uj “ Aλj´1,1, Vj “ Āλj´1,1 for 1 ď j ď t ´ 1 and

γi,j “

$

&

%

ω
ipj`1q

2 j odd,

ω´
ij
2 j even,

in Lemma 5.26 proves the following corollary.

Corollary 5.30. 1. If nipλq`nt´2´ipλq ‰ 2n for some i P r0,
X

t´2
2

\

s, then det Π2 “ 0.

2. If nipλq ` nt´2´ipλq “ 2n for all i P t0, 1, . . . ,
X

t´2
2

\

u, then

det Π2 “ p´1q
Σ2 pdet Γq

n

t t´3
2 u
ź

q“0
det

¨

˚

˝

Aλi,1 ´Āλt´2´i,1

´Āλi,1 Aλt´2´i,1

˛

‹

‚

ˆ

$

&

%

det
´

Aλt
2 ´1,1 ´ Āλt

2 ´1,1

¯

t even,

1 t odd,

(5.4.16)

where

Σ2 “

$

’

’

&

’

’

%

n
t´1
ÿ

q“
t`2

2

nq´1pλq t even,

0 t odd.

If
t´2
ÿ

i“0
nipλq “ pt ´ 1qn ` 1, then consider the pt ´ 1qn ` 1 ˆ pt ´ 1qn ` 1 matrix

∆2 :“

¨

˚

˚

˚

˚

˝

pBλ
q´1,1 ´ B̄λ

q´1,1q1ďqďt´1

`

ωpqAλq´1,1 ´ ω̄pqĀλq´1,1
˘

1ďp,qďt´1

˛

‹

‹

‹

‹

‚

. (5.4.17)

Substituting Mj “ Bλ
j´1,1, Nj “ B̄λ

j´1,1, Uj “ Aλj´1,1, Vj “ Āλj´1,1 for all 1 ď j ď t ´ 1
and

γi,j “

$

&

%

ω
ipj`1q

2 j odd,

ω´
ij
2 j even,

in Lemma 5.26 proves the following corollary.
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Corollary 5.31. 1. If

njpλq ` nt´2´jpλq “

$

&

%

2n ` 1 ` δi0, t´2
2

j “ i0,

2n otherwise,
j P

„

0,
Z

t ´ 2
2

^ȷ

,

for some i0 P r0,
X

t´2
2

\

s, then

det ∆2 “ p´1q
χ2pdet Γq

n det

¨

˝

O
p2q

i0

W
p2q

i0

˛

‚

t t´2
2 u
ź

i“0
i‰i0

detW p2q

i , (5.4.18)

where

O
p2q

i “

$

&

%

´

Bλ
i,1 ´ B̄λ

i,1 Bλ
t´2´i,1 ´ B̄λ

t´2´i,1

¯

if 0 ď i ď
X

t´3
2

\

´

Bλ
t´2

2 ,1 ´ B̄λ
t´2

2 ,1

¯

t even and i “ t´2
2 ,

W
p2q

i “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˚

˚

˝

Aλi,1 ´Āλt´2´i,1

´Āλi,1 Aλt´2´i,1

˛

‹

‹

‚

0 ď i ď
X

t´3
2

\

,

´

Aλt´2
2 ,1 ´ Āλt´2

2 ,1

¯

t even and i “ t´2
2 ,

and

χ2 “

˜

t´1
ÿ

i“t´i0

ni´1pλq

¸

`

t´1
ÿ

i“t t`2
2 u

pt ´ 1qnni´1pλq.

2. Otherwise
det ∆2 “ 0.

Proof of Theorem 5.7. By (2.4.3), we see that the numerator of the required symplectic
character is given by

det

¨

˚

˚

˝

ˆ

`

pωp´1xiq
βjpλq`1 ´ pω̄p´1x̄iq

βjpλq`1˘ 1ďiďn
1ďjďtn`1

˙

1ďpďt

`

yβjpλq`1 ´ ȳβjpλq`1˘

1ďjďtn`1

˛

‹

‹

‚

. (5.4.19)

Permuting the columns of the determinant in the numerator by σλ from (5.1.1) pm “

1, d1 “ 0q and applying blockwise row operations R1 Ñ R1 ` ¨ ¨ ¨ ` Rt, Ri Ñ Ri ´ 1
t
R1,
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2 ď i ď t and then permute the last t rows cyclically, we see that the numerator is

sgnpσλqtnp´1q
t´1 det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 . . . 0 Aλt´1,1 ´ Āλt´1,1

Bλ
0,1 ´ B̄λ

0,1 . . . Bλ
t´2,1 ´ B̄λ

t´2,1 Bλ
t´1,1 ´ B̄λ

t´1,1

ωAλ0,1 ´ ωt´1Āλ0,1 . . . ωt´1Aλt´2,1 ´ ωĀλt´2,1 0

... . . .
...

...

ωt´1Aλ0,1 ´ ωĀλ0,1 . . . ωAλt´2,1 ´ ωt´1Āλt´2,1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

(5.4.20)
whereAλp,q, Āλp,q, Bλ

p,q and B̄λ
p,q are defined in (5.2.7) and (5.2.8). If coretpλq R Qptq

3,0,kYQptq
3,2,k

for all k P rrkpλqs, then using Corollary 5.21, Corollary 5.30 and Corollary 5.31,

spλpX, ωX, . . . , ωt´1X, yq “ 0.

If coretpλq P Qptq
3,0,k Y Qptq

3,2,k for some k P rrkpλqs, then using Corollary 5.21, we factorize
the numerator using Corollary 5.30 and Corollary 5.31. Since the denominator in (2.4.3)
is its numerator evaluated for the empty partition, and the empty partition is vacuously
p3, 0, 0q-asymmetric with n0pH, tn`1q “ n`1 and nipH, tn`1q “ n for all i P r1, t´1s,
the factorization for the denominator of required symplectic character is

p´1q
χ

p0q

2 pdet Γq
n sgnpσHqtnp´1q

pt´1qpn2`1q`n det
`

At´1,1 ´ Āt´1,1
˘

ˆ det

¨

˚

˚

˚

˚

˚

˚

˝

B0,1 ´ B̄0,1 Bt´2,1 ´ B̄t´2,1

A0,1 ´Āt´2,1

´Ā0,1 At´2,1

˛

‹

‹

‹

‹

‹

‹

‚

ˆ

t t´3
2 u
ź

i“1
det

¨

˚

˝

Ai,1 ´Āt´2´i,1

´Āi,1 At´2´i,1

˛

‹

‚

ˆ

$

&

%

´

A t´2
2 ,1 ´ Ā t´2

2 ,1

¯

t even,

1 t odd,
(5.4.21)

where

χ
p0q

2 “

t´1
ÿ

i“t t`2
2 u

pt ´ 1qn2.
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Case 1. i0 “ t ´ 1. In this case nt´1pλq “ n ` 1 and the matrix in (5.4.20) is block
anti-diagonal 2 ˆ 2 matrix. Using (5.4.16), the numerator in this case is

sgnpσλqtnp´1q
pt´1qpn2`n`1q

p´1q
Σ2 pdet Γq

n det

¨

˚

˝

Aλt´1,1 ´ Āλt´1,1

Bλ
t´1,1 ´ B̄λ

t´1,1

˛

‹

‚

ˆ

t t´3
2 u
ź

i“0
det

¨

˚

˝

Aλi,1 ´Āλt´2´i,1

´Āλi,1 Aλt´2´i,1

˛

‹

‚

ˆ

$

&

%

det
´

Aλt´2
2 ,1 ´ Āλt´2

2 ,1

¯

t even,

1 t odd.

(5.4.22)

By Lemma 5.24, we have

det

¨

˚

˚

˚

˚

˚

˚

˝

B0,1 ´ B̄0,1 Bt´2,1 ´ B̄t´2,1

A0,1 ´Āt´2,1

´Ā0,1 At´2,1

˛

‹

‹

‹

‹

‹

‹

‚

“ y´tn
py ´ ȳq

n
ź

i“1

`

pxti ´ ytqpx̄ti ´ ytq
˘

det

¨

˚

˝

A0,1 ´Āt´2,1

´Ā0,1 At´2,1

˛

‹

‚

and

det

¨

˚

˝

A0,t ´ Ā0,t

B0,t ´ B̄0,t

˛

‹

‚

“ p´1q
ny´tn´t

py2t
´ 1q

n
ź

i“1

`

pxti ´ ytqpx̄ti ´ ytq
˘

det
`

At´1,1 ´ Āt´1,1
˘

.

