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Abstract

This thesis focuses on the study of specialized characters of irreducible polynomial repre-
sentations of infinite families of complex classical Lie groups. We study various special-
izations where the characters are evaluated at elements twisted by roots of unity. The
details of the results are as follows.

Throughout the thesis, we fix an integer ¢ > 2 and a primitive " root of unity
w. We first consider the irreducible characters of representations of the classical groups
GLtn, SO2tn1 1, SPoy,, and gy, evaluated at elements w¥z; for 0 < k < t—1land 1 <i < n.
The case of GL;, was considered by D. J. Littlewood (AMS press, 1950) and indepen-
dently by D. Prasad (Israel J. Math., 2016). In each case, we characterize partitions for
which the character value is nonzero in terms of what we call z-asymmetric partitions,
where z is an integer which depends on the group. This characterization turns out to
depend on the t-core of the indexed partition. Furthermore, if the character value is
nonzero, we prove that it factorizes into characters of smaller classical groups. We also
give product formulas for general z-asymmetric partitions and z-asymmetric t-cores, and
show that there are infinitely many z-asymmetric ¢-cores for ¢ > z + 2.

We extend the above results to the groups GLy1m (0 < m < t — 1), SOgpqs,
SPotnie and Ogyqo evaluated at similar specializations. For the GLy,,, case, we set
the first tn elements to w/z; for 0 < j <t —1and 1 < i < n and the remaining m
to v, wy,...,w™ ty. For the other three families, we take the same specializations but
with m = 1. Our motivation for studying these are the conjectures of Wagh and Prasad
(Manuscripta Math., 2020) relating the irreducible representations of Spin,,,,; and SLs,,,
SLan+1 and Sp,,, as well as Spin,,, ,, and Sp,,,.

The hook Schur polynomials are the characters of covariant and contravariant irre-
ducible representations of the general linear Lie superalgebra. These are a supersym-
metric analogue of the characters of irreducible polynomial representations of the general
linear group. Finally, we consider similarly specialized skew hook Schur polynomial hsy,
evaluated at wz;/wly;, for 0 <k, <t—1,1<i<nand1<j<m. We character-

ize the skew shapes A/u for which the polynomial vanishes and prove that the nonzero
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polynomial factorizes into smaller skew hook Schur polynomials. Then we give a com-
binatorial interpretation of hsy,(1,w?, ... Lwdtn=0 /1 wd w1 for all divisors d
of ¢, in terms of ribbon supertableaux.

For certain combinatorial objects, the number of fixed points under a cyclic group
action turns out to be the evaluation of a nice function at the roots of unity. This is
known as the cyclic sieving phenomenon (CSP) and has been the focus of several studies.
We use the combinatorial interpretation for the above skew hook Schur polynomial to
prove the CSP on the set of semistandard supertableaux of shape A/u for odd t. Using a
similar proof strategy, we give a complete generalization of a result of Lee—Oh (Electron.
J. Combin., 2022) for the CSP on the set of skew SSYT conjectured by Alexandersson—
Pfannerer—-Rubey—Uhlin (Forum Math. Sigma, 2021).
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Chapter 1

Introduction

In this thesis, we study characters of irreducible representations of complex classical
Lie groups with different specializations using combinatorial techniques. The charac-
ters of irreducible representations of the classical families of groups, namely the general
linear, symplectic and orthogonal groups are important families of symmetric Laurent
polynomials indexed by integer partitions or half-partitions. In particular, the charac-
ters of the general linear groups are the Schur polynomials, which are extremely well-
studied [17, [77, 89, 110]. These families of Laurent polynomials with specialized inde-
terminates satisfy nontrivial relations, which are not well understood from the point of
view of representation theory (see, for instance [10, 111 12} B30, 66]). Littlewood [74] con-
sidered the Schur polynomials in tn variables, for ¢ > 2 a fixed positive integer, special-
ized to (exp(2mik/t)x;)o<k<i—1,1<j<n- Motivated by a celebrated result of Kostant [65],
Prasad [90] also considered the Schur polynomial with the same specialization inde-
pendently and evaluated the character of irreducible representations of GL4,(C) on the
subgroup GL;(C)™ x Z,,, which sits naturally inside GL;,(C) at elements of the subgroup
which have projection a fixed generator o of Z,. They showed that such a specialized
character is nonzero if and only if the corresponding ¢-core is empty, and if it is nonzero,
it factors into characters indexed by the t-quotients; see for the definitions. We
extend their results in a few different directions in the next few chapters. We also prove

the cyclic sieving phenomenon on the set of tableaux and supertableaux in

We begin this chapter by surveying related works in [Section 1.1} Later, we give an
overview of the organisation and the layout of the thesis in [Section 1.2

1



92 1. Introduction

1.1 Brief literature review

This section provides a brief overview of the theory of classical groups, including their
origin, significance, and notable results pertaining to their representation theory. The
complex classical Lie groups, also simply known as the classical groups, are four infinite
families of Lie groups that, along with the five exceptional finite groups, make up the
complete classification of simple Lie groups. The history of Lie groups dates back to the
19th century, with the emergence of the theory of quadratic forms and their associated
transformations. During the late 19th century, Sophus Lie, a Norwegian mathematician,
extensively investigated continuous transformation groups, which are now known as Lie
groups, both geometrically and analytically. Lie’s work ultimately led to the development
of the modern theory of Lie groups, which bears his name [50].

Lie made a significant contribution to mathematics by uncovering that continuous
transformation groups could be better comprehended by linearizing them and examining
their corresponding generating vector fields. The generators follow a linearized form
of the group law, known as the commutator bracket, and possess the characteristics of
what is now referred to as a Lie algebra [29, 48] [51]. This laid the groundwork for the
study of the symmetries of mathematical objects, including the classical groups. The
classification of the simple Lie algebras over complex numbers, which led to the discovery
of the classical groups, was accomplished by Wilhelm Killing and Elie Cartan.

The first classical group to be introduced was the orthogonal group, which was studied
extensively by mathematicians such as Cartan and Killing in the late 19th and early 20th
centuries. The unitary groups and symplectic groups were introduced later [40, [60]. In
his renowned volume [119], Weyl provided a description of the structure of these groups,
which applies to both general fields and p-adic fields, with more intricate details presented
for the latter. Weyl’s seminal book played a significant role in establishing Lie group
theory as a basic field of research in mathematics building on the work of Lie, Killing,
Cartan and the invariant theorists of the nineteenth century. Since that time, progress in
Lie theory has advanced at an impressive pace. See [42] 45| [47] for a modern introduction
to the field.

Classical groups have numerous applications in various fields, including physics,
chemistry and coding theory. In physics, especially in quantum mechanics, they are
used to describe symmetries of physical systems and the behaviour of elementary parti-
cles [I01), [IT8]. The application of group representations also proved to be an immensely
valuable tool for spectroscopy, as well as for providing quantum-mechanical interpreta-
tions of chemical bonds [120]. In coding theory, error-correcting codes are used to protect

digital data from errors that may occur during transmission, storage, or signal process-
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ing, and the theory of classical groups is used to construct error-correcting codes [25, 27].
These groups have provided an empirical basis for large parts of algebra [32] and the
study of their representation theory has also led to significant breakthroughs in pure
mathematics, including algebraic geometry and number theory. Also, see [117] for a nice
survey on the geometry of classical groups over finite fields and its applications.

Now we recall some key results pertaining to the representation theory of classical
groups over the field of complex numbers. Since the complex classical Lie groups are lin-
ear groups, their finite-dimensional representations are tensor representations by Weyl’s
construction. Each irreducible polynomial representation is labelled by a partition or
half-partition, which encodes its structure and properties [40)].

The irreducible polynomial representation of the general linear group GL,(C) in-
dexed by a partition A has a basis indexed by semistandard Young tableaux of shape
A with entries from {1,2,...,n}. The number of semistandard tableaux of shape \ is
therefore equal to the dimension of the representation, and this is given by Weyl’s di-
mension formula [I19]. In a similar fashion, semistandard symplectic and orthogonal
tableaux of shape A, which index bases for the irreducible polynomial representations
associated with A for Sp(2n) and SO(m) have been introduced by various authors (see,
for instance, [60, 61, 92 109]). El Samra and King [99] manipulated Weyl’s dimension
formula to count the number of semistandard symplectic and odd orthogonal tableaux of
shape X in terms of hook lengths and contents and to produce formula for the dimension
of the representation. Recently, Amdeberhan, Andrews and Ballantine [§] gave combi-
natorial interpretations of analogous expressions involving hook-lengths and symplectic
or orthogonal contents.

The character of an irreducible polynomial representation of GL,(C) corresponding
to the partition A is the Schur function sy (1,2, ..., 2,). Stanley [104] showed that its
principal specialization s)(1,q,...,¢" ) could be expressed as a product involving the
hook lengths and contents of the boxes in the diagram for A. This gives a generating
function for the semistandard tableaux of shape A with entries in {1,2,...,n} and in
particular, taking ¢ = 1 yields a formula for the number of such tableaux. Similar
specializations in the symplectic and orthogonal cases have been studied by Koike [63]
and by Campbell and Stokke [26]. Furthermore, Schur polynomials evaluated at roots
of unity and their powers have been considered in [77, [94].

In a different direction, it was shown in [30] that the Schur polynomial for a rect-
angular partition in 2n variables specialized to the last n variables being reciprocals of
the first n variables becomes a product of two other classical characters. In some cases,
this is the product of a symplectic and an even orthogonal character, and in others,

it is the product of two odd orthogonal characters. As an application, a factorization
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theorem for rhombus tilings of a hexagon is given, which has an equivalent formulation
in terms of plane partitions. Similar factorization results were obtained in [I1] for so-
called double staircase partitions, i.e. partitions of the form (k, k., k —1,k—1,...,1,1)
or (k,k—1,k—1,....1,1). This kind of factorization was generalized in [10] for a large
class of partitions and further, to skew-Schur functions, i.e. induced characters, in [12].

Next, we discuss supersymmetric Schur functions, a supersymmetric analogue of the
Schur functions. The supersymmetric Schur functions, also known as the hook Schur
functions, were introduced by Berele and Regev [19] in their study of Lie superalgebras.
Lie superalgebras or Z,-graded Lie algebras are Lie algebras of Lie supergroups, whose
function algebras are algebras with commuting and anticommuting variables [20} 211, 57].

Lie superalgebras and their representations continue to play an important role in
physics in the context of supersymmetries relating particles of different statistics [31].
Lie superalgebras have applications in quantum mechanics [7], conformal field theory [33],
string theory [37], nuclear physics [15], solvable lattice models [14], [103], supergravity [9],
spin systems [44] and quantum systems [98]. Their affine extensions or g-deformations
have also been studied [7, 33] to understand physical systems.

Representation theory of Lie superalgebras differs from the corresponding theory of
Lie algebras in a non-linear manner. Fueled by the physicists’ keen interest in the sub-
ject, Kac constructed a theory of Lie superalgebras and gave a classification of classical
Lie superalgebras [57, [100]. Then he proceeded to the problem of classifying all finite-
dimensional irreducible representations of the classical Lie superalgebras [56]. He derived
a character formula closely analogous to the Weyl character formula for a class of irre-
ducible representations of simple Lie superalgebras [56]. The characters of covariant and
contravariant irreducible representations of gl(m|n) are identified with supersymmetric
Schur functions [19, [34], where the corresponding supersymmetric Schur function is la-
belled by a single partition A\. But for the mixed tensor irreducible representations, the
corresponding supersymmetric function is labelled by a composite partition. The prob-
lem of obtaining a character formula for the remaining irreducible representations has
been the subject of intensive investigation [86] 108, 112, 113, [114].