Substituting in (5.4.21), the denominator in this case is

p´1q
χ

p0q

2 `n
pdet Γq

n sgnpσHqtnp´1q
pt´1qpn2`1q`n py2t ´ 1q

ytpy ´ ȳq
det

¨

˚

˝

A0,t ´ Ā0

B0,t ´ B̄0

˛

‹

‚

ˆ

t t´3
2 u
ź

i“0
det

¨

˚

˝

Ai,1 ´Āt´2´i,1

´Āi,1 At´2´i,1

˛

‹

‚

ˆ

$

&

%

det
´

A t´2
2 ,1 ´ Ā t´2

2 ,1

¯

t even,

1 t odd.

(5.4.23)

So, using Lemma 5.22, (5.2.13) and (5.2.16), we see that the required symplectic char-



116 5. Factorization of classical characters twisted by roots of unity: II

acter, the ratio of (5.4.22) and (5.4.23), is

p´1q
ϵ2 sgnpσλq

py2t ´ 1q

ytpy ´ ȳq
spλpt´1qpX t, ytq

t t´3
2 u
ź

q“0
s
π

p2q
q

pX t, X
t
q ˆ

$

&

%

so
λp

t´2
2 qpX tq t even,

1 t odd,

where

ϵ2 “
tpt ´ 1q

2
npn ` 1q

2 ` pt ´ 1qn `

t t´3
2 u
ÿ

q“0

ˆ

nt´2´qpλqpnt´2´qpλq ` 1q

2 ´
npn ` 1q

2

˙

´

t´1
ÿ

i“t t`2
2 u

pt ´ 1qn2
`

$

’

’

&

’

’

%

n
t´1
ÿ

q“
t`2

2

nq´1pλq t even

0 t odd.
(5.4.24)

Since pt`1qpt´1q

2
npn`1q

2 is even for odd t and the parity of pt2´2t`2q

2
npn`1q

2 is the same as
npn`1q

2 for even t, p´1qϵ2 is the same as p´1qϵ2pλq, defined in (5.1.9).

If i0 ‰ t ´ 1, then nt´1 “ n and the numerator in (5.4.20) is

sgnpσλqtnp´1q
pt´1qpn2`1q`n det

`

Aλt´1,1 ´ Āλt´1,1
˘

det

¨

˚

˚

˚

˚

˝

pBλ
q´1,1 ´ B̄λ

q´1,1q1ďqďt´1

`

ωpqAλq´1,1 ´ ω̄pqĀλq´1,1
˘

1ďp,qďt´1

˛

‹

‹

‹

‹

‚

.

The last determinant is ∆2 defined in (5.4.17).

Case 2. i0 “ t´2
2 , then using (5.4.18), the numerator in this case is

p´1q
χ2pdet Γq

n sgnpσλqtnp´1q
pt´1qpn2`1q`n det

`

Aλt´1,1 ´ Āλt´1,1
˘

ˆ det

¨

˚

˝

Bλ
t
2 ´1,1 ´ B̄λ

t
2 ´1,1

Aλt
2 ´1,1 ´ Āλt

2 ´1,1

˛

‹

‚

ˆ

t´4
2
ź

i“0
det

¨

˚

˝

Aλi,1 ´Āλt´2´i,1

´Āλi,1 Aλt´2´i,1

˛

‹

‚

.

(5.4.25)
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By Lemma 5.24, we have

det

¨

˚

˚

˚

˚

˚

˚

˝

B0,1 ´ B̄0,1 Bt´2,1 ´ B̄t´2,1

A0,1 ´Āt´2,1

´Ā0,1 At´2,1

˛

‹

‹

‹

‹

‹

‹

‚

“ y´tn
py ´ ȳq

n
ź

i“1

`

pxti ´ ytqpx̄ti ´ ytq
˘

det

¨

˚

˝

A0,1 ´Āt´2,1

´Ā0,1 At´2,1

˛

‹

‚

and

det

¨

˚

˝

A0, t
2

´ Ā0, t
2

B0, t
2

´ B̄0, t
2

˛

‹

‚

“ p´1q
ny´tn´t{2

pyt ´ 1q

n
ź

i“1
pxti ´ ytqpx̄ti ´ ytq det

´

A t´2
2 ,1 ´ Ā t´2

2 ,1

¯

.

Substituting in (5.4.21), the denominator in this case is

p´1q
χ

p0q

2 `n
pdet Γq

n sgnpσHqtnp´1q
pt´1qpn2`1q`n pyt ´ 1q

yt{2py ´ ȳq
det

`

Aλt´1,1 ´ Āλt´1,1
˘

ˆ

t t´3
2 u
ź

i“0
det

¨

˚

˝

Ai,1 ´Āt´2´i,1

´Āi,1 At´2´i,1

˛

‹

‚

ˆ

$

’

’

’

’

’

&

’

’

’

’

’

%

det

¨

˚

˚

˝

A0, t
2

´ Ā0, t
2

B0, t
2

´ B̄0, t
2

˛

‹

‹

‚

t even,

1 t odd.

(5.4.26)

So, using Lemma 5.22, (5.2.12) and (5.2.17), we see that the required symplectic char-
acter, the ratio of (5.4.25) and (5.4.26) is

p´1q
ϵ1

2`n sgnpσλq
pyt ´ 1q

yt{2py ´ ȳq
spλpt´1qpX t

q

t t´3
2 u
ź

q“0
s
π

p2q
q

pX t, X
t
q ˆ so

λp
t´2

2 qpX t, ytq,

where

ϵ1
2 “

tpt ´ 1q

2
npn ` 1q

2 `

t´1
ÿ

i“t´i0

ni´1pλq `

t´1
ÿ

i“t t`2
2 u

pt ´ 1qnpni´1pλq ´ nq

`

t t´3
2 u
ÿ

q“0

ˆ

nt´2´qpλqpnt´2´qpλq ` 1q

2 ´
npn ` 1q

2

˙

.

(5.4.27)
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Since the parity of pt2´2t`2q

2
npn`1q

2 is the same as npn`1q

2 for even t, p´1qϵ
1
2 is the same as

p´1qϵ2pλq`n`1, defined in (5.1.9).

Case 3. i0 ‰ t´2
2 . Using (5.4.18), the numerator in this case is

p´1q
χ2pdet Γq

n sgnpσλqtnp´1q
pt´1qpn2`1q`n det

`

Aλt´1,1 ´ Āλt´1,1
˘

ˆ det

¨

˚

˚

˚

˚

˚

˚

˝

Bλ
i0,1 ´ B̄λ

i0,1 Bλ
t´2´i0,1 ´ B̄λ

t´2´i0,1

Aλi0,1 ´Āλt´2´i0,1

´Āλi0,1 Aλt´2´i0,1

˛

‹

‹

‹

‹

‹

‹

‚

ˆ

t t´3
2 u
ź

i“0
i‰i0

det

¨

˚

˝

Aλi,1 ´Āλt´2´i,1

´Āλi,1 Aλt´2´i,1

˛

‹

‚

ˆ

$

&

%

´

Aλt´2
2 ,1 ´ Āλt´2

2 ,1

¯

t even,

1 t odd.
(5.4.28)