1.2 Organisation of the thesis

We are motivated by the work of Littlewood [74] that studies specialized irreducible
classical characters of the general linear group. We generalize the result to the characters
of other classical groups. Our goal is, on the one hand, to characterize the partitions for

which the specialized irreducible classical character is zero and, on the other hand, to
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prove that the non-zero character factorizes into characters of smaller groups. Presently
we don’t understand these results at the level of the representations of classical groups.
The organization of this thesis is the following:

In [Chapter 2|, we discuss the preliminaries necessary for this thesis. We briefly recall
various bases of the ring of symmetric and supersymmetric functions and irreducible
characters of classical groups. We also discuss combinatorial objects associated with the
symmetric and supersymmetric functions. This is followed by an introduction to the
cyclic sieving phenomenon.

In we generalize Littlewood’s results to other classical groups Spsy,,
SO9ny1 and Og, and obtain factorizations for their characters under the same spe-
cialization as that of Littlewood. We use Cauchy-type determinant formulas for these
characters and study the beta sets of partitions. For the general linear group, there is
only one possible value of the t-core for which the twisted character is nonzero, namely
the empty partition. For the other classical characters, there are many possible values of
the t-core for which the character is nonzero. We will show that these are ¢-cores which
can be written in Frobenius coordinates as («|a+ z), where the value of z depends on the
group, and which we call z-asymmetric partitions. Further, we give product formulas for
general z-asymmetric partitions and z-asymmetric t-cores. Lastly, we show that there
are infinitely many z-asymmetric t-cores for t > z + 2.

In we give new proofs of factorization results proved in using
Jacobi-Trudi type identities. Recently using a similar proof strategy, Albion [2] lifted
all the factorization results to the level of universal characters.

In , we extend the factorization results to the groups GLy, .. (0 < m <
t—1), SO2tp+3, SPgpro and Ogyyio evaluated at similar specializations: (1) for the GLyy i1,
case, we set the first tn elements to w’z; for 0 < j < t—1and 1 < i < n and the remaining
m to y,wy, ..., w™ ty; (2) for the other three families, the same specializations as above
but with m = 1. For the general linear group, we prove that there are finitely many
t-cores for which the twisted character is nonzero. For the other classical characters, we
characterize partitions for which the character value is nonzero in terms of what we call
(21, 22, k)-asymmetric partitions, where z1, 2o and k are integers which depend on the
group. Lastly, we prove that there are infinitely many t-core partitions for which these
characters are nonzero.

In [Chapter 6, we consider the specialized skew hook Schur polynomial and conse-
quently get the factorization of skew Schur polynomial with the same specialization as
that of Littlewood. We also give a combinatorial proof of the skew Schur factorization
result for ¢ = 2. Then we prove the cyclic sieving phenomenon on the set of semistandard

tableaux and supertableaux of shape A/pu.
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Chapter 2
Preliminaries

The purpose of this chapter is on the one hand to fix some notation and terminology,
and on the other hand, to introduce the ring of symmetric and supersymmetric functions

briefly. As most of the objects considered turn out to be indexed by partitions, we will

introduce them in [Section 2.1| [Section 2.2|is dedicated to the ring of symmetric functions

and well-known bases for this ring. We define Schur polynomials and the skew Schur

polynomials, special classes of symmetric functions, in [Section 2.3| In [Section 2.4, we

consider the characters of irreducible polynomial representations of classical groups. Next

in [Section 2.5 we briefly discuss the ring of supersymmetric functions. In [Section 2.6),

we define ribbon tableau and supertableau, generalizing the definitions of tableau and
supertableau defined in [Section 2.1 and [Section 2.5| respectively. Lastly in [Section 2.7

we discuss some results related to the cyclic sieving phenomenon.

2.1 Partitions

Recall that a partition A is a weakly decreasing sequence of nonnegative integers A =
(A1, ..., Ar). The non-zero elements \; are called the parts of \. The length of a partition
A, denoted ¢()) is the number of parts of A, and the sum of the parts is the weight of
A, denoted by |A|. By a + A, for a € N, we will mean the partition (a + Ay, ...,a + Ap).
For a partition A and an integer ¢ such that ¢(\) < ¢, define the beta-set of A to be a
strict partition B(\) = B\ €) = (B1(N\,€), ..., Be(A £)) where 5;(A\, €) = \; + € —i. We

will write S(A) whenever £ is clear from the context.

A partition A can be represented pictorially as a Young diagram, whose i'th row

contains \; left-justified boxes. We will use the so-called English notation where the first

7



8 2. Preliminaries

row is on top. For example, the Young diagram of (4,2,2,1) is

(2.1.1)

For a partition, A, the conjugate partition, denoted )X, is the partition whose Young
diagram is obtained by transposing the Young diagram of A. A partition in which
no part occurs more than once is called a strict partition. The (Frobenius) rank of a
partition A, denoted rk(\), is the largest integer k such that Ay = k. The Frobenius
coordinates of A is a pair of strict partitions, denoted («|f), of length at most rk(\)

given by a; = A\; —i and f; = A; — j. For example, the Frobenius coordinates of our
running example (4,2,2,1) in (2.1.1)) are (3,0]3,1).

Recall that for partitions A and p, we write u < A to mean that the Young diagram
of A contains the Young diagram of p, which is the same as p; < \;, for all ¢ > 1. The
skew shape A/p is the set-theoretic difference A\u. For example, the Young diagram of
the skew shape (4,2,2,1)/(2,1) is

A path in a skew shape A/ is a sequence xg, 1, ...,z of squares in A/u such that
x;—1 and x; have a common side, for 1 < i < k. A subdiagram ¢ of \/u is said to be
connected if any two squares in ¢ can be connected by a path in ¢. A border strip or
ribbon is a connected subdiagram of the Young diagram of A\ which contains no 2 x 2 block
of squares. Therefore, successive rows and columns of a border strip overlap by exactly
one box. The length of a border strip ( is the total number of boxes it contains and its
height, denoted ht((), is defined to be one less than the number of rows it occupies. For

example,

is a border strip of length 6 and height 3. A domino is a border strip of length 2. The
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head of a border strip is the rightmost box in its top row.

We fix t to be an integer greater than or equal to 2. Now we first define the t-core
and t-quotient of a partition following [75]. There are many equivalent definitions (see
for instance [41), 149, 53], 116]). We then recall Macdonald’s criterion to find the ¢-core

and t-quotient using the beta set.

Definition 2.1. The t-core of the partition A, denoted core; (), is the partition obtained

by successively removing border strips of length ¢ from the Young diagram of .

In the example given in (2.1.1]), we see that cores((4,2,2,1)) = (2,1) after three
border strip removals. The idea of removing border strips to get the t-core of a partition
goes back to Nakayama [8I]. For example, the only 2-cores are staircase shapes, i.e.
partitions of the form (k,k —1,...,1,0), k € N.

For a cell ¢ = (4,7) in (the Young diagram of) A, the hook length is given by h. =
Ai —i+ A; —j+1, which is the total number of cells in its row to the right and those in
its column below it including the cell itself. The content of ¢ is j—i. The arm (resp. leg)
of ¢ is the rightmost (resp. bottommost) cell in its row (resp. column). For example,

the hook lengths and contents of the running example are

2|1 01123

(2.1.2)

and respectively.

[l IOV IS BN

Definition 2.2. The t-quotient of \ is a t-tuple of partitions denoted quo,(\) = (A®, ...,
A1) obtained using the Young diagram of A\. The (i + 1)’th element of this tuple is
obtained by taking all cells ¢ whose hook length is divisible by ¢, and whose arm has
content congruent to ¢ (mod t). It is a nontrivial fact that this collection of cells forms

a Young subdiagram of A. The corresponding partition is A,

From (2.1.2)), we see that quo,((4,2,2,1)) = ((2),(1)). Macdonald [77] defines the
t-core and t-quotient alternately using the beta-set and we recall this construction. Let
A be a partition with ¢(A) < ¢. For 0 < i <t —1, let n;(A) = n;(\, £) be the number
of parts of S(\) congruent to 7 (mod t) and Bj(-i)(/\), 1 < j < ny(\) be the n;(\) parts of

B(N) congruent to i (mod t) in decreasing order.

Proposition 2.3 ([77, Example 1.1.8]). Let A be a partition of length at most (.

1. The € numbers tj + i, where 0 < j < n;(\) and 0 < i <t — 1, are all distinct.

Arrange them in descending order, say By > -+ > ;. Then the t-core of \ has
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parts (core;(N)); = f; — € +i. Thus, X is a t-core if and only if these { numbers
tj + 1, where 0 < j < ny(\) and 0 <i <t —1 form its beta-set B(N).
2. The parts B](-i)()\) may be written in the form tB](-i) +1i, 1 < j < ny(N\), where
B > > B0 =00 Let A = B — ni(V) + 4, so that AO = (AP, A )
is a partition. Then the t-quotient quo,(\) of A is a cyclic permutation of \* =
A XD XNED) The effect of changing £ is to permute the \Y) cyclically so
that \* should perhaps be thought of as a ‘necklace’ of partitions.

Remark 2.4. We note that Macdonald’s definition of the ¢t-quotient is not identical

to that of [Definition 2.2 but is equal up to a cyclic shift. In particular, if quo,(\) =

(MA@ XED) and m increases by 1 in [Proposition 2.3, the new t-quotient will be
(AED X A2,

A tableau (or semistandard Young tableau) T of shape A\/p is a filling of the Young
diagram of A\/p in such a way that the numbers increase strictly down each column
and weekly from left to right along each row. The sequence (¢1(T),co(T),...), where
¢;(T) be the number of occurences of i in T, is called the weight of T. Denote the
set of semistandard Young tableaux of shape A/pu filled with numbers in {1,... k} by
SSYTx(N/ ).

Example 2.5. Consider A = (4,2,2,1) and p = (2,1). Then the following figure illus-
trates a tableau of shape (4,2,2,1)/(2,1) and of weight (4,1,1).

111

There exists a natural partial order on the set of partitions of m called the dominance
order, denoted <. For two partitions p and A of weight m, we write p < N if py+- - -+ p; <
A+ -+ A forall ¢ > 1. In that case, we say that A dominates 1. Let K, be the
number of tableaux of shape A and weight . Then K, is positive if and only if A
dominates p in the dominance partial order. Also K, ,, = 1. See [(7, Chapter 1] for more
details.

2.2 The ring of symmetric functions

Consider the ring Z[z1, ..., x,] of polynomials in n independent variables with integer

coefficients. A polynomial in the ring Z[z1, ..., z,] is symmetric if it is invariant under
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the action of permuting the variables. Let Az, ..., z,] denote the subring of symmetric

functions, which is graded by degree: we have

Az, ... x,] = @Ak[xl,...,xn],

k=0

where A*[x, ..., x,] consists of the homogeneous symmetric polynomials of degree k,
together with the zero polynomial. See [77, 096, 104] for more details. Several bases
indexed by partitions are defined on A[zy, ..., x,]. We define some of them after setting

up a few notations.

We will use n for a fixed positive integer and let X = (x1,...,xz,) be a tuple of
commuting indeterminates. For any integer j, we set X7 = (x{, ...,23), and for a € R, set

aX = (axy,...,azx,). Define T = 1/z for an indeterminate z and write X = (Zy,...,Z,).

For each n-tuple o = (o, ..., ) € ZZ%), we denote the monomial 27" ... x5 by X°.

Let A = (A1, A2, ..., A,) be a partition of length at most n. The monomial symmetric

function indexed by A is defined as

ma(X) = > X, (2.2.1)
summed over all distinct permutations o of A. As A runs through all partitions of length
at most n, the monomial symmetric functions m,(X), form a Z-basis for the ring A[X].

The elementary symmetric function ex(X) indexed by A is defined as
ex(X) =] Jex (X), (2.2.2)
i=1

where

er(X) = Z Ty Tgy ... @, = mry(X) for r =1 and eo(X) = 1.

1<ip<io<--<ipr<n

The functions e,(X) are algebraically independent over Z and the set of all e)(X) with
((N) < n form a Z-basis for A[X]. The complete symmetric function hy(X) indexed by
A is defined as

ha(X) = [ [, (X), (2.2.3)
i=1
where
h(X) = Z Ty Ty oo Ty, = Z mx(X) for r = 1 and ho(X) := 1.

1<igy<io<-<ir<n [A|=r
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The set of all hy(X) with ¢(\) < n also form a Z-basis for A[X]. The power sum
symmetric function py(X) indexed by A is defined as

(X)) = ]‘[ (X)), (2.2.4)

where p,(X) == >/ 2] = my(X) for r = 1 and po(X) = 1. It is convenient to define

i=1 T
e (X), h(X) and p.(X) to be zero for r < 0. It is shown in [77, Chapter 1, Section
2] that rh,.(X) = X ps(X)h—s(X). So Q[p1(X),...,p,(X)] = Q[m(X),..., h(X)].
Since the complete symmetric functions h,(X) are algebraically independent over Z,
and hence also over Q, the p.(X) are also algebraically independent over Q. So, the
pa(X) form a Q-basis of A[X]. But they do not form a Z-basis of A[X]; for example,
ho(X) = 2(p1(X)? 4 p2(X)) does not have integer coefficients. We note the following

generating function identities:

S e = [ [(1+a), (225)

r=0 i=1
S (X0 =[] (2:26)
r=0 =1 IL’@(]
and .
:L'A
(X)g" Tt = L 2.2.7
;p (X)q ; 2 (2.2.7)

We can also consider symmetric polynomials in countably many independent variables
Z1,T9,.... Denote the ring thus obtained by A. Note that the elements of A are no
longer polynomials, they are formal infinite sums of monomials. Let m,, ey, h) and
px be the corresponding monomial, elementary, complete and power sum symmetric
functions in infinitely many variables x1, x5, .... On the ring of symmetric functions A,
a ring homomorphism is defined by: & : A — A which maps e, to h,, for all » = 0. This
homomorphism is an involution [77], i.e. &? is the identity map. The involution & maps
a power sum onto a scalar multiple of itself:

G(pa) = expa with e, = (—1)A7V,

Using this involution, a fifth Z-basis of A can be defined for any partition A\, namely
f)\ = dz(m )\).

These elements are called the forgotten symmetric functions, as there is no simple direct
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description.

We now define the standard Hall inner product (u,v), a Z-valued bilinear form A.
The basis elements (hy) and (m,) are defined to be dual of each other with respect to

this inner product:

<h)\7 m,u> = 5)\4“

for all partitions A, p of length at most n, where 9y , is the Kronecker delta. Then

<e/\7 fu> = 5)\,;u

for all partitions A, pu of length at most n, since the involution & is an isometry, i.e

(W(u),(v)) = {u,v)y. Also one can prove that

{Dx, Pu) = Oxp2n,

for all partitions A, p of length at most n, where z, = Hzm m,;! and m,; is the number
i>1

of parts of A equal to i. See [77, Chapter 1, Section 4] for more details.

Recall that we have fixed t to be an integer greater than or equal to 2. Let w be a

primitive ¢’th root of unity, i.e. w' =1 and w® # 1 for any s <t. If A= (A,...,\) is a
)\1 )\2).

partition such that ¢ divides \;, for all ¢, then we write % for the partition (%, ..., 3

Theorem 2.6. For a partition \ of length at most tn, the specialized elementary, com-
plete and power sum symmetric functions, ex(X, wX, ..., w1 X), hy(X,wX, ..., " 1X)

and px(X,wX, ..., w1 X) respectively are given by

0 A #0 (mod t) for some 1,
ex(X,wX, ..., wX) = 70 ) J (2.2.8)
ex ((=1)1XY)  otherwise,

>

0 A #0 (mod t) for some 1,
(X, wX, ..., w™tX) = 70 )/ (2.2.9)
ha (X*)  otherwise,

0 Ai #0 (mod t) for some 1,
(X wX,. . wlX) = #0 | ) J (2.2.10)
tp%(Xt) otherwise.

Proof of [Theorem 2.6, By ([2.2.5)), we see that the generating function for the required
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elementary symmetric function is

n

Z er(X,wX, ..., W X)g" = H(l +2:q) (1 +waiq) ... (1 + W™ ayq)

r=0 i=1
=[O0+ ale) = 3 en ()X g™
=1

m=0

Comparing coefficients and substituting in (2.2.2)) proves (2.2.8). A similar calculation
using ([2.2.6) and (2.2.7)) proves (2.2.9) and (2.2.10|) respectively. O

Remark 2.7. We also consider the monomial and forgotten symmetric functions (see
[Theorem 3.33| [Theorem 3.36)) in ¢n variables specialized at X, wX, ..., w!" !X the same

specialization as in [['’heorem 2.6} in [Section 3.3|

2.3 Schur and skew Schur polynomials

In this section, we give a brief overview of Schur polynomials and the skew Schur poly-
nomials. Schur polynomials are the characters of irreducible polynomial representations
of the general linear group over the field of complex numbers. They also form the most
natural basis of the ring of symmetric functions, which are orthonormal with respect to
the standard Hall inner product. For a partition A = (Ay,..., \,), the Schur polynomial
or general linear character of GL, is given by the following Weyl character formula:

det (xf ! (A))

1<i,j<n

n—7\
det <xz ”)
1<i,j<n

The denominator is the standard Vandermonde determinant,

K(%gt@ (:c?fj) = H (z; — ;). (2.3.2)

1<i<j<n

sy (X) = (2.3.1)

The following Jacobi-Trudi identity expresses the Schur polynomial s, (X) as a polyno-

mial in the complete symmetric functions,

sx(X) = det (hy, _i45(X)), (2.3.3)
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where r is any integer such that r > (). There is also an equivalent formula in terms
of the elementary symmetric functions, called the dual Jacobi—Trudi formula,

sx(X) = det (ex_ip;(X)) (2.3.4)

1<ij<r”

Now we give the combinatorial definition of the Schur polynomials. The combinatorial
objects associated with the Schur polynomial s)(X) are semistandard tableaux of shape
A. Recall that a semistandard tableau or tableau of shape A is a filling of A with entries
in {1,2,...,n} such that entries increase weekly along rows and strictly along columns.

Then the Schur polynomial s, (X) is given by

n

s\(X) =Y w(T),  wi(T) = [ [, (2.3.5)

i=1

where the sum is taken over all semistandard tableaux of shape A and ¢;(T), i € [n] is the

number of occurrences of ¢ in 7. The formulas (2.3.3)), (2.3.4) and (2.3.5) also generalize
to infinitely many variables, but (2.3.1)) does not.

Example 2.8. Let n = 3 and consider the partition A = (2,1). Then we have the
following tableaux of shape \ with entries in {1,2,3}:

111 111 112 112
2 3 2 3

3 113 2|2 213
2 3

and thus s(271) (21, T2, 23) = 221y + woxd + 2i1y + 2207139 + TITy + TTE + 113

We note the following relations of the Schur symmetric polynomials with the mono-
mial and forgotten symmetric functions (see [77, Chapter 1, Section 6]). We consider
matrices whose rows and columns are indexed by the partitions of n. Suppose K and J

are two matrices such that K , is the number of tableaux of shape A and weight i, and

1 iftN=p
Iy =
0 otherwise.
Then
. -1
mA(X) = ) Ky hsu(X), (2.3.6)

JTSPY
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A0 = 3 (K1) su(X). 2.3.7)
B[]
Now we define the skew Schur polynomials, symmetric functions indexed by skew
shapes which generalize the Schur polynomials. If < A (i.e. p; < \;, ¢ = 1), then define
the skew Schur function sy,(X) as

Sau(X) = Ewt(T), wt(T) = foi(T), (2.3.8)

=1

where the sum is taken over all tableaux of shape A\/u and ¢;(7T'), ¢ € [n] is the number
of occurrences of ¢ in 7. Otherwise s/,(X) = 0. The following Jacobi-Trudi formula
and dual Jacobi-Trudi formula gives s,/,(X) in terms of complete symmetric functions

and elementary symmetric functions,

S/\/M(X) = det (hAi_“j_H'j(X))lsi,jgr’ (239)
sau(X) = det (ekg_ug_iﬂ- (X)>1<u<r , (2.3.10)

where 7 is any integer such that r > ¢()), which generalize (2.3.3) and ([2.3.4]) respectively.

The relations (2.3.6) and (2.3.7]), and the formulas (2.3.8)), (2.3.9) and (2.3.10)) also

generalize to infinitely many variables, but we do not need them.

2.4 Irreducible characters of other classical groups

The characters of irreducible polynomial representations of the symplectic and orthog-
onal groups are symmetric Laurent polynomials indexed by integer partitions or half-
partitions. These characters are given by the Weyl character formula [40], which de-
scribes the characters of irreducible representations of compact Lie groups in terms of
their highest weights. In this section, we write down the explicit Weyl character formulas
and Jacobi—Trudi-type identities for the characters of classical groups SO(2n+1), Sp(2n)
and O(2n) [40].

The odd orthogonal (type B) character of the group SO(2n + 1) at the representation
indexed by the partition A = (A1,...,\,) is given by

det (x@j(A)H/Q _ jfj(x)ﬂ/z) det (x5j+n—j+1 _ i_%\j—&-n—j)

3 3 K3

1<i,j<n 1<i,j<n
soA(X) = itz n—j+12\ 4+l —n—j ;o (24
1<i,j<n 1<i,j<n
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and the denominator in the first formula is

n

det (g;?‘j“” 7 J“/?) [T@"2 -2 ] @tz—z-z). (242)

1<i,j<n
’ i=1 1<i<j<n

The symplectic (type C) character of the group Sp(2n) at the representation indexed by
A= (A1,...,A\,) is given by

det <xfj(A)+1 B g—:fj(A)+1>

1<i,j<n

det (gnitt — gra+t)
1<ij<n \ ¢ ¢

spA(X) = (2.4.3)

and the denominator here is

det <f]3?_j+1 - ff?_j-i_l) = H(.ﬁﬂl - j’l) 1_[ (l’l +T; — Ty — ii'j) (244)

Istysn i=1 1<i<j<n
Lastly, the even orthogonal (type D) character of the group O(2n) at the representation
indexed by A = (A1,...,\,) is given by

2 det (xfj(’\) + :cﬁj()‘))

even 1<i,j<n

oy (X) =

, (2.4.5)
(1+9y,0) det <x” Tz J)

1<i,j<sn

where ¢ is the Kronecker delta. The extra factor in the denominator arises because of
the difference in the representation theory of O(2n) and SO(2n); see [40, p. 411] and
[92, pp. 311-312] for the precise details. The determinant here factorizes as

1<(%St<n<l'n i +x T, ]> =2 H (wl + ZZ‘Z — T — IZ‘]) (246)
I<i<g<n
Notice that
Sa(z1y ..o ) =spy(x, ..., &) = s0x(T1, ..., xn) = O (21, ...y 2) =0, ifn < l(N).

A half-integer is an odd integer divided by 2. The expressions and ([2.4.5) for
odd and even orthogonal characters, respectively, also hold for half—mteger partltlons,
where a half-integer partition is a tuple (A,...,\,) whose entries are all positive half-
integers such that \; > --- > \,. The odd and even orthogonal characters indexed by

the half-integer partition (A +1/2,..., A\, +1/2) can be expressed in terms of characters



18 2. Preliminaries

indexed by A as

SO(A14+1/2,....An+1/2) (21,...,2,) = H(%yz + @1/2) SPA(T1, -+, @), (2.4.7)
i=1
even n i z 1/2 _1/2
0(A1+1/2,...,>\,,L+1/2)(Ila oy Ty) = (1) g H(ﬂfz/ + 5172‘/ ) SoA(=m1, ..., —Tp). (2.4.8)
i=1

We now write the Jacobi-Trudi-type identities for the characters of the other classical
groups. The Jacobi-Trudi formula expresses the classical characters as a determinant
in terms of the complete homogeneous symmetric polynomials. See [39, 40, [77] for
background and more details. The odd orthogonal (type B) character of the group
SO(2n + 1) is given by

s0A(X) = det (ha,—ip; (X, X, 1) — hy i (X, X, 1)), (2.4.9)

SN

The symplectic (type C') character of the group Sp(2n) is given by

1 — —
Sp)\(X) = 5 det (h)\i—i-‘rj(Xa X) + h)\z._i_j_,_Q(X, X))lsiSn . (2410)
Lastly, the even orthogonal (type D) character of the group O(2n) is given by
Oiven(X) = det (h/\i—i+j(X7Y) — h/\i—i—j(X7Y>>1<i,]<n . (2411)

We note that the universal characters of the symplectic and orthogonal groups defined
by Koike and Terada [64] are symmetric functions which under the appropriate special-
izations of the variables become the characters of irreducible polynomial representations
of classical groups SO(2n + 1), Sp(2n) and O(2n).