By Lemma 5.24, we have

det

¨

˚

˚

˚

˚

˚

˚

˝

B0,1 ´ B̄0,1 Bt´2,1 ´ B̄t´2,1

A0,1 ´Āt´2,1

´Ā0,1 At´2,1

˛

‹

‹

‹

‹

‹

‹

‚

“ p´1q
npn´1q

2 x1 . . . xn
`

y1´tn
´ y´tn´1˘V pX t, X

t
, ytq

“ p´1q
npn´1q

2 x1 . . . xn
`

y1`tn
´ ytn´1˘V pX t, X

t
, ȳtq, (5.4.29)

where V pX t, X
t
, ȳtq “

ś

1ďiăjďnpxti ´ xtjqpxti ´ x̄tjqpxtj ´ x̄tiqpx̄ti ´ x̄tjq
n
ź

i“1
pxti ´ ytqpxti ´

x̄tiqpx̄ti ´ ytq. Using Lemma 5.23 and (5.4.29), we see that

det

¨

˚

˝

Bλ
i0,1 ´ B̄λ

i0,1 Bλ
t´2´i0,1 ´ B̄λ

t´2´i0,1

Aλi0,1 ´Āλt´2´i0,1

´Āλi0,1 Aλt´2´i0,1

˛

‹

‚

det

¨

˚

˝

B0,1 ´ B̄0,1 Bt´2,1 ´ B̄t´2,1

A0,1 ´Āt´2,1

´Ā0,1 At´2,1

˛

‹

‚

“
p´1q

nt´2´i0 pλqpnt´2´i0 pλq`1q

2

p´1q
npn`1q

2

1
y ´ ȳ

ˆ

´

y´tpλ
pt´2´i0q

1 `npt´2´i0qpλq´nq`i0s
π

p1q

i0
pX t, X

t
, ytq

´ ytpλ
pt´1´i0q

1 `nt´1´i0 pλq´nq´i0s
π

p1q

i0
pX t, X

t
, ȳtq

¯

. (5.4.30)
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Thus, using Lemma 5.22, (5.4.30) and

det
´

Aλt´2
2 ,1 ´ Āλt´2

2 ,1

¯

det
´

A t´2
2 ,1 ´ Ā t´2

2 ,1

¯ “ so
λp

t´2
2 qpX t

q,

the ratio of (5.4.28) and (5.4.21) is:

sgnpσλq
p´1qϵ

1
2

y ´ ȳ

´

y´tpλ
pt´2´i0q

1 `npt´2´i0qpλq´nq`i0s
π

p2q

i0
pX t, X

t
, ytq ´ ytpλ

pt´2´i0q

1 `nt´2´i0 pλq´nq´i0

s
π

p2q

i0
pX t, X

t
, ȳtq

¯

ˆ

t t´2
2 u
ź

i“0
i‰i0

s
π

p2q

i
pX t, X

t
q ˆ

$

&

%

so
λp

t´1
2 qpX tq t is odd,

1 t is even,

where ϵ1
2 is defined in (5.4.27). Since pt`1qpt´1q

2
npn`1q

2 is even for odd t, p´1qϵ
1
2 is the same

as p´1qϵ2pλq, defined in (5.1.9). This completes the proof.

5.4.3 Even orthogonal characters

If
t´1
ÿ

i“1
nipλq “ pt ´ 1qn, then consider the pt ´ 1qn ˆ pt ´ 1qn block matrix

Π3 :“
`

ωpqAλq ` ω̄pqĀλq
˘

1ďp,qďt´1 . (5.4.31)

Substituting Uj “ Aλj , Vj “ ´Āλj and for 1 ď j ď t ´ 1,

γi,j “

$

&

%

ω
ipj`1q

2 j odd,

ω´
ij
2 j even,

in Lemma 5.26, we get the following corollary.

Corollary 5.32. 1. If nipλq ` nt´ipλq ‰ 2n for some i P r
X

t
2

\

s, then det Π3 “ 0.

2. If nipλq ` nt´ipλq “ 2n for all i P r
X

t
2

\

s, then

det Π3 “ p´1q
Σ3 pdetpγi,jq1ďi,jďt´1q

n

t t´1
2 u
ź

q“1
det

¨

˚

˝

Aλq Āλt´q

Āλq Aλt´q

˛

‹

‚

ˆ

$

&

%

det
´

Aλt
2

` Āλt
2

¯

t even,

1 t odd,

(5.4.32)
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where

Σ3 “

$

’

’

&

’

’

%

n
t´1
ÿ

q“
t`2

2

nqpλq t even,

0 t odd.

If
t´1
ÿ

i“1
nipλq “ pt´ 1qn` 1, then consider the ppt´ 1qn` 1q ˆ ppt´ 1qn` 1q block matrix

∆3 :“

¨

˝

pBλ
q ` B̄λ

q q1ďqďt´1
`

ωpqAλq ` ωt´pqĀλq
˘

1ďp,qďt´1

˛

‚. (5.4.33)

Substituting Mj “ Bλ
j , Nj “ B̄λ

j , Uj “ Aλj , Vj “ ´Āλj and for 1 ď j ď t ´ 1,

γi,j “

$

&

%

ω
ipj`1q

2 j odd,

ω´
ij
2 j even,

in Lemma 5.27, we get the following corollary.

Corollary 5.33. 1. If

njpλ, tn`1q`nt´jpλ, tn`1q “

$

&

%

2n ` 1 ` δi0, t
2

j “ i0,

2n otherwise,
j P rt´1s, (5.4.34)

for some i0 P r
X

t
2

\

s, then

det ∆3 “ p´1q
χ3pdet Γq

n det
˜

O
p3q

i0

W
p3q

i0

¸ t t
2 u
ź

i“1
i‰i0

detW p3q

i , (5.4.35)

where

O
p3q

i “

$

&

%

´

Bλ
i ` B̄λ

i Bλ
t´i ` B̄λ

t´i

¯

if 1 ď i ď
X

t´1
2

\

,
´

Bλ
t
2

` B̄λ
t
2

¯

t even and i “ t
2 ,

W
p3q

i “

$

’

’

’

&

’

’

’

%

¨

˝

Aλi Āλt´i

Āλi Aλt´i

˛

‚ 1 ď i ď
X

t´1
2

\

,

´

Aλt
2

` Āλt
2

¯

t even and i “ t
2 ,

and χ3 “

˜

t´1
ÿ

i“t`1´i0

nipλq

¸

`

t´1
ÿ

i“t t`2
2 u

pt ´ 1qnnipλq.
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2. Otherwise, det ∆3 “ 0.

Proof of Theorem 5.10. By (2.4.5), we see that the numerator of the required even or-
thogonal character is:

2 det

¨

˚

˚

˚

˝

ˆ

`

pωp´1xiq
βjpλq ` pω̄p´1x̄iq

βjpλq
˘

1ďiďn
1ďjďtn`1

˙

1ďpďt

`

yβjpλq ` ȳβjpλq
˘

1ďjďtn`1

˛

‹

‹

‹

‚

First permuting the columns of the matrix in the numerator by σλ from (5.1.1) pm “

1, d1 “ 0q and then permuting the last t rows cyclically, we see that the numerator is

2 sgnpσλqp´1q
pt´1q det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Aλ0 ` Āλ0 Aλ1 ` Āλ1 . . . Aλt´1 ` Āλt´1

Bλ
0 ` B̄λ

0 Bλ
1 ` B̄λ

1 . . . Bλ
t´1 ` B̄λ

t´1

Aλ0 ` Āλ0 ωAλ1 ` ωt´1Āλ1 . . . ωt´1Aλt´1 ` ωĀλt´1

...
... . . .

...

Aλ0 ` Āλ0 ωt´1Aλ1 ` ωĀλ1 . . . ωAλt´1 ` ωt´1Āλt´1,

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where Aλp,q, Āλp , Bλ
p,q and B̄λ

p are defined in (5.2.7) and (5.2.8). Applying blockwise row
operations R1 Ñ R1 ` R3 ` ¨ ¨ ¨ ` Rt`1 and then Ri Ñ Ri ´ 1

t
R1, 3 ď i ď t ` 1, we get

2tn sgnpσλqp´1q
pt´1q det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Aλ0 ` Āλ0 0 . . . 0

Bλ
0 ` B̄λ

0 Bλ
1 ` B̄λ

1 . . . Bλ
t´1 ` B̄λ

t´1

0 ωAλ1 ` ωt´1Āλ1 . . . ωt´1Aλt´1 ` ωĀλt´1

...
... . . .

...

0 ωt´1Aλ1 ` ωĀλ1 . . . ωAλt´1 ` ωt´1Āλt´1,

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

(5.4.36)
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Since the denominator in (2.4.5) is the numerator evaluated at the empty partition and
n0pH, tn ` 1q “ n ` 1, nipH, tn ` 1q “ n for all i P r1, t ´ 1s, evaluating the numerator
in (5.4.36) and then using Corollary 5.32, we see that the denominator of the required
even orthogonal character is:

p1 ` δtn`1qtn sgnpσHqp´1q
pt´1q`Σ0

3pdet Γq
n det

¨

˝

A0 ` Ā0

B0 ` B̄0

˛

‚

ˆ

t t´1
2 u
ź

q“1
det

¨

˚

˝

Aq Āt´q

Āq At´q

˛

‹

‚

ˆ

$

&

%

det
´

A t
2

` Ā t
2

¯

t even,

1 t odd,

(5.4.37)

where

Σ0
3 “

$

’

’

&

’

’

%

t´1
ÿ

q“
t`2

2

n2 t even,

0 t odd.

If coretpλq R Qptq
1,0,0 YQptq

2,1,k for all k P rrkpcoretpλqqs, then by Lemma 5.16, Corollary 5.19,
Corollary 5.32 and Corollary 5.33, the numerator in (5.4.36) is 0. So,

oeven
λ pX, ωX, . . . , ωt´1X, yq “ 0.

If coretpλq P Qptq
1,0,0, then by Lemma 5.16, n0pλq “ n ` 1 and nipλq ` nt´ipλq “ 2n and

the numerator in (5.4.36) is the same as:

2tn sgnpσλqp´1q
pt´1q det

¨

˝

Aλ0 ` Āλ0

Bλ
0 ` B̄λ

0

˛

‚ˆ det
´

ωijAλj ` ωt´ijĀλj

¯

1ďi,jďt´1
. (5.4.38)

The last matrix in (5.4.38) is Π3 defined in (5.4.31). Using Corollary 5.32, we see that
the numerator is

2tn sgnpσλqp´1q
pt´1q`Σ3 pdet Γq

n det

¨

˝

Aλ0 ` Āλ0

Bλ
0 ` B̄λ

0

˛

‚

ˆ

t t´1
2 u
ź

q“1
det

¨

˚

˝

Aλq Āλt´q

Āλq Aλt´q

˛

‹

‚

ˆ

$

&

%

det
´

Aλt
2

` Āλt
2

¯

t even,

1 t odd.
(5.4.39)
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By (5.2.14) and (2.4.8), we note that

det
´

Aλt
2

` Āλt
2

¯

det
´

A t
2

` Ā t
2

¯ “ p´1q
ř

i λ
pt{2q

i soλpt{2qp´X t
q.

So, applying (5.2.18) and Lemma 5.22, the ratio of (5.4.39) and (5.4.37), the required
even orthogonal character is

p´1q
ϵ3 sgnpσλqoeven

λp0q pX t, ytq

t t´1
2 u
ź

i“1
s
π

p3q

i
pX t, X

t
q ˆ

$

&

%

p´1q
ř

i λ
pt{2q

i soλpt{2qp´X tq t even,

1 t odd,

where

ϵ3 “
tpt ´ 1q

2
npn ` 1q

2 `

$

’

’

&

’

’

%

n
t´1
ÿ

q“
t`2

2

pnqpλq ´ nq t even,

0 t odd

`

t t´1
2 u
ÿ

i“1

ˆ

nt´ipλqpnt´ipλq ´ 1q

2 ´
npn ´ 1q

2

˙

.

(5.4.40)

If n0pλq “ n, then the numerator is

2tn sgnpσλqp´1q
pt´1q det

`

Aλ0 ` Āλ0
˘

ˆ det

¨

˚

˚

˚

˚

˝

pBj ` B̄jq1ďjďt´1

`

ωijAλj ` ωt´ijĀλj
˘

1ďi,jďt´1

˛

‹

‹

‹

‹

‚

The last matrix is the same as ∆3 defined in (5.4.33). We use Corollary 5.33 to factorize
the determinant. If coretpλq P Qptq

2,1,k for all k P rrkpcoretpλqqs, then by Corollary 5.19,
(5.4.34) holds. Case 1. t is even and i0 “ t

2 . Then nt{2pλq “ n ` 1 and using Corol-
lary 5.33, the factorization for the numerator is

2tn sgnpσλqp´1q
pt´1q`χ3pdet Γq

n det
´

Aλ0 ` Āλ0

¯

det

¨

˚

˝

Bλ
t
2

` B̄λ
t
2

Aλt
2

` Āλt
2

˛

‹

‚

t´2
2
ź

q“1
det

¨

˚

˝

Aλq Āλt´q

Āλq Aλt´q

˛

‹

‚

.

(5.4.41)
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By Lemma 5.24, we have

det
´

A t
2

` Ā t
2

¯

“
1
2 detpxtpn´jq

i ` x̄
tpn´jq

i q

n
ź

i“1
px

t{2
i ` x̄

t{2
i q. (5.4.42)

Substituting in (5.4.37), the denominator is

p1 ` δtn`1qtn sgnpσHqp´1q
pt´1q`Σ0

3pdet Γq
n det

¨

˝

A0 ` Ā0

B0 ` B̄0

˛

‚

ˆ

t t´1
2 u
ź

q“1
det

¨

˚

˝

Aq Āt´q

Āq At´q

˛

‹

‚

ˆ
1
2 detpxtpn´jq

i ` x̄
tpn´jq

i q

n
ź

i“1
px

t{2
i ` x̄

t{2
i q.

(5.4.43)

By (5.2.14) and (2.4.8), we note that

det

¨

˚

˝

Bλ
t
2

` B̄λ
t
2

Aλt
2

` Āλt
2

˛

‹

‚

śn
i“1px

t{2
i ` x̄

t{2
i q det

¨

˚

˝

B0 ` B̄0

A0 ` Ā0

˛

‹

‚

“ p´1q
ř

i λ
pt{2q

i pyt{2
` ȳt{2

q soλpt{2qp´X t,´ytq.

Note that λtn`1 is zero iff λp0q
n . Hence, using (5.2.14), Lemma 5.22 and the ratio of

(5.4.41) and (5.4.43), the even orthogonal character is

p´1q
ϵ3`n sgnpσλqpyt{2

` ȳt{2
q oeven

λp0q pX t
q p´1q

ř

i λ
pt{2q

i soλpt{2qp´X t,´ytq

t´2
2
ź

q“1
s
π

p1q
q

pX t, X
t
q,

where

ϵ3 “
tpt ´ 1q

2
npn ` 1q

2 `

˜

t´1
ÿ

i“t`1´i0

nipλq

¸

`

t´1
ÿ

i“t t`2
2 u

pt ´ 1qnpnipλq ´ nq

`

t´2
2
ÿ

q“1

ˆ

nt´qpλqpnt´qpλq ´ 1q

2 ´
npn ´ 1q

2

˙

.
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Case 2. i0 ‰ t
2 . In this case, the factorization for the numerator is

2tn sgnpσλqp´1q
pt´1q`χ3pdet Γq

n det
´

Aλ0 ` Āλ0

¯

det

¨

˚

˚

˚

˚

˚

˚

˝

Bλ
i0 ` B̄λ

i0 Bλ
t´i0 ` B̄λ

t´i0

Aλi0 Āλt´i0

Āλt´i0 Aλi0

˛

‹

‹

‹

‹

‹

‹

‚

2n`1ˆ2n`1

ˆ

t t´1
2 u
ź

q“1
q‰i0

det

¨

˚

˝

Aq Āt´q

Āq At´q

˛

‹

‚

ˆ

$

&

%

detpAλt{2 ` Āλt{2q t is even,

1 t is odd.

By Lemma 5.24, we have

det
˜

A0 ` Ā0

B0 ` B̄0

¸

“ p´1q
ny´n

n
ź

i“1
py ´ xiqpy ´ x̄iq detpxn´j

i ` x̄n´j
i q,

det
´

A t
2

` Ā t
2

¯

“
1
2

n
ź

i“1
px

t{2
i ` x̄

t{2
i q detpxn´j

i ` x̄n´j
i q,

det

¨

˚

˝

Ai0 Āt´i0

Āi0 At´i0

˛

‹

‚

“ p´1q
npn´1q

2
ź

1ďiăjďn

pxti ´ xtjqpxti ´ x̄tjqpxtj ´ x̄tiqpx̄ti ´ x̄tjq
n
ź

i“1
pxti ´ x̄tiq.

In this case, using Lemma 5.23 and Lemma 5.22, the required even orthogonal character
is

p´1q
ϵ3 sgnpσλqoeven

λp0q pX t
q

´

y´tpλ
pt´i0q

1 `npt´i0qpλq´nq`i0s
π

p3q

i0
pX t, X

t
, ytq`ytpλ

pt´i0q

1 `nt´i0 pλq`nq´i0

ˆ s
π

p3q

i0
pX t, X

t
, ȳtq

¯

ˆ

t t´1
2 u
ź

j“1
j‰i0

s
π

p3q

i
pX t, X

t
q ˆ

$

&

%

p´1q
ř

i λ
pt{2q

i soλpt{2qp´X tq t is even,

1 t is odd.