2.5 The ring of supersymmetric functions

Now we will give a supersymmetric analogue of the symmetric functions defined above.
We consider the ring Z[x1,...,Zn, Y1, - ., Ym] of polynomials in n + m independent vari-
ables 1,...,Tn,Y1,...,Ymn with integer coefficients. Suppose X = (z1,...,z,) and
Y = (y1,...,Ym)- A polynomial f(X,Y) in this ring is doubly symmetric if it is sepa-
rately symmetric in both the X and Y variables. Moreover, if substituting x,, = ¢ and
Ym = —t results in an expression independent of ¢, then we call f(X,Y) a supersymmetric
function. Let A(X/Y') denote the subring of supersymmetric functions. Several bases

indexed by partitions are defined on A(X/Y). The monomial supersymmetric functions
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are defined as

MA(X/Y) = > mu(X

pov
where the sum is over the union p U v of the partitions p and v, which is a partition
whose parts are of those of © and v, arranged in descending order. The elementary

supersymmetric function indexed by A = (A1, Aa, ..., \,) is given by

BAX/Y) = [ | B (X)Y), 25.1)

where E,.(X/Y) = 2 e;(X)h,—;(Y), r = 1. The complete supersymmetric function in-
=0
dexed by A = (A, Ag, ..., A,) is given by

Hy(X/Y) = | [ Ha(X/Y), (2.5.2)
i=1
where H,.(X/Y) = Z hi(X)e,—;( r = 1. The power sum supersymmetric polynomial

indexed by A = ()\1, )\2, ..., An) is defined as
PA(X/Y) = [ PL(X/Y), (2.5.3)
i=1

where P.(X/Y) = p,(X) + (—=1)""'p,(Y), r = 1. We note that Ey(X/Y) = Hy(X/Y) =
Py(X/Y) = 1. It is convenient to define E,.(X/Y), H,(X/Y) and P,(X/Y) to be zero
for 7 < 0. Now we consider Hook Schur functions (or supersymmetric Schur functions),
denoted hsy(X/Y'), supersymmetric functions indexed by integer partitions. They are
the characters of irreducible covariant tensor representations of gl(m/n) introduced by
Berele and Regev [19] in their study of Lie superalgebras. They form a Z-basis of the ring
of supersymmetric functions, generalizing Schur polynomials. Additionally, skew hook
Schur functions are indexed by the skew shape partitions and generalize skew Schur

polynomials. For background, see [57, [79].

Definition 2.9. A supertableau (or semistandard supertableau) T of shape \/u with

entries

1<2<---<n<1<2<---<m

is a filling of the shape with these entries satisfying the following conditions:

o entries increase weakly along rows and columns
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o the unprimed entries strictly increase along rows
o the primed entries strictly increase along columns

We use the shorthand notation [n]u[m] to denote the ordered set {1,...,n,1" ... ,m'}

such that 1 < --- <n <1 <--- <m/. The weight of a supertableau is given by

m/

n
i=1 j=1

where ny(T), k € [n] U [m], is the number of occurrences of k in T. Denote the set of
supertableaux of skew shape A/p with entries in [n] U [m] by SSYT,,,,(A\/p). For integer
partitions pu < A, the skew hook Schur polynomial, denoted hs),,(X/Y) is given by:

hsy,(X/Y) == > wt (7). (2.5.4)
T eSSYT,,/m (MK

We define the skew hook Schur polynomial hsy,,(X/Y) to be zero unless p < A. If
= &, then hsy(X/Y) is the hook Schur function. The hook Schur function hsy(X/Y")

is nonzero if and only if A\, 1 < m.

Example 2.10. Let n = 2 and m = 1 and consider the skew shape (2,2)/(1). Then we
have the following supertableaux in SSYT5/1((2,2)/(1)):

1 1

112 2|2 171 2|V
2 2 1 1
v 2|1 1] 2|1

and thus hs(22)/) (21, 22/y1) = 2229 + 1123 + 23y + 23110y1 + 23y1 + 11yF + 2oyi. Notice
that hS(ZQ)/(l)(Z'l, t/ — t) = 0.

We can also define the elements of the ring A(X/Y') using the notion of plethystic
difference X — Y. See [22] 146 [72] for background on plethysm and plethystic notation.
The skew hook Schur polynomial in plethystic notation is given by

hsy/u(X/Y) = sx/u(X — €Y)|e—1. (2.5.5)

Using the plethystic notation in (2.3.9), we can express hsy,,(X/Y) in terms of the
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complete supersymmetric functions.

hsyu (X/Y) = det (Hy—p;—ii(X/Y)) i (2.5.6)

ST

where r is any integer such that r > £(\).

2.6 Ribbon tableaux and supertableaux

Recall that a border strip or a ribbon is a connected subdiagram of the Young diagram
of A which contains no 2 x 2 block of squares. In this section, we define ribbon tableau

and ribbon supertableau, generalizing tableau and supertableau respectively.

Definition 2.11. A k-horizontal strip is a skew shape formed by a disjoint union of &

ribbons such that all their heads are in different columns.

Definition 2.12. A t-ribbon tableau (resp. ribbon supertableau) is a filling (resp. su-
pertableau) of shape \/u and weight v such that the entries along rows and columns
are weakly increasing, and the shape determined by the entries labelled ¢, for each 7, is
a v;-horizontal strip. Such a tableau is called a standard ribbon tableau (resp. standard

ribbon supertableau) if the entries are distinct in different ribbons.

NN N =
AN NN =

N N N N e
Il
N
N

Figure 2.1: 4-ribbon tableau of shape (6,5,5,5,5)/(2,2,1,1) and weight (1,2,0,2)

Remark 2.13. A 2-ribbon tableau (resp. supertableau) is also known as a domino
tableau (resp. supertableau). We denote the set of domino tableaux of shape \/u filled
with entries in {1,...,n} by D, (A ).

For a ribbon tableau or supertableau S, let Rib(S) denote the set of its ribbons.
Recall that the parity is the property of an integer of whether it is even or odd.

Lemma 2.14 ([84, Lemma 4.1], [IT5, Proposition 3.3.1]). Let A and p be partitions such
that core;(\)/corer(p) is empty. Suppose S is a t-ribbon tableau of shape A\/p. Then the
parity of ht(S) = Z&Rib(s) ht(&) is independent of S.
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Definition 2.15. We call a tableau T filled with entries in {1,2,...,2n} coverable if it

can be covered with the dominoes of the form

20 — 1
2a

2a 2a and

a€{l,2,...,n}. We denote the set of coverable tableaux of shape \/u filled with entries
in {1,...,2n} by Ca(N/p).

The following lemma gives a bijection between the set of coverable tableaux and that

of domino tableaux of shape \/pu.

Lemma 2.16. Let \/u be a skew shape such that corey(\)/cores(u) is empty. Then there
exists a natural one-to-one correspondence 1 : Con(N/ 1) — Dn(N/ 1) such that

d;(Y(T)) = c31(T) + coi(T)  and D1 ht(€) = (D) + -+ cona(T),
£eRib(y(T))

where ¢;(T) and d;(y(T)) is the number of occurrences of i in T and (T respectively.

Proof. Suppose T is a coverable tableau. Then define ¢ : Cy,,(A/1t) — D, (A/1) such that

o)) - | .

2

We note that the entries of ¢(T") are weakly increasing along its rows and columns since
T is a tableau. Also, 1 < (T)(i,j) < n, for all (¢, 7). Furthermore, the shape determined
by the entries in (T labelled i, for each 7, is a ((co;_1(T") + ¢2;(T))/2)-horizontal strip
since T' is coverable. So, v is well-defined and d;(¢(T")) = c2i-1(T) + ¢(T). Finally,

since Y ecgip(y(r)) Bt(€) is the number of vertical dominoes in ¢(T') and T is coverable,
Deerib((ry 1) = c1(T) + -+ + cona(T). -

Example 2.17. Suppose n = 2, A = (5,3,2) and p = (1). Then the following figure
shows a coverable tableau and its image under 1, the bijection defined in|Lemma 2.18

Lemma 2.18. For a skew shape \/jv and a tableau T € SSYTo, (N 1), let

(X, —X)T — (_1)62(T)+~~~+CQH(T)I51(T)+C2(T)x§3(T)+C4(T) B :’:’Lanl(T)JFCQn(T),

. X

where ¢;(T) is the number of occurrences on j inT for all j € {1,...,2n}. Also, suppose
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Figure 2.2: A coverable tableau T on the left and the corresponding domino tableau
¥(T') on the right.

Now(N/ ) is the set of tableauz in SSYTs, (A/p) which are not coverable. Then

X -x)"=o

T:TeNan(Ap)

Proof. To prove the lemma, it is sufficient to define a fixed-point-free involution v on
Non(N/p) such that
(X, -X)" = —(X,—-x)D), (2.6.1)

Let T € N5, (A/p). Suppose i is the smallest integer such that T' can not be covered with

the dominoes of the form

21 —1
21

21 21 and

Consider the part of T" with entries equal to 2i — 1 or 2¢. Some columns of 7" will have
no such entries, while some columns will contain both 2; — 1 and 2:. We ignore these
columns. The remaining part will have a certain number %k of rows with entries equal to
2t — 1 or 27 once in each column. Suppose there are r; number of 2¢ — 1 followed by a
certain number s; of 2¢ in the j'th row, for all 1 < j < k. The following diagram shows

two such rows:

20—1--|20—=1} 20 | -+ | 2¢
200—1-- |20 =1} 20 | -~ | 2 —_— S
! 51
T S9
Since T is not coverable, there will be atleast one j in {1,...,k} such that either s; is

odd, or s; is even and r; > 0. Fix the smallest such j. In the first case, convert the
leftmost 2i¢ to 2¢ — 1, and in the second case convert the rightmost 2: — 1 to 2¢, in the

j’th row. This will give us (7). It is easy to see that v is the fixed point-free involution
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and it satisfies (2.6.1]), completing the proof. O

2.7 Cyclic sieving phenomenon

The cyclic sieving phenomenon was introduced by V. Reiner, D. Stanton and D. White [03]
generalizing Stembridge’s (—1) phenomenon [105], 106, [107]. To define it, let C; be the
cyclic group of order ¢ acting on a finite set X and f(¢q) a polynomial with nonnegative
integer coefficients. Then the triple (X, Cy, f(q)) is said to exhibit the cyclic sieving
phenomenon (CSP) if, for any integer k > 0,

{reX|o" z=a} = fu"),

where ¢ is a generator of C,, and w is a primitive t'* root of unity.

At first glance, it might appear odd that evaluating a polynomial with nonnegative
integer coefficients at a complex number could result in another nonnegative integer,
let alone have any meaningful counting interpretation. However, the cyclic sieving phe-
nomenon (CSP), as extensively explored in the literature, reveals that this occurrence
is actually quite common. See [97] for a nice survey on cyclic sieving by Sagan and
[T, B, 241, 43], 62] for various other instances of cyclic sieving. This phenomenon high-
lights a fascinating interplay between the fields of combinatorics and algebra, with the
Reiner-Stanton-White paper [93] serving as a catalyst for a surge in interest in cyclic
sieving.