This completes the proof.

5.5 Generating functions

We now give enumerative results for pz1, z2, kq-asymmetric partitions defined in (5.3).

Proposition 5.34. Fix z1 ą z2 ě 0 and k ě 1. The number of pz1, z2, kq-asymmetric
partitions of m is equal to the number of partitions of m of the form
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¨

˝z1pr ´ 1q ` r, 2r ´ 1, . . . , 2r ´ 1
loooooooooomoooooooooon

αr

, 2r ´ 3, . . . , 2r ´ 3
loooooooooomoooooooooon

αr´1´αr

, . . . , 2k ´ 1, . . . , 2k ´ 1
loooooooooomoooooooooon

αk´αk`1

,

2k ´ 2, . . . , 2k ´ 2
loooooooooomoooooooooon

αk´1´αk

, . . . , 2, . . . , 2
loomoon

α1´α2

, 1, . . . , 1
loomoon

z2

˛

‚, (5.5.1)

for r ě 1 and tα1, . . . , αruą Ă Zě0.

Proof. Let λ “ pα1, . . . , αk, . . . , αr|α1 ` z1, . . . , {αk ` z1, . . . , αr ` z1, z2q be a pz1, z2, kq-
asymmetric partition of m. It is easy to see that the mapping λ to the partition in (5.5.1)
gives the required bijection.

Proposition 5.34 gives an expression for the generating function:

Corollary 5.35.

ÿ

λPQz1,z2,k

q|λ|
“

ÿ

ně1

qpz1`nqpn´1q`z2`k

p1 ´ q2q ¨ ¨ ¨ p1 ´ q2k´2qp1 ´ q2k´1q ¨ ¨ ¨ p1 ´ q2n´1q
.

Recall, Qptq
z1,z2,k from Definition 5.3. For z1 ą z2, let

Qptq
z1,z2 “

ď

k

Qptq
z1,z2,k.

We now enumerate the t-core partitions in Qptq
z`2,0 Y Qptq

z`2,z`1. Represent the elements of
Zt t´z

2 u ˆ

!

0, . . . ,
X

t´z´1
2

\

, t ´ z, . . . , t ´ 1
)

by pv⃗, v̌q :“ pv0, . . . , vt t´z´2
2 u, v̌q.

Theorem 5.36. Fix 0 ă z ` 2 ď t ` 2. Define b⃗ P Zt t´z
2 u by b⃗i :“ t ´ z ´ 1 ´ 2i. Then

there exists a bijection ψ : Qptq
z`2,0 Y Qptq

z`2,z`1 Ñ Zt t´z
2 u ˆ

!

0, . . . ,
X

t´z´1
2

\

, t´ z, . . . , t´ 1
)

satisfying

|λ| “ t} ⃗ψpλq}
2

´ b⃗ ¨ ⃗ψpλq `

$

&

%

~ψpλq ~ψpλq P rt ´ z, t ´ 1s Y t t´z´1
2 u,

tpn
~ψpλq

pλq ´ nq ` t ´ z ´ 1 otherwise,

where ¨ represents the standard inner product.

Proof. Suppose λ P Qptq
z`2,0 Y Qptq

z`2,z`1 such that ℓpλq ď tn ` 1 for some n ě 1. Then by
Lemma 5.18, there exists a unique i0 P r0,

X

t´z´1
2

\

s Y rt´ z, t´ 1s such that (5.2.3) holds.
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Define the map ψ by

pψpλqqi :“ nipλq ´ n, 0 ď i ď

Z

t ´ z ´ 2
2

^

, ~ψpλq :“ i0.

Since n is not unique, it is not a priori clear that ψ is well-defined. But from the definition
of nipλq), it is easy to see that nipλ, tn` 1q ´ n “ nipλ, tn` t` 1q ´ n´ 1. Hence, ψpλq

is indeed well-defined.

To show that ψ is a bijection, we define the inverse of ψ as follows. For a vector
pv⃗, v̌q “

´

v0, . . . , vt t´z´2
2 u, v̌

¯

, let n “ maxt|v0|, |v1|, . . . , |vt t´z´2
2 u|u and for 0 ď i ď t ´ 1,

mi “

$

’

’

’

&

’

’

’

%

n ` vi 0 ď i ď
X

t´z´2
2

\

,

n ´ vt´z´1´i

X

t´z`1
2

\

ď i ď t ´ z ´ 1,

n otherwise,

and ri “

$

&

%

mi ` 1 i “ v̌,

mi otherwise.

By construction,
t´1
ÿ

i“0
ri “ tn ` 1,

ri ` rt´z´1´i “

$

&

%

2n ` 1 ` δv̌, t´z´1
2

if i “ v̌

2n otherwise
for 0 ď i ď

Z

t ´ z ´ 1
2

^

,

and ri “

$

&

%

n ` 1 if i “ v̌

n otherwise
for t ´ z ď i ď t ´ 1,

By Lemma 5.18, there is a unique t-core λ P Qptq
z`2,0 Y Qptq

z`2,z`1 satisfying nipλq “ ri. and
we set ψ´1pv⃗, v̌q “ λ. Moreover the size of λ is computed as

|λ| “

tn`1
ÿ

i“1
βipλq ´

tnptn ` 1q

2 . (5.5.2)

Since λ is a t-core, tj ` i, 0 ď j ď nipλq ´ 1, 0 ď i ď t ´ 1 are the parts of βpλq (see
Proposition 2.3). So,

tn`1
ÿ

i“1
βipλq “

t´1
ÿ

i“0

ˆ

ipnipλqq `
nipλqpnipλq ´ 1qt

2

˙

“

t´1
ÿ

i“0
pipnipλq ´ nqq `

tnpt ´ 1q

2 `
t

2

t´1
ÿ

i“0
nipλq

2
´
tptn ` 1q

2 .
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Substituting this in (5.5.2) gives

|λ| “

t´1
ÿ

i“0
pipnipλq ´ nqq `

t

2

˜

t´1
ÿ

i“0
nipλq

2
´ tn2

´ 2n ´ 1
¸

“

t´1
ÿ

i“0
pipnipλq ´ nqq `

t

2

t´1
ÿ

i“0
pnipλq ´ nq

2
´
t

2 .

Since λ P Qptq
z`2,0 Y Qptq

z`2,z`1, using Lemma 5.18, we have

t´1
ÿ

i“0
pnipλq ´ nq

2
“ 2}v⃗}

2
` 1 ´

$

&

%

0 v̌ P rt ´ z, t ´ 1s Y t t´z´1
2 u,

2pnv̌pλq ´ nq otherwise,

and

t´1
ÿ

i“0
i pnipλq ´ nq “

t t´z´2
2 u
ÿ

i“0
p2i`z`1´tqpnipλq´nq`

$

&

%

v̌ v̌ P rt ´ z, t ´ 1s Y t t´z´1
2 u,

t ´ z ´ 1 otherwise.

Now observe that

⃗́b ¨ v⃗ “

t t´z´2
2 u
ÿ

i“0
p2i ` z ` 1 ´ tqpnipλq ´ nq

⃗́b ¨ v⃗ “

t´1
ÿ

i“0
i pnipλq ´ nq ´

$

&

%

v̌ v̌ P rt ´ z, t ´ 1s Y t t´z´1
2 u,

t ´ z ´ 1 otherwise.

t

2

t´1
ÿ

i“0
pnipλq ´ nq

2
´
t

2 “ t}v⃗}
2

´

$

&

%

0 v̌ P rt ´ z, t ´ 1s Y t t´z´1
2 u,

tpnv̌pλq ´ nq otherwise.

Hence

|λ| “ t}v⃗}
2

´ b⃗ ¨ v⃗ `

$

&

%

v̌ v̌ P rt ´ z, t ´ 1s Y t t´z´1
2 u,

tpnv̌pλq ´ nq ` t ´ z ´ 1 otherwise,

completing the proof.

Corollary 5.37. There are infinitely many t-cores in Qptq
z`2,0 Y Qptq

z`2,z`1 for t ě z.