Numerous researchers have explored the cyclic sieving phenomena on the set of semi-
standard Young tableaux (See [4] 18, 80, 83, [85] 88, [111]). Rhoades [94] unveiled a con-
nection between Schiitzenberger’s promotion [I02] and the cyclic sieving phenomenon.
To state his result, let SSYTy(\/u) of semistandard Young tableaux of shape \/u filled
with numbers in {1, ..., k} and Cy be the cyclic group of order k. Using Kazhdan-Lusztig
theory, he showed that if X is rectangular partition of length at most k, then the triple

(SSYTk()\), Ck) q_m(k)s)\(17 q,. .. 7qk_1))a

exhibits the cyclic sieving phenomenon, where m(\) = Zle(i—l))\i and sx(1,q,...,¢*1)
is the principal specialization of the Schur polynomial. Such a result was further gener-
alized in [38] where cyclic sieving on rectangular SSYTy(\) with a fixed content vector
was considered and also for partition A of any shape with ged(|A|, k) = 1 [82].
Alexandersson, Pfannerer, Rubey and Uhlin proposed the following conjecture [6],

Conjecture 50| generalizing Rhoades’s result. There exists an action of the cyclic group
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Cy of order t on SSYTy(t\/tu) such that the triple

(SSYTk<t)\/t:u)7 Ct7 St)\/tu(lv q, ... 7qk_1))a

exhibits the cyclic sieving phenomenon. Here t\/ty is the stretched Young diagram of
Ap by t. If t does not divide k, then the conjecture is false [73]. But the conjecture is
true if k is divisible by ¢ [73, Theorem 1.1]. More precisely, it can be reformulated as
follows: let A\/u be a skew partition. If A\; — p; is divisible by ¢ for all ¢ > 1, then there

exists an action of the cyclic group C; of order ¢ such that the triple

(SSYTtn()‘/:U’)a Ot7 s)\/,u(]-? q,. .. uqtn_l))7

exhibits the cyclic sieving phenomenon. Recently, in [52], Graeme, Stokke and Wiebe

proved the cyclic sieving phenomenon on the set of symplectic tableaux.
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Chapter 3

Factorization of classical characters

twisted by roots of unity

In this chapter, we study the factorization of irreducible characters of representations
of GLn,SO2m+1,SPoy, and Osgy,, evaluated at elements whz; for 0 < k& < t — 1 and
1 < i < n. The case of GLy, was considered by D. J. Littlewood [74] and independently
by D. Prasad [90]. In each case, we characterize partitions for which the character
value is nonzero in terms of what we call z-asymmetric partitions, where z is an integer
which depends on the group. We give statements of results and illustrative examples
in [Section 3.1 We formulate results on beta sets, generating functions and determi-
nant identities in [Section 3.2 We give a self-contained proof of Littlewood’s result in
[Section 3.3] In consequence, we also consider the monomial symmetric functions and
forgotten symmetric functions with the same specialization in [Section 3.3l We prove
the new factorizations of other classical characters in [Section 3.4l Finally, we prove

generating function formulas for z-asymmetric partitions and z-asymmetric t-cores in

This work has appeared in the Journal of Algebra [13].

3.1 Main results

The first result in this direction is due to D. Littlewood and independently D. Prasad
for GL;,. We will denote our indeterminates by X,wX, w?X, ..., w1 X, where we recall

that X = (z1,...,2,) and w is a primitive ¢’th root of unity.

For a partition of length at most tn, let o, € S, be the permutation that rearranges

27
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the parts of S(A) such that

q—1 q
Boyy(A) = ¢ (mod 1), ni(A) + 1< 5 <) mi(N), (3.1.1)
i=0 i=0
arranged in decreasing order for each ¢ € {0,1,...,¢t — 1}. For the empty partition,

B(,tn) = (tn —1,tn —2,...,0) with n,(,tn) =n, 0 < ¢<t—1 and

og=(t,....,nt,t—1,....nt—1,...,1,...,(n — 1)t + 1), (3.1.2)

. . . . (t—1) n(n+1)
in one line notation with sgn(og) = (—1)%?+

Theorem 3.1 ([74, Equation (7.3;3)], [90, Theorem 2]). Let A be a partition of length at
most tn indexing an irreducible representation of GLy, and quo,(\) = (A@ ... AE=D),
Then the GLy,-character sy(X,wX, ..., w™tX) is as follows.

1. If corey(N) is not empty, then

sy(X,wX, .. W) = 0. (3.1.3)
2. If core,(N) is empty, then
1 t(t—1) n(n+1) =1
(X, wX, L wTX) = (1) 7 sgu(on) [ [ s (X (3.1.4)

=0

In other words, the nonzero GL,-character is a product of ¢ GL,, characters. We

will give a self-contained proof of this result in [Section 3.3] We note that
for X = (1) is due to Macdonald [77, Chapter 1.3, Example 17(a)], where the Schur

polynomial on the right hand side of (3.1.4)) is 1 for each ¢ € [0,¢ — 1]. Recently,
Karmakar [58] gave a different proof of this result. A similar factorization result is
proved by Mizukawa for Schur’s P and @) functions [7§].

Example 3.2. Fort = 2, |Theorem 3.1| says that the character of the group GLy (i.e.,
n = 1) of the representation indexed by the partition (a,b), a = b = 0, evaluated at

(x,—x) is nonzero if and only if a and b have the same parity. If a and b are both odd,
then

S(a,b)(x7 —ZL’) = _S(%l)(xQ)S(ﬂ)(x2)7

and if a and b are both even, then

S(ap) (@, —) = s (2%)5(2)(2?).
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We now generalize to other classical characters. We first need some

definitions.

Definition 3.3. Let z be a nonnegative integer. We say that a partition A is z-
asymmetric if A = (ala + z), in Frobenius coordinates for some strict partition o.
More precisely, A = («|B) where 5; = a; + z for 1 <@ <tk(\).

Definition 3.4. A l-asymmetric partition is said to be symplecti(ﬂ In addition, if a

symplectic partition is also a t-core, we call it a symplectic t-core.

Note that the empty partition is vacuously symplectic. For example, the only sym-
plectic partitions of 6 are (3,1,1,1) and (2, 2,2), and the first few symplectic 3-cores are
(1,1), (2,1,1),(4,2,2,1,1) and (5,3,2,2,1,1).

For the symplectic case, we take G = Sp,,,, the symplectic group of (2tn) x (2tn)
matrices. To state our results, it will be convenient to define, for A = (Ay,..., A), the
reverse of A asrev(A) = (Mg, ..., A1). Further, if p = (1, ..., p;) is another partition such
that 111 < \g, then we write the concatenated partition (A, ) = (A1, ..., Mgy o1, - - -5 5.

Theorem 3.5. Let A be a partition of length at most tn indexing an irreducible repre-
sentation of Spy;,, and quo,(X) = (A, ... AED) . Then the Spy,,,-character spy (X, wX,

LW X)) s given as follows.

1. If corey(N) is not a symplectic t-core, then

spy(X, wX, ..., w1 X) =0. (3.1.5)

2. If cores(N) is a symplectic t-core with rank r, then

3
|5
spy (X, wX, ..., W X) = (—1)“sgn(oy) spye-n H s (1) (X', X"

=0

0 (%71)(Xt) t even,

t odd,

(3.1.6)
where

=2 w +nr t even,
Z +

H 0

2

t odd,

"'While this terminology also seems to be have been used for partitions whose odd parts have even
multiplicity [54], it does not seem widespread.
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and uz(l) _ )\gt—2—i) + ()\(i)’(), ...,0, —rev()\(t_Q_i))) has 2n parts for 0 <1 < [?J

Again, nonzero Sp,,,, characters are a product of characters, but this time there are
|(t — 1)/2] GLg, characters, one Sp,,, character and, if ¢ is even, one additional SOs, 41
character. As mentioned above, the only 2-cores are self-conjugate. Therefore, this

character when ¢ = 2 is nonzero if and only if cores(\) = .

Example 3.6. Fort = 2, says that the character of the group Sp(4) (n = 1)
of the representation indezed by the partition (a,b), a = b > 0, evaluated at (x,—x) is

nonzero if and only if a and b have the same parity. If a and b are both odd, then

SP(ap) (T, =) = —Sp(b;;)(l’z) SO(GT“)(Q/’Z%

and if a and b are both even, then

5P (a,b) (z,—r) = SP( )(352) SO(%)($2)-

a
2

Notice that all the characters on the right-hand side are for the groups Sp(2) and SO(3),

and in both cases, the partitions indexing them are the 2-quotients and of length 1.
We also give a concrete example.

Example 3.7. Let n = 2,t = 3 and consider the partition A = (3,2,1,1,1) so that
B(N) = (8,6,4,3,2,0). Hence, ng(A,6) = 3,n1(\,6) = 1 and ny(X\,6) = 2. Hence, it
has 3-core equal to (1,1), and its symplectic character is nonzero. With X = (z1,x9),

spy (X, w3 X, w2 X) is given by

((3:1 + x9) (w179 + 1) (23 — Towy + 23) (2323 — 21709 + 1))2
3,3

L1
Since quog(A) = (), (1), (1)), ud) =0+ (1,0,0,0) = (1) and we need to calculate
spy(X?) and 5(1)(X3,73). These are the characters of Sp(4), SO(5) respectively, cor-
responding to the partition (1,0). It turns out that both are equal to

(11 + o) (x179 + 1) (22 — owy + 23) (2322 — 179 + 1)

iz ’

verifying [Theorem 3.3,

Definition 3.8. A (—1)-asymmetric partition is said to be orthogonal. In addition, if

an orthogonal partition is also a t-core, we call it an orthogonal t-core.
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Our notion of an orthogonal partition is the same as Macdonald’s double of a [T,
p. 14], and Garvan-Kim-Stanton’s doubled partition of v, denoted a« [41l, Sec. 8]. The
first few orthogonal 3-cores are (2), (3,1),(5,3,1,1) and (6,4, 2,1, 1), which are precisely
the conjugates of the symplectic 3-cores listed earlier. Then our result for factorization
of even orthogonal characters is as follows.

For the even orthogonal case, we take G = Og,, the orthogonal group of (2tn) x (2tn)

square matrices.

Theorem 3.9. Let A be a partition of length at most tn indexing an irreducible repre-
sentation of Qg and quo,(N) = (MO, AED) . Then the Oy, character 0" (X, wX,

WX ds given as follows.
1. If corei(N) is not an orthogonal t-core, then

o™X, wX, ..., w1 X) =0. (3.1.7)

2. If core;(N) is an orthogonal t-core with rank r, then

B
O (X, WX, .. 6! X) = (~1) sgnlon) o (XY [ ] 5,0 (X", X)

=1

b ‘

.

(_1)2?:1/\’(t/Q)SOw/z)(—Xt) t even,

1 t odd,
(3.1.8)

X

where

t—1 n(n+t—1)
o) ———— t+nr t even,
€= — Z (n ( )) + 12
i=[ 2] 2 (t—2 Jn t odd,

and P = X7+ (AD0,...,0, = rev(AE D)) has 2n parts for 0 <i < |51

Again, nonzero Oy, characters are a product of characters, but this time there are
|(t —1)/2] GLs, characters, one Oy, character and, if ¢ is even, one additional SOs, 1
character. As in the symplectic factorization in [Theorem 3.5 the even orthogonal char-
acter for t = 2 is nonzero if and only if cores(A) = . Recall the involution @ (see
on the space of symmetric functions the takes sy to sy. Koike and Terada

have shown [64] that this involution interchanges (universal) orthogonal characters and

(universal) symplectic characters. Comparing [Theorem 3.5 and [Theorem 3.9} it seems

reasonable to suppose that we can obtain a proof of the latter from the former using this
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involution. However, this involution works only at the level of universal characters and

does not commute with our specialization.