Chapter 6

Skew hook Schur functions and the
cyclic sieving phenomenon

In Section 6.1 of this chapter, we consider specialized skew hook Schur (supersymmmet-
ric skew Schur) polynomial hsλ{µpX,ωX, . . . , ωt´1X{Y, ωY, . . . , ωt´1Y q, where ωkX “

pωkx1, . . . , ω
kxnq, ωkY “ pωky1, . . . , ω

kymq for 0 ď k ď t ´ 1 and give a combinatorial
interpretation of hsλ{µp1, ωd, . . . , ωdptn´1q{1, ωd, . . . , ωdptm´1qq, for all divisors d of t, in
terms of ribbon supertableaux. Then we give a combinatorial proof of the skew Schur
factorization result in Section 6.2. Furthermore, in Section 6.3 we use the combinato-
rial interpretation to prove the cyclic sieving phenomenon on the set of semistandard
supertableaux of shape λ{µ for odd t, and using a similar proof strategy, we give a com-
plete generalization of a result of Lee–Oh [73] for the cyclic sieving phenomenon on the
set of skew SSYT conjectured by Alexandersson–Pfannerer–Rubey–Uhlin [6]. A preprint
of this work has appeared on arXiv [71].

6.1 Skew hook Schur polynomial factorization

In this section, we consider the specialized skew hook Schur polynomials. Recall, X “

px1, . . . , xnq, Y “ py1, . . . , ymq and ω is a primitive t’th root of unity. We denote our
indeterminates by pXpωq{Y pωqq :“ pX,ωX, ω2X, . . . , ωt´1X{Y, ωY, ω2Y, . . . , ωt´1Y q.

Theorem 6.1. For k ě 0, the complete supersymmetric function HkpXpωq{Y pωqq is given
by

HkpXpωq
{Y pωq

q “

$

&

%

0 if k ı 0 pmod tq,

H k
t
pX t{p´1qt´1Y tq otherwise.

129
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Proof. By (2.5.2), the required complete supersymmetric function is

HkpXpωq
{Y pωq

q “

k
ÿ

l“0
hlpX

pωq
qek´lpY

pωq
q. (6.1.1)

By the generating function identities in (2.2.5), we have

ÿ

rě0
erpY

pωq
q qr “

m
ź

i“1
p1 ` yiqqp1 ` yiωqq . . .p1 ` yiω

t´1qq

“

m
ź

i“1
p1 ` ω

tpt´1q

2 ytiq
t
q “

ÿ

bě0
eb
`

p´1q
t´1Y t

˘

qbt

and

ÿ

rě0
hrpX

pωq
q qr “

n
ź

i“1

1
p1 ´ xiqqp1 ´ xiωqq . . . p1 ´ xiωt´1qq

“
ÿ

bě0
hbpX

t
qqbt.

On comparing the coefficients, we see that erpY pωqq and hrpXpωqq are nonzero if and only
if t divides r. In that case

erpY
pωq

q “ e r
t

`

p´1q
t´1Y t

˘

and hrpX
pωq

q “ h r
t
pX t

q. (6.1.2)

If t does not divide k, then for each l P r0, ks, either hlpXpωqq or ek´lpY
pωqq is zero. This

implies HkpXpωq{Y pωqq “ 0. And if t divides k, then substituting the values (6.1.2) in
(6.1.1), we have

HkpXpωq
{Y pωq

q “

k
t
ÿ

l“0
hlpX

t
qe k

t
´lpp´1q

t´1Y t
q “ H k

t
pX t

{p´1q
t´1Y t

q.

This completes the proof.

For a partition of length at most tn, let σλ P Stn be the permutation that rearranges
the parts of βpλq such that

βσλpjqpλq ” q pmod tq,
q´1
ÿ

i“0
nipλq ` 1 ď j ď

q
ÿ

i“0
nipλq, (6.1.3)

arranged in decreasing order for each q P t0, 1, . . . , t ´ 1u. For the empty partition,
βpH, tnq “ ptn ´ 1, tn ´ 2, . . . , 0q with nqpH, tnq “ n, 0 ď q ď t ´ 1 and

σH “ pt, . . . , nt, t ´ 1, . . . , nt ´ 1, . . . , 1, . . . , pn ´ 1qt ` 1q, (6.1.4)
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in one line notation with sgnpσHq “ p´1q
tpt´1q

2
npn`1q

2 .

Lemma 6.2 ([77, Chapter I.1, Example 8(a)]). Let λ, µ be partitions of length at most
ℓ such that µ Ă λ, and such that λ{µ is a border strip of length t. Then βpµq can be
obtained from βpλq by subtracting t from some part βipλq and rearranging in descending
order.

Lemma 6.3. Let λ and µ be partitions of length at most tn such that coretpλq{coretpµq

is empty. Then
sgnpσλq sgnpσµq “ p´1q

ř

BPRibpλ{µq htpBq.

Proof. Suppose µ is obtained from λ by removing a border strip ξ. By Lemma 6.2,
we see that βpµq can be obtained from βpλq by subtracting t from some part βipλq

and rearranging in descending order. The height of ξ is precisely the number of shifted
transpositions we applied. Proceeding inductively completes the proof.

By Proposition 2.3, one can easily see that the Remark 6.4 holds true.

Remark 6.4. For partitions λ and µ of length at most tn, coretpλq{coretpµq is empty if
and only if nipλq “ nipµq for all i P r0, t ´ 1s.

Theorem 6.5. Let λ and µ be partitions of length at most tn. Then the skew hook Schur
polynomial hsλ{µpXpωq{Y pωqq is given by

1. If coretpλq{coretpµq is non-empty, then

hsλ{µpXpωq
{Y pωq

q “ 0.

2. If coretpλq{coretpµq is empty, then

hsλ{µpXpωq
{Y pωq

q “ sgnpσλq sgnpσµq

t´1
ź

i“0
hsλpiq{µpiqpX t

{p´1q
t´1Y t

q.

Proof. By the Jacobi–Trudi type identity (2.5.6) for the skew hook Schur polynomials,
we see that the required skew hook Schur polynomial is

hsλ{µpXpωq
{Y pωq

q “ det
`

Hλi´µj´i`jpX
pωq

{Y pωq
q
˘

“ detpHβipλq´βjpµqpX
pωq

{Y pωq
q. (6.1.5)

Permuting the rows and columns of the determinant by σλ and σµ respectively, defined
in (6.1.3), we see that the skew hook Schur polynomial is

sgnpσλq sgnpσµq det
1ďi,jďtn

´

Hβσλpiqpλq´βσµpjqpµq

¯

,
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where Hj “ HjpX
pωq{Y pωqq for all j P Z. By Theorem 6.1, we have Hj “ 0 if j ” 0

pmod tq and j ą 0. Also, Hj “ 0 if j ă 0. Substituting these values in the above
determinant, we see that the skew hook Schur polynomial is

sgnpσλq sgnpσµq det

¨

˚

˚

˚

˚

˚

˝

pS0

pS1 0
. . .

0 pSt´1

˛

‹

‹

‹

‹

‹

‚

,

where
pSp “

´

H
β

ppq

i pλq´β
ppq

j pµq

¯

1ďiďnppλq

1ďjďnppµq

, p P r0, t ´ 1s.

If coretpλq{coretpµq is non-empty, then by Remark 6.4, nipλq ‰ nipµq for some i P r0, t´1s,
then the pi ` 1qth diagonal block is not a square block. So, hsλ{µpXpωq{Y pωqq “ 0. If
coretpλq{coretpµq is empty, then again by Remark 6.4, nipλq “ nipµq for all 0 ď i ď t´ 1.
Finally, by Proposition 2.3 and (2.5.6),

detppSpq “ hsλppqpX t
{p´1q

pt´1qY t
q.

we get the desired result.

Since hsλ{µpX{Hq “ sλ{µpXq, we have the following corollary.

Corollary 6.6. Let λ and µ be partitions of length at most tn. Then the skew Schur
polynomial sλ{µpXpωqq is given by

1. If coretpλq{coretpµq is non-empty, then

sλ{µpXpωq
q “ 0.

2. If coretpλq{coretpµq is empty, then

sλ{µpXpωq
q “ sgnpσλq sgnpσµq

t´1
ź

i“0
sλpiq{µpiqpX t

q.