Example 3.10. Fort =2, says that the character of the group O(4) of the

representation indexed by the partition (a,b), a = b = 0, evaluated at (x, —x) is nonzero

if and only if a and b have the same parity. If a and b are both odd, then
oGty (1, —w) = (=1)"* V250001 (—2?)oulh (o),
and if a and b are both even, then

o(e;’fb’)‘(az, —z) = (—1)%?2 S0(

[N11S)
—
—
8
no
SN—
o
—~
<
)
3
—~
8
no
N—

Notice that all the characters on the right-hand side are for the groups SO(3) and SO(2),

and in both cases the partitions indexing them are the 2-quotients and of length 1.

For the odd orthogonal case, we take G = SOqy,. 1, the orthogonal group of (2tn +
1) x (2tn + 1) square matrices. It will turn out that the notion of an ‘odd-orthogonal
partition’ is the same as being self-conjugate, or equivalently, 0-asymmetric. The first
few self-conjugate 3-cores are (1), (3,1,1),(4,2,1,1) and (6,4,2,2,1,1). Our result for

factorization of odd orthogonal characters is as follows.

Theorem 3.11. Let \ be a partition of length at most tn indexing an irreducible rep-
resentation of SOgy1. Then the SOgy, 1 character sox(X,wX, ..., w1 X) is given as

follows.

1. If core,(N) is not self-conjugate, then

son(X,wX, ..., WX) =0. (3.1.9)

2. If corey(N) is self-conjugate with rank r, then

| 5]
son(X,wX,...,w"1X) = (—1) sgn(oy) H Su@)(Xt,Yt)
i=0

0 (151y(X1) ¢ odd, (3:1.10)

X
1 t even,

where



3.1. Main results 33

and HZ(S) _ )\gt—l—i) + ()\(i)’(), ...,0, —rev()\(t_l_i))) has 2n parts for 0 <1 < [%J

Again, nonzero SO, 1 characters are a product of characters, but this time there are
|t/2] GLg, characters, and, if ¢ is odd, one additional SOy, character. Since 2-cores are
always self-conjugate, odd orthogonal characters always have a nontrivial factorization
when t = 2.

Example 3.12. For t = 2, |Theorem 3.11| says that the character of the group SO(5)

of the representation indezed by the partition (a,b), a = b = 0, evaluated at (z,—x) is

nonzero if and only if a and b have the same parity. We obtain

SO(a,p) (¥, —x) = (—1)“8(%17’0)@2@2).

Notice that the character on the right hand side is for GL(2) and involves the sum of the

2-quotients.

Remark 3.13. It might seem that the results of [I’heorem 3.5, [T'heorem 3.9 and [T’heo-|
are not well-defined because of More precisely, the lack of symme-

try of the t-quotients on the right hand sides of these theorems might cause some worry.

However, since changing n — n + 1 will change the length of the partition A by tn, the

order of the quotients remains unchanged.

Remark 3.14. In some cases, the Schur functions S, (X t,yt) appearing on the right

hand sides of [Theorem 3.5, [Theorem 3.9 and [Theorem 3.11| for j € [3] respectively

factorize further into characters of other classical groups, but we do not understand this
behavior fully. Whenever u; can be written as p; + (p, —rev(p)) or p; + (1 + p, —rev(p))
for a partition p of length at most n, such a factorization occurs by the results in [10]. In
that case s, is either a product of two odd orthogonal characters or an even orthogonal

and a symplectic character.

Further generalizations of the factorization results have now appeared in [2 [69]. It
is natural to ask if there are infinitely many symplectic, orthogonal and self-conjugate
t-cores. As we have seen, there are no symplectic or orthogonal 2-cores and all 2-cores
are self-conjugate. For ¢ > 3, it has been proved [4I] that there are infinitely many

self-conjugate t-cores. Our last result gives a generalisation.

Theorem 3.15. There are infinitely many symplectic and orthogonal t-cores for t = 3.

This is proved in
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3.2 Background results

We collect all the assorted results we will need to prove our main results here. In
we will use beta sets of partitions to classify symplectic partitions and
their generalizations. We will derive generating functions for such partitions and prove
that there are infinitely many of them in [Section 3.5 Finally, we will derive determinant
identities for block matrices in [Section 3.2.2

3.2.1 Properties of beta sets

In his treatise, Macdonald [77] used beta sets to derive powerful results for cores and
quotients. We review and extend his results to the cases of interest. First, we recall
a useful property of the beta numbers. Throughout, we will use the notation [m] =

{1,...,m} and [m1,mg]| = {my,...,ma}.

Lemma 3.16. Let A and p be partitions of length at most my and mo respectively and
let mo = \i. Then X' = p if and only if the my + mo numbers B;(\) for j € [m1] and
my 4+ mg — 1 — Br(p) for k € [ma] form a permutation of {0,1,...,my + mg — 1}.

Proof. The forward implication holds by [77, Chapter 1.1, Equation (1.7)].

For the converse, since my > A;, the m; + mo numbers §;(\) for j € [my] and
my1 + mg — 1 — Bi(X) for k € [my] are a permutation of {0,1,...,m; + mg — 1} by [77,
Chapter 1.1, Equation (1.7)]. So, Bkx(X) = Br(u), k € [ma] and X' = p. O

Let A, i be partitions of length at most m such that A\ © p, and such that the set
difference of Young diagrams A\p is a border strip of length ¢. Then, it is known [77,
Chapter 1.1, Example 8(a)] that S(u) can be obtained from (\) by subtracting ¢ from
some part (;(\) and rearranging in descending order. Therefore, for a partition A of

length at most m, we see that
ni(A,m) = n;(core(\),m), 0<i<t—1. (3.2.1)

We now explain the relationship between a partition and its conjugate in terms of

their beta sets.

Lemma 3.17. Let \ and u be partitions of length at most tmy and tmsy respectively. If
=N, then
ni(A) + ng_1i(p) =mq +mo, 0<i<t—1. (3.2.2)

The converse is true if X\ and p are t-cores.
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Proof. Suppose pr = X. Then [Lemma 3.16/ implies that the numbers /;(\) for 1 < j <
tmy and tm+tn—1—F(u) for 1 < k < tmsy are a permutation of {0, 1, ... tmy+tmo—1}.

Since £ =t — 1 —4 (mod ¢) implies tmy + tmy — 1 — & =4 (mod t), n;(A) + ny—1—; () is
equal to number of integers in {0,1,...,tmy + tmy — 1} congruent to ¢ (mod t). Since
for each 0 < ¢ <t —1, there are m; +my numbers in {0, 1,...,tmy + tmy — 1} congruent
to 7 modulo ¢, holds.

Conversely, assume A and p are t-cores and holds. Fix#,0 <7 <t—1. Since A
is a t-core, the numbers i < i+t < --- < i+(n;(\)—1)t occur in S(A). Similarly, since p is
at-coreand 0 < t—i—1 < t—1, thenumbers t—1—i < 2t—1—i < -+ < (ng_1—;(p))t—1—1i
occur in [(u).

So, the parts of () and tmy + tmy — 1 — 5(p) congruent to ¢ (mod t) are
P<i+t<---<i+(n(A)—1)t

and
tmy+me—1)+i>t(my+me—2)+1> - > (n;(N\))t +4

respectively. Therefore, all the numbers congruent to ¢ (mod ¢) between i and t(m; +
ms — 1) 4+ @ appear in the union of S(A) and tm; + tms — 1 — B(u). Since this holds
for each 0 < ¢ <t — 1, parts of B(\) and tm; + tmy — 1 — B(p) are a permutation of
{0,1,...,tmy + tmy — 1}. Moreover, the largest part of B()\) is at most t(my + may) — 1
implies \; is at most tmy. So, by [Lemma 3.16] p = X', completing the proof. O]

Using [Lemma 3.17|and (3.2.1)) for m = tn, we have the following corollary.

Corollary 3.18. For a partition \ of length at most tn, core,(\) is self-conjugate if and
only if
t—1

ni(\) + nemi(\) =20, 0<i< {QJ . (3.2.3)

Recall the definition of z-asymmetric partition from |[Definition 3.3 Let P, be the set

of z-asymmetric partitions and P, be the set of z-asymmetric ¢-cores.

Lemma 3.19. Let A = (a|B) be a partition of length at most m and rank r. Then the

following statements are equivalent.
1. e P,.

2. an integer & between 0 and m — z — 1 occurs in B(N) if and only if 2m — z — 1 — &

does not.
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3. B(A) is obtained from the sequence (a; +m, ..., . +m,m—1,...,1,0) by deleting
the numbersm—z—1—a, >m—z—1—a,_1 > --->m—2z—1—ay lying between
0 and m —1.

Proof. First, note that A € P, if and only if A is of the form

A=(ar+1,...;ap0+rr o rr =1, r—=1,...,1,...,1).
—_—— - ~— _ —_————

ar+z ap_1—ap—1 ap—ag—1

In that case, its beta set is

BA) =(a1+m,....,a, +mm—1,....m—(a, +2),m— (. +z+ 1),

7/

oz::-z
m—(ar—l-z+2),...,m—(a,,_l—i—z),m—(ar/_1\+z+1),...,m—(a2~|—z+1),

v
ap_1—ap—1

m—(ag+z+2),....m—(ag+2z),m—(ag+z+1),m— (g +2z+2),...,0),

-7/

Y
a1—ag—1

where a hat on an entry denotes its absence from the tuple. So, [[tem 1| and [ltem 3| are

equivalent.

Clearly, implies Now suppose holds. Observe that a part of

B(N), A\; +m —1i is greater than and equal to m if and only if \; is greater than and equal
to ¢. Thus there are r parts of 5(\) greater than m. Since a; + m > --- > . + m are r
integers greater than and equal to m which occur in 5(A), holds. O

Lemma 3.20. For 2 <t < z+ 1, the empty partition is the only t-core in P, ;.

Proof. Let A = («|f) € P, have rank r > 0. Then

A=(an+1,...;a,+rr ... or,r—=1,...r—=1,...,1,...,1).
—_—— ~ Y —_———
ar+z ar_1—ap—1 a;j—az—1

So, Mvyi=r,1<i<a,+zand X = a,+r+z. lf z > t—1, then A\, o, .11 = . Hence,
the hook number h(r+a,+z—t+1,7) = (r)+ (o, +r+z)—(r+a,+z—t+1)—(r)+1 = t,

which is a contradiction since A is a t-core. So, A must be empty. O

Now we explain the constraints satisfied by n;(\),0 < ¢ <t — 1, for a z-asymmetric

t-core A\ of length at most tn.
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Lemma 3.21. Let X be a t-core of length at most tn and 0 < z <t —2. Then A\ € P,
if and only if

ni(A) +ni—o1—i(N) =2n for 0<i<t—2z—1,
(A) +1p—z1-6(N) f (3.2.4)
and n;(A\) =n, t—z<i<t-—1.

Proof. Suppose A = (a|a+z) and rk(\) = r. Using[Lemma 3.19((3), B()) is obtained from
the sequence (o +tn, ..., a,+tn,tn—1,...,1,0) by deleting the numbers tn—z—1—q, >
tn—z—1—a,_1 > >tn—z—1—ay. Since n;(F,tn) = n for all i, trivially holds
for the empty partition. Note that if tn—z—1—«; = 6; (mod t), then a;+tn = t—2z—1-6;
(mod t) for ¢ € [r]. In that case n;_, 1 g¢,()\) increases by one and ny, (\) decreases by
one. Therefore, it is sufficient to show that 6; € [0, — z — 1], for each i € [r] to prove
B24).

We prove this successively in reverse order starting from 6, and going all the way
to 0;. Since X is a t-core, if tn — z — 1 — a,. does not occur in B()\), then neither
does tnh — z — 1 — o, + t. Since tn — z — 1 — «, is the largest number deleted from
(tn — 1,tn —2,...,0) to get B(N\), tn —z—1—qa, +t = tn. So, o, + z + 1 € [z + 1,t];
and 6, € [0,t — z — 1]. There is nothing to show if §,_; = 6,.. So, assume 6,_; # 0,.
Similarly, since A is a t-core, if tn — z — 1 — a,,_; does not occur in B()\), then neither
does tn — 2z — 1 — a,_1 + t. Since tn — 2z — 1 — a1 is the largest number congruent
to 0,_1 deleted from (tn — 1,tn —2,...,0) to get B(\), ap—1 + 2 + 1 € [z + 1,¢] and
0,1 € [0,t — z — 1]. Proceeding in this manner, 60; € [0,t — z — 1] for all ¢ € [r].