A generalization of Corollary 6.6 to skew characters was discovered by Farahat [36].
He gave an algebraic proof stated in an alternative language of star diagrams. In addition,
a character-theoretic proof is given by Kerber, S:anger, and Wagner in [59]. Furthermore,
Evseev, Paget and Wildon prove the result bijectively [35]. Also, Theorem 6.5 can be
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derived from Corollary 6.6 using the notion of plethystic difference of variables X and
Y . See [22, 46, 72] for background on plethysm and plethystic notation.

For a ribbon tableau or supertableau S, let RibpSq be the set of its ribbons and for
ξ P RibpSq, we define position of ξ in the shape of S as

pospξq “ maxtj ´ i|pi, jq P ξu.

In [115, Proposition 3.1.2], if we take A “ rns Y rms, then we have the following result.

Theorem 6.7. Let λ and µ are partitions of length at most tn such that coretpλq{coretpµq

is empty and nipλ, tnq “ nipµ, tnq “ ni for all i P r0, t ´ 1s. Then there is a bijection
between the set of standard t-ribbon supertableaux S of shape λ{µ with entries in rnsYrms,
and the set of t-tuples pS0, S1, . . . , St´1q of standard supertableaux, where Si has shape
λpiq{µpiq, and the sets of entries of the Si are mutually disjoint. If x is a square of
λpiq{µpiq, then Sipxq “ Spξq for a ξ P RibpSq with pospξq “ tppospxq ` ni ´ nq ` i.

For a bijection similar to the above theorem involving semistandard supertableaux,
without the condition of disjointness on entries, we define a standardisation of semis-
tandard supertableau. The standardisation of a semistandard supertableau is a standard
supertableau obtained from it by renumbering its entries such that the relative order of
distinct entries is preserved, and equal unprimed and primed entries are made increasing
from left to right and top to bottom respectively. It is well defined since the ribbons
with same entries have distinct positions and ordering them by increasing position (for
unprimed entries) and decreasing position (for primed entries) gives a valid standard
supertableau. See Figure 6.1 for an example of standardisation. Therefore, we have the
following generalization of [115, Proposition 3.2.2]

3’

3’
2’

2

3
3

1’

1
3’

4’
2’

2

3
4

1’

1

Figure 6.1: semistandard 3-ribbon supertableau and its standardization

Theorem 6.8. There is a natural bijection between the set of semistandard t-ribbon
supertableaux T of shape λ{µ, and the set of t-tuples pT0, T1, . . . , Tt´1q of semistandard
supertableaux, with Ti of shape λpiq{µpiq, and

śt´1
i“0 wtpTiq “ wtpT q.
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Proof. It is sufficient to show that the Ti are semistandard supertableaux, and that the
map is invertible. Let x, y P λpiq{µpiq such that Tipxq “ Tipyq and Sipxq ă Sipyq, and are
unprimed. Suppose ξ, ξ1 P RibpSq “ RibpT q by Spξq “ Sipxq and Spξ1q “ Sipyq. Then
T pξq “ T pξ1q, so that pospξq ă pospξ1q, while pospξq ” pospξ1q ” i pmod tq; therefore by
Theorem 6.7, we have pospxq ă pospyq. Similar argument holds if Tipxq and Tipyq are
primed. So, Ti is semistandard. For invertibility we need to order all the occurrences of
the same entry in any of the tableaux Ti , in order to determine the Si ; makes clear that
these occurrences Tipxq should be ordered by increasing value of tppospxq ` ni ´ nq ` i

if Tipxq are unprimed, and by decreasing value of tppospxq ` ni ´ nq ` i if Tipxq are
primed.

As an example, the semistandard 3-ribbon tableau and its standardisation displayed
in Figure 6.1 corresponds to

1 31

2 31

3

11 21 X

3
1 31

2 41

3

11 21 X

4

Corollary 6.9. Let λ and µ be partitions of length at most tn. Then for all divisors d|t,

t
d

´1
ź

i“0
hsλpiq{µpiqpX t

{Y t
q “

ÿ

R

wtpRq,

where R runs over the set of t
d
-ribbon supertableaux of shape λ{µ filled with entries

rdns Y rdms.

Remark 6.10. Let λ and µ be partitions of length at most tn such that coretpλq{coretpµq

is empty. If sgnpσλq “ sgnpσµq, then by Corollary 6.6 and Corollary 6.9 at X “

p1, . . . , 1q, Y “ H, for all divisors d|t, sλ{µp1, ωd, . . . , ωdptn´1qq is the number of t
d
-

ribbon tableaux of shape λ{µ filled with entries rdns. Moreover, if t is odd, then
hsλ{µp1, ωd, . . . , ωdptn´1q{1, ωd, . . . , ωdptm´1qq is the number of t

d
-ribbon supertableaux of

shape λ{µ filled with entries rdns Y rdms, for all d|t.

Corollary 6.11. Suppose t is prime. Let ϕλ{µpr, sq be the number of r-ribbon tableaux
of shape λ{µ filled with entries in rss. Then ϕλ{µ p1, tnq ´ ϕλ{µ pt, nq is a multiple of t.

Proof. If coretpλq ­“ coretpµq, then by Definition 2.12, ϕλ{µ pt, nq “ 0. By (2.3.8), we
have

sλ{µp1, ω, . . . , ωtn´1
q “

ÿ

TPSSYTtnpλ{µq

ω
řn´1

i“0 pn2`itpT q`2n3`itpT q`¨¨¨`pt´1qnpi`1qtpT qq “ 0,
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where the second equality uses Corollary 6.6 at X “ p1, . . . , 1q. Since
řt´1
i“0 aiω

i “ 0 for
some ai P Z implies ai “ c for all i, ϕλ{µ p1, tnq is a multiple of t and the corollary holds.
If coretpλq “ coretpµq, then by Remark 6.10,

ϕλ{µ p1, tnq ´ ϕλ{µ pt, nq

“
ÿ

TPSSYTtnpλ{µq

´

1 ´ sgnpσλq sgnpσµqω
řn´1

i“0 pn2`itpT q`2n3`itpT q`¨¨¨`pt´1qnpi`1qtpT qq
¯

.

Since ϕλ{µ p1, tnq ´ ϕλ{µ pt, nq is an integer, and
řt´1
i“0 aiω

i “ 0 for some ai P Z implies
ai “ c for all i, ϕλ{µ p1, tnq ´ ϕλ{µ pt, nq is a multiple of t. This completes the proof.

Remark 6.12. A result similar to Corollary 6.11 holds for the number of supertableaux.
Suppose t is an odd prime. Let ψλ{µpr, s{uq be the number of r-ribbon supertableaux
of shape λ{µ filled with entries in rss Y rus. Then ψλ{µ p1, tn{tmq ´ ψλ{µ pt, n{mq is a
multiple of t.

6.2 Combinatorial proof of skew Schur factorization
at t “ 2

We now give a combinatorial proof of the Corollary 6.6 when t “ 2. We recall the
definition of domino tableau and coverable tableau from Remark 2.13 and Definition 2.15
respectively. For a domino tableau D P Dnpλ{µq, let XD “ x2d1

1 x2d2
2 . . . x2dn

n , here di is
the number of dominoes filled with the entry i.

Theorem 6.13 ([115, Corollary 3.2.3]). Let λ and µ be partitions of length at most 2n.
Then

sλp0q{µp0qpX2
qsλp1q{µp1qpX2

q “
ÿ

D

XD,

where D runs over the set of domino tableaux of shape λ{µ.

Proof of Corollary 6.6. The required skew Schur polynomial is given by

sλ{µpX,´Xq “
ÿ

T

pX,´Xq
T ,

where the sum is over all semi-standard Young tableau T of shape λ{µ filled with entries
in t1, 2, . . . , 2nu. Suppose C2npλ{µq be the set of coverable tableaux of shape λ{µ filled



136 6. Skew hook Schur functions and the cyclic sieving phenomenon

with entries in t1, 2, . . . , 2nu. Then

sλ{µpX,´Xq “
ÿ

TPC2npλ{µq

pX,´Xq
T

`
ÿ

TRC2npλ{µq

pX,´Xq
T . (6.2.1)

By Lemma 2.18, we have
ÿ

TRC2npλ{µq

pX,´Xq
T

“ 0.