Conversely, assume holds for A\. If A is the empty partition, then it belongs to
P+ vacuously. Now suppose A is non-empty and {iy,i2,...,4}> < {0,1,...,t — 2z — 1}
such that n;,(\) > n which implies n,_._1_;;(A\) < n,j € [k]. Since A is a t—core, for
each j, i;+tn <i;+t(n+1) <--- <i;+t(n;(\) —1) are the parts of S()\) greater than
and equal to tn. If n,_._1_; (A) < n for j € [k] implies parts of 3(A) less than and equal
to tn — 1 is obtained from the sequence (tn — 1,tn — 2,...,0) by deleting the numbers

tn—z—1—ijtn—1)—2—1—1ij5,...,t(noy;(A) +1) =2 —1—1ij.

Observe that an integer £ between 0 and tn—z—1 occurs in 5(A) if and only if 2tn—z—1-¢
does not. So, by |Lemma 3.19) A € P, ;. O

Corollary 3.22. Lett = 3 and X be a partition of length at most tn. Then core, () is a

symplectic t-core if and only if n;(A) +ny_o_;(A) = 2n for 0 < i < [%J and ng_1(\) = n.

Proof. Set z = 1 in [Lemma 3.21 This now follows using ¢(core;(\)) < ¢(\) < tn and
(3.2.1) for m = tn. O
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Since core;(A\)" = core,(X') [77, Example 1.1(e)], it follows that core;(\) is an orthog-
onal t-core if and only if core;(\') is a symplectic t-core. We then have the following

corollary.

Corollary 3.23. Let A be a partition of length at most tn. Then core,(\) is an orthogonal

t-core if and only if no(A) = n and niy(X) +ne—(A) = 2n for 1 <i<|§].

Proof. Suppose (X)) < tm, for some m > 1. Using |Corollary 3.22 for X', core;(\)

is an orthogonal t-core if and only if n,_1(\) = m and n;(N) + ny_o_;(N) = 2m for

0<:i< [%J Now using |Lemma 3.17, we get the desired result. O

For completeness, we note the following property of the t-quotient of orthogonal and

symplectic partitions, although we will not use it.
Proposition 3.24 ([41, Bijection 3]). Let A be a partition. If

1. X9 4s an orthogonal partition,

2. corei(N) is an orthogonal t-core, and

3. (ADY = 2D for  1<i< |,
then X\ is orthogonal. A similar statement holds for symplectic partitions.

We now see how to compute the rank of a t-core from its beta-set.

Lemma 3.25. If X is a t-core of length at most tn, then

rk(\) = Z(ni(/\) —n)s, (3.2.5)

where z; := max(z,0).

Proof. If n;(A\) = n for 0 < ¢ < t — 1, then S(\) = (tn — 1,tn — 2,...,1,0) which
implies A\ is an empty partition. So, the result holds in this case. Otherwise, assume
{i1,42,...,ik}> = {0,1,...,t — 1} such that n;,;(A) > n for 1 < j < k. Since A is a t-core,

ij+tn <ij+t(n+1) <--- <ij+t(ng,(A)—1)

are the parts of (\) greater than tn — 1 for each j. If r is the number of parts of 5(\)
greater than tn — 1, then

r= Yy, (3) = 1) = YA —n)-.

j=1 i=0
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Moreover, (3,()) is the smallest part of 3(\) greater than tn — 1 and is therefore equal
to i +tn. So, A, = B,(A\) —(tn—71) =tn+ixy—(tn—71) =i +r =7 and A\ <
tn —1 — (tn —r — 1) < r, which implies the rank of A is r. O

immediately tells us how to compute the rank of the t-core of a partition
using (B:21)).

Corollary 3.26. If X\ is a partition of length at most tn, then

Lemma 3.25| also gives us an algorithm to determine if a partition has empty t-core.

Corollary 3.27. If A is a partition of length at most tn, then core,(\) is empty if and
only if n;(A\) =n for0<i<t—1.

Lemma 3.28. Let )\ be a partition of length at most tn.

1. If core,(N) is a symplectic t-core, then

|5 -2
rk(core;(A)) = > [ni(A) —nf = > [n(A) —nl. (3.2.6)
=0 i=| 5

2. If corey(N) is an orthogonal t-core, then

rk(core,(\)) = Z In;(\) —nl. (3.2.7)

rk(core (N)) = Z Ini(A) — nl. (3.2.8)

Proof. Using |Corollary 3.26]
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If core () is a symplectic t-core, then by [Corollary 3.22]

t—2
ny_1(A) =n and n;(A\) + ny_o_;(A) =2n for 0 < i < {QJ )
If n;(A) > n for some i € {[%J + 1, [%J +2,...,t — 2}, then ny_5 ;(\) < n and

ni(A) —n=n-—ngo;(A). Since t —2—1ie{0,1,...,| 52|},

15°]
rk(core,(\)) = Z Inp(\) — nl.

Using an argument analogous to the one just given as well as |Corollary 3.23| and [Corol-|

lary 3.18] the proofs of (3.2.7)) and (3.2.8) follow. O

3.2.2 Determinant evaluations

Here, we will derive all the determinant evaluations we need to prove our character
identities. We will state them in the most general form possible.

Let A be a partition with /(\) < tn. Recall for 0 < p <t —1, 5](?)()\), 1 <7< ny(N)
are the parts of 5(\) congruent to p modulo ¢, arranged in decreasing order. In addition,

for ge Z v (Z + 1/2), define n x n,(\) matrices
A)\ . xﬁj(-p)(/\)Jrq A)\ . jﬁj(-p)()\)Jrq (3 9 9)
Pq i 1<i<n 2 i l<i<n e
: P

The corresponding matrices for the empty partition are denoted by

A = (x?(n—j)+p+q
X

)

A - <i¢(n—j)+p+q

Pq 2

(3.2.10)

, .
>1<i,j<n >1<i,j<n

In all cases, whenever ¢ = 0, we will omit it. For example, we will write A];\ instead of
A Recall that the t-quotient of A is given by quo,(A) = (A, ..., AX"Y) and n,(A) < n
for 0 < p <t — 1. Then, using [Proposition 2.3(2),

tB;(\P) = 8P\ —p, 1<j<n,

we write down alternate formulas for the classical characters. Recall that X* = («f,... 2f).

ren

Using this notation, we see that the Schur polynomial is given by

det A}
o (X = G A
P

(3.2.11)



3.2. Background results 41

the symplectic character is given by

det (A}, — A )

p,t—p _pt=p

_ , 3.2.12
det (Ap,tfp — Ap,t*p) ( )

spaw (X°)

the odd orthogonal character is given by

det (43, ,~ A, )
S0\ (X)) = 2 —2 7 (3.2.13)
det (4,5~ Ays,)

and the even orthogonal character is given by

2det (A)_, + A)_)
(1 + (5)\%0)70) det (AI%—P + Ap7_p) 7

using (2-43), (1) and ([215) respectively.

We first express the Schur function in the variables X* uXxX' occurring in our theorems.

cvcn( t) —

o (3.2.14)

Lemma 3.29. Let A be a partition of length at most tn with quo,(\) = (A@, ... A1),
If p,g € {0,1,...,t — 1} such that n,(X) + ng(A) = 2n, then we define p,, = Aﬁp) +
(AD.0,...,0, —rev(A\P)), where we pad 0's in the middle so that p,, is of length 2n.
Then the Schur function spp,q(Xt,yt) can be written as

A | A

q4,—q pit—p

det

np(\) (np(N)—1) -

o Rt A)‘_ AA 3
ot xty = 5 S C I el L VA (3.2.15)
(=1)7 > Ag—q | Apt—p

det

Spp,q

Aq,—q Ap,t—p

Proof. We will think of the first n,()\) components of p,, as coming from A(@ and the
remaining as coming from A\ Using the Schur polynomial expression (2.3.1]), we see
that the numerator of spm(Xt,Yt) is

(p) | (@) : (P) _y(p) :
x?()\lp +/\jq +2n—j) xl?(/\lp —)\QZ+1_j+2n—])
v 1<i<n v 1<i<n

1<j<ng(A) ng(A\)+1<j<2n

f;(A§P)+A§Q)+2n_ ) j;(x@-xéﬁjﬂf +2n—j)
' 1<i<n ! 1<i<n

1<j<ng(N) ng(A)+1<j<2n

det
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(N
Multiplying row ¢ in the top blocks and bottom blocks of the numerator by :iz()‘l ()

t(,\ﬁ”)+np(/\)) . - .
; respectively, for each i = 1,2,...,n and then reversing the last n,(\)

jﬂf)m—pw
¢ 1<i<n

(936 3 (A)—q) (lﬁ“ (A)—p+t> (3.2.16)
1<i<n 1<i<n

and z

columns, we see that the numerator equals

np(N)(np(M)—1)

(—1)™F " det

1<j<ng(\) 1<j<np ()
A AN
_ Aq,—q Apﬂt—p
np(\)(np(A)—1)
=(-1) 2 det
AN A
Aqﬁq Ap,tfp

Since ny(F,tn)) = ny(F,tn)) = n and the denominator in the expression (2.3.1)) is the

same as its numerator evaluated at the empty partition, we see that the denominator is

A

p,t—p

q,—q

A A

q4,—q p,t—p

Hence, (3.2.15) holds. O]

The next result shows that the role of p and ¢ in these kind of Schur evaluations can

be interchanged.

Lemma 3.30. Using the same notation as in we see that

S04 (X, X) = Span (X, X).

P\
iAS ., = Ay _,, we observe

A A
Aty ( 0 | Loy ) ) Ap

I _

A np(A) A
Apt—p ‘ Ap,—p

)

Proof. Since TtA), = A} _ and A

tipit—p T “p,

A
( 0 :z«gfn) A-a
i, | 0 -\
A

q

AA

q,t—q

A)\

q,t—q
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where [, is the m x m identity matrix. Evaluating the determinant on both sides,

9 A27_q Al);vt_p sz_p A(?,t—q
(—1)™ det (—1)mrMInad) — et
Since
A A)—1 A A)—1
n2_|_np( )(ng( ) ) _|_np()\)nq()\)+nf,‘(( )(n;( ) ) :n2+2n2_n:n(n_1)
is even, the sign cancels, and p and ¢ can be interchanged. O

The remaining results in this section deal with determinants of block matrices, which
will prove useful in evaluating the other classical characters. We note that we have not

found our identities in Krattenthaler’s treatises [67) 68].
Lemma 3.31. Fori =1,...,k, letT; be matrices of order {; x m; such that {1+ - -+ =

my + -+ my = d. Define block-diagonal and block-antidiagonal matrices

T1 Tl

T, 0 0 T,

U= ' and V = '
0 T T 0
Then

0 if £; # m; for some i,

det(U) = (—1)Z1<i<is™iMi det(V) = { *
Hdet(Ti) otherwise.
i=1

Proof. 1t is easy to see that if ¢; = m; for all i, then
k
det(U) = [ [det(Ts), det(V) = (—1)Zr=izi=k ™™ det(U).
i=1

Now, assume T} is not a square matrix for some i € [k]. We use M" to denote
the transpose of a matrix M. Suppose first that ¢; < m;. Then, since rank(7T!T;) <
rank(7T;) < ¢; <order(T}T;), det(T!T;) = 0. Therefore,

k
(det U)? = det U'U = | [ det(TIT}) = 0,

j=1
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which implies det(U) = 0, and thus det(V') = 0. If ¢; > m;, a similar calculation using
the rank of T;T} yields the same result. O

Lemma 3.32. Suppose uy,...,ux are positive integers summing up to kn. Further, let
(7i,j)1<i<k l<j<kil be a matriz of parameters such that v, 41 = Vig, 1 <1 < k and I be
the square matriz consisting of its first k columns. Let U; and V; be matrices of order

n x u; for j € [k]. Finally, define a kn x kn matriz with k x k blocks as

I = < (Vizi—1Uj =72 V) 1<isk | (Viges2—25U5 — Vik+1-2;V5) 13<Ji<k ) .

NN

1. If up + up1—p # 2n for some p € [k], then detIl = 0.

2. If up + ug1-p = 2n for all p € [k], then

55

detIl = (—1)*(detT)" || det W;, (3.2.17)
i=1
where
Ui | —Vir1-
k41 l<i< [%J ’
Wi = —Vi| Ukt1-
(Vs = Visa ) k odd and i = =L,
2 2
and
|4 0 k even,
Y=Y n+w)+<{ T
i=1 n Z w; k odd.
i=1

Proof. Consider the permutation ¢ in Sk, which rearranges the columns of II blockwise
in the following order: 1,k,2,k — 1,.... In other words, ( can be written in one line

notation as

up+ 1, uy 4+ ug, kno—ug —ug—y + 1, kn— g, . ).

J

~v” "
u2 Uk —1
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Then, the number of inversions of ( is

k
inv(¢) = > w(kn—(ug + - 4 upeaq) = (w; + -+ w)
j=| k3
’ (3.2.18)
5]
= Z Upr1—i(kn — (ug + - 4+ upy1—i) — (w; + -+ + ug)).
i=1
Then it can be seen that
dtH: dt( 3.7 in — i 5 '//) ; 3219
et I = sgn(C) det { i Upr =%y Vir ) (3.2.19)
where
. i+l i odd,
J =i (1 amd =47
k+1—1% jeven
Now note that
Wi
W 0
( YigUjr — i Vi )1<i,j<k = <’Yi,j[n>1<m<k X

0 ey

Now, the matrix (7; ;1,)1<i j<k can be written as a tensor product I'®1,, and therefore
det (i j1n)1<ij<k = (detT')". Therefore,

det < f}/i,jUj” — ryi,j"/j” >1<' ] = (det F)n det . . (3220)
0 ey

If w, + upt1-p # 2n, for some p € [[%J], then W, is not a square matrix. Using

Lemma 3.31], we see that the latter determinant is zero, Hence, by (3.2.20)) and (3.2.19)),

detII = 0.

Now suppose u, + ugp1-p = 20,V p € [|Z1]]. Then W, is a square matrix ¥ p € [| £ |].
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So, by (3.2.20)), we get,

|55
= (detT)" [ detW;.

i=1

det ( %‘,jUj” — %’,j’V}‘” )1

<i,j<k
All that remains is to compute the sign. By (3.2.18)), we get

|
inv(¢) = » (2n —w;)(kn —2(k —i — 1)).

1

,_
e

)

Therefore, if k is even, then inv(() is even and sgn(() is 1. If k£ is odd, then the only

k-1

2

contribution for sgn(¢) comes from n Z u;, since other terms are even. Summing the
i=1

terms gives 3, completing the proof. O]

3.3 Schur factorization

We first give a self-contained proof of the result of Littlewood [74]. We
note that Littlewood’s strategy of proof is, although in a different language, essentially
the same as ours. Next, we consider the monomial symmetric functions with the spe-
cialization X, wX, ..., w! ' X where we recall that X = (z1,...,2,) and w is a primitive
t*™ root of unity. Then we use the result to count the number of terms in the expansion
of ©(Z/tZ)", where ©(Z/tZ) is the group determinant of the cyclic group Z/tZ. Finally,

we consider forgotten symmetric functions with the same specialization.

Proof of [Theorem 5.1, Recall that A has length at most tn. From the definition ([2.3.1]),

the desired Schur polynomial is

det (((wp_lxi)ﬁj(k)) 1<i<n>
1<p<t

1<j<tn

sy(X,wX, .. wTX) = (3.3.1)

det (((wpllﬂi)t”j) 1<i<n )
1<p<t

1<j<tn

Permuting the columns of the determinant in the numerator of (3.3.1)) by o, from (3.1.1),
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we see that the numerator of (3.3.1) is

1<j<tn

sgn(oy) det (((Wp_lxi)ﬂ”(j)(/\)> 1<z’<n)
1<p<t

) 3.3.2)
- (-1 (5O (
=sgn(oy) det | w <xl 1<i<n

1<j<ng-1(N) 1<p,q<t

= sgn(o)) det (w(p_l)(q_l)A;\_l)

I<pgst’
where A)_, is defined in (3.2.9). Note that
A

(w(p—l)(q—l)Ag_l)

1<p,g<t

A
At—l

where [, is the n x n identity matrix. Hence,

det (w(pfl)(qfl)Aé\il)

1<p,gs<t
e 0 (3.3.3)

A
At—l

If core;(\) is not empty, then using (Corollary 3.27, we see that n,(\) # n for some

0<qg<t—1. So, Af]‘ is not a square matrix for some 0 < g < ¢ — 1. By [Lemma 3.31}

det (w(pfl)(q’l)A)‘ = (0 and hence

qfl) 1<p,q<t

sy (X, wX, ... ,wX) =0.

If corei(A) is empty, then [Corollary 3.27 shows that ny(A\) =n forall 0 < ¢ <t—1
and A;‘ is a square matrix for all 0 < ¢ <t — 1. Applying |[Lemma 3.31| again to (3.3.3)),

we see that

-1

—1)(g—1) AX —1)(g—1 A

det (w(p )a )Aq71)1<p7q<t=<det (w(p ) ))Kp’qgt) ||detAq.
q=0
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Substituting in (3.3.2]), we see that the numerator of (3.3.1)) is
-1
sgn(oy) (det (w(pfl)(q’l))Kp q<t> Hdet A (3.3.4)
q=0

Evaluating (3.3.4)) for the empty partition and using (3.1.2)), we see that the denominator
of (B3] is

n t—1
(1) (det (w“"”(q‘”)lgp,qg) [T det 4, (3.3.5)
q=0

Substitution of the values ({3.3.4]) and (3.3.5)) in (3.3.1]) gives

t—1 A
t(t—1) n(n+1 detA
X wX, .. w7 X) = (-1) T 4 3.3.6
SA( y WA, W ) ( ) 2 2 Sgn(aA)qH)detAqv ( )
where A, is defined in (3.2.10)). Hence, using (3.2.11)) in (3.3.6) gives
t(t—1) n(nt1) =1
s X, wX, . W X) = (=1)" 2 2 sgn(a,\)ns,\m(Xt),
i=0
completing the proof. O

Now we consider the specialized monomial symmetric function evaluated at the ele-
ments X,wX,...,w' "t X, where we recall that X = (zy,...,7,) and w is a primitive ¢!

root of unity.

Theorem 3.33. Let \ be a partition of length at most tn. Then the monomial symmetric

function my(X,wX, ... w1 X) is given by
1. If [\| #£ 0 (mod t), then

ma(X,wX, ..., w"X) =0. (3.3.7)

2. If I\ =0 (mod t), then

ma(X,wX, ..., w"X)

n(n+1) t(t—1) _
=(-1)"2 = Z sgn(oy,) Ky 5,0 (X1) .5 00 (X0 |
HEA,
corer (1) =2

(3.3.8)

where K, is the number of tableaux of shape X\ and weight p
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Proof of [Theorem 3.33, Assume |A| # 0 (mod t). If u is a partition of size |\|, then
core;(p) is non-empty and s,(X,wX,...,w'"'X) = 0. Recall, by (2.3.6), the desired

monomial symmetric function is

ma(X,wX, .. W TX) = Y K s (X wX, WX, (3.3.9)

ISPy

where K, is the number of tableaux of shape A and weight p. This implies

ma(X,wX,...,w" ' X) =0.

If [\| =0 (mod t), then using [Theorem 3.1|in (3.3.9) completes the proof. O

Theorem 3.34. Let \ be a partition of length at most tn. Then my(X,wX, ..., W 1X) =
0 if and only if |\| # 0 (mod t).

Proof. Assume my(X,wX, ..., w1 X) = 0. Then by (2.3.6)), we have

YK s (X wX, . wTX) =0, (3.3.10)

p=A

Since K, > 0 for all © < A, we have

s (X, wX, .. ,w™X) =0, for all p< .

So, by [Theorem 3.1, core;(i) is non-empty for all < A. Since (1,...,1) is the smallest

Al
A
partition in the dominance partial order, core,((1,...,1)) is non-empty. Therefore, |\| #
—_—
Al
0 (mod t). Hence my(X,wX,...,w"™'X) = 0 implies |A| # 0 (mod ¢). The converse
follows from [Theorem 3.33l O

Remark 3.35. For a finite group G = {g1,..., s}, the group determinant O(G) of G

is defined as follows

@(G) = Z Sgn(a)xglg;(ll)xgzg;é) o .:L‘gng;(ln)-

o€eSy

Recently in [121], the authors gave an expression ([12I, Theorem 3.2]) for ©(Z/tZ)",

where the coefficient of x7" ...z is my(1,w,...,w™ '), Therefore by [Theorem 3.34]

the number of terms in the expansion of ©(Z/tZ)" is the same as the number of partitions
A of length ¢tn such that |A| =0 (mod ¢) and \; < ¢ for all i.
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A similar calculation as in the proof of [Theorem 3.33|using (12.3.7]) proves the following

result for the specialized forgotten symmetric functions.

Theorem 3.36. Let \ be a partition of length at most tn. Then the forgotten symmetric
function fr(X,wX, ..., w™1X) is given by

1. If |\| #£ 0 (mod t), then

AX wX, . 07X = 0. (3.3.11)

2. If I\ =0 (mod t), then

HX X, . WX

n(n+1) t(t—1) _
=(—1)"2 3 Z sgn(o,) (K 1J)>\:Msu<°) (Xt) o Su(tfl)(Xt) ,
sl
core ()=

(3.3.12)

where K ,, is the number of tableaux of shape X\ and weight p

3.4 Factorization of other classical characters

In this section, we will prove all the other classical character factorizations using results

from [Section 3.2 We will give the most details for the symplectic case in [Section 3.4.1
and will be a little more sketchy for the even orthogonal case in [Section 3.4.2| and the

odd orthogonal case in [Section 3.4.3. We will assume ¢(\) < tn throughout this section.

3.4.1 Symplectic characters

P.q

=2
We first recall the matrices A} and A}  from (3:2.9). If an()\) = (t — 1)n, then
i=0

consider the (t — 1)n x (t — 1)n matrix

_ (,,,Pq AN _ TP AN )
1L (w Aqfl,l w Aq*LI 1<p,g<t—1"

Substitution of U; = A;\—l,la Vi = 1213\_171 for1<j<t—1and

Gy
w2 7 odd,

Yij = i _
w2 j even,
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n proves the following corollary.

Corollary 3.37. 1. Ifn;(\)+n4_o_i(N\) # 2n for some i € [0, [TQJ] then detII; = 0.

2. If ny(A) + my_a—i(X) = 2n for all i € {0,1,...,[52]}, then
=] A | Argin
det IT; = (—1)** (det(7;,5)1<i,j<t-1)" det
=1 Aq—l,l At—q—l,l
det <A3_1 = A 1) t even,
X 2 ’ 2 ’
1 t odd,

(3.4.1)

where

| 5
st n Y ng1(N\) t even,
= Z n + nq 1 ) + (;1 1

0 t odd.

Proof of [Theorem 3.5 Using the formula for symplectic characters in ([2.4.3), we see that
the symplectic polynomial considered here is

1<j<tn

det (((wpxi)ﬂj(k)ﬂ _ (@p@)ﬂj(/\)ﬂ) KK”)
spy (X, wX, ..., W X) = 0<p<t—1

(3.4.2)
det (((wpxi)tn—j-i-l _ (@pl‘ )tn ]+1) 1<z$n)
0<p<t—1

Since the denominator of the right hand side of (3.4.2)) is the same as its numerator
evaluated at the empty partition, we compute