If core2pλ{µq is non-empty, then C2npλ{µq “ H. So, by (6.2.1), sλ{µpX,´Xq “ 0.
Otherwise, by Lemma 2.16, we have

ÿ

TPC2npλ{µq

pX,´Xq
T

“
ÿ

DPDnpλ{µq

p´1q
htpDqXD

“ sgnpσλq sgnpσµq
ÿ

D

XD,

where the last equality comes from Lemma 2.14 for t “ 2 and Lemma 6.3. Then using
Theorem 6.13 completes the proof.

6.3 Cyclic sieving phenomenon

Let Ct be the cyclic group of order t acting on a finite set X and fpqq a polynomial with
nonnegative integer coefficients. Then the triple pX,Ct, fpqqq is said to exhibit the cyclic
sieving phenomenon (CSP) if, for any integer k ě 0,

|tx P X |σk ¨ x “ xu| “ fpωkq, (6.3.1)

where σ is a generator of Cn and ω is a primitive tth root of unity.

Theorem 6.14. [95, Theorem 11.1] The triple

`

SSYTtmppkqq, Ct, hkp1, q, . . . , qtm´1
q
˘

exhibits the cyclic sieving phenomenon. If, in addition, t is odd then the triple
ˆˆ

rtns

k

˙

, Ct, ekp1, q, . . . , qtn´1
q

˙

where
`

rtns

k

˘

is the set of k-element subsets of rtns, exhibits the cyclic sieving phenomenon.

By [73, Remark 3.3] and (2.5.2), we have the following corollary.
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Corollary 6.15. If t is odd, then

`

SSYTtn{tmppkqq, Ct, Hkp1, q, . . . , qtn´1
{1, q, . . . , qtm´1

q
˘

exhibits the cyclic sieving phenomenon.

Lemma 6.16. [3, Theorem 2.7] Suppose fpqq P Zě0rqs and fpωjq P Zě0, for each
j P t1, . . . , tu. Let X be any set of size fp1q. Then there exists an action of the cyclic
group Ct of order t on X such that pX,Ct, fpqqq exhibits the cyclic sieving phenomenon
if and only if for each d|t,

fpωdq “
ÿ

j|d

jcj, (6.3.2)

for some nonnegative integers cj.

Recall the definition of σλ from (6.1.3).

Theorem 6.17. Let λ and µ be partitions of length at most tn such that sgnpσλq “

sgnpσµq. Then there exists an action of the cyclic group Ct of order t such that the triple

pSSYTtnpλ{µq, Ct, sλ{µp1, q, . . . , qtn´1
qq (6.3.3)

exhibits the cyclic sieving phenomenon.

Proof. Let fpqq “ sλ{µp1, q, . . . , qtn´1q. Since fpqq is given by (2.3.8), fpqq P Zě0rqs. By
Lemma 6.16, it is sufficient to show for each d|t there exists cd ě 0 such that (6.3.2)
holds.

We prove this by induction on t. If t “ 2, then take c1 “ ϕλ{µp2, aq and 2c2 “

ϕλ{µp1, 2aq ´ϕλ{µp2, aq ě 0, as derived in Corollary 6.11 at t “ 2. Assume that the result
holds for all positive integers less than t. Fix t. If λ{µ “ pkq, then by Theorem 6.14 and
Lemma 6.16, for all d|t,

hkp1, ωd, . . . , ωdptn´1q
q “

ÿ

j|d

jakj ,

for some non negative integers akj . Since
´

ÿ

j|d

jpj

¯´

ÿ

j|d

jqj

¯

“
ÿ

j|d

jrj, where rj “

ÿ

i|d,iăj

ippiqj ` pjqiq, by the Jacobi–Trudi identity (2.3.9), for all d|t, we see that

fpωdq “ det
˜

ÿ

j|d

ja
λi´µj´i`j
j

¸

“
ÿ

j|d

jcj. (6.3.4)
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Therefore,
fpqq ”

ÿ

j|t

cjp1 ` q
t
j ` ¨ ¨ ¨ ` q

t
j

pj´1q
q pmod qt ´ 1q.

Since fpqq P Zě0rqs, ct ě 0. Fix d ă t. Then by Corollary 6.6 at X “ p1, . . . , 1
loomoon

dn

q,

fpωdq “

$

’

’

’

&

’

’

’

%

0 core t
d
pλq ­“ core t

d
pµq,

t
d

´1
ź

i“0
sλpiq{µpiqp1, . . . , 1

loomoon

dn

q core t
d
pλq “ core t

d
pµq.

(6.3.5)

Since d ă t, by inductive argument, for all e|d and i P r0, t
d

´ 1s,

sλpiq{µpiqp1, ωte{d, . . . , ωtepdn´1q{d
q “

ÿ

j|e

jd
piq
j , (6.3.6)

for some nonnegative integers dpiq
j . If core t

d
pλq “ core t

d
pµq, then take e “ d in (6.3.6)

and substitute in (6.3.5) to get

fpωdq “

t
d

´1
ź

i“0

˜

ÿ

j|d

jd
piq
j

¸

“
ÿ

j|d

jcj,

where the last equality uses (6.3.4). The uniqueness of cj implies cj ě 0 for all j|d. This
completes the proof.

We now state our final result and give a sketch of the proof following similar ideas as
in the proof of Theorem 6.17.

Theorem 6.18. Suppose t is odd. Let λ and µ be partitions of length at most tn such
that sgnpσλq “ sgnpσµq. Then there exists an action of the cyclic group Ct of order t
such that the triple

pSSYTtn{tmpλ{µq, Ct, hsλ{µp1, q, . . . , qtn´1
{1, q, . . . , qtm´1

qq

exhibits the cyclic sieving phenomenon.

Proof. Let fpqq “ hsλ{µp1, q, . . . , qtn´1{1, q, . . . , qtm´1q. Since fpqq is given by (2.5.4),
fpqq P Zě0rqs. We apply Lemma 6.16 to prove the result.

The proof proceeds by induction on t. If t “ 3, then take c1 “ ψλ{µp3, aq and
3c3 “ ψλ{µp1, 3aq ´ ψλ{µp3, aq ě 0, as in Remark 6.12 at t “ 3. Assume that the result
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holds for all odd integers less than t. Fix t. If λ{µ “ pkq, then by Corollary 6.15 and
Lemma 6.16, for all d|t,

Hkp1, ωd, . . . , ωdptn´1q
{1, ωd, . . . , ωdptm´1q

q “
ÿ

j|d

jakj ,

for some non-negative integers akj . Then by the Jacobi–Trudi identity (2.5.6), for all d|t,
we see that

fpωdq “ det
˜

ÿ

j|d

ja
λi´µj´i`j
j

¸

“
ÿ

j|d

jcj. (6.3.7)

Therefore,
fpqq ”

ÿ

j|t

cjp1 ` q
t
j ` ¨ ¨ ¨ ` q

t
j

pj´1q
q pmod qt ´ 1q.

Since fpqq P Zě0rqs, ct ě 0. Fix d ă t. Then by Theorem 6.5, at X “ p1, . . . , 1
loomoon

dn

q and

Y “ p1, . . . , 1
loomoon

dm

q, we have

fpωdq “

$

’

’

’

&

’

’

’

%

0 core t
d
pλq ­“ core t

d
pµq,

t
d

´1
ź

i“0
hsλpiq{µpiq

`

1, . . . , 1
loomoon

dn

{ 1, . . . , 1
loomoon

dm

˘

core t
d
pλq “ core t

d
pµq.

(6.3.8)

Since d ă t and d is odd, by inductive argument, for all e|d and i P r0, t
d

´ 1s,

hsλpiq{µpiq

`

1, ωte{d, . . . , ωtepdn´1q{d
{1, ωte{d, . . . , ωtepdm´1q{d

˘

“
ÿ

j|e

jd
piq
j , (6.3.9)

for some nonnegative integers dpiq
j . If core t

d
pλq “ core t

d
pµq, then take e “ d in (6.3.9)

and substitute in (6.3.8) to get

fpωdq “

t
d

´1
ź

i“0

˜

ÿ

j|d

jd
piq
j

¸

“
ÿ

j|d

jcj,

where the last equality uses (6.3.7). The uniqueness of cj implies cj ě 0 for all j|d. This
completes the proof.
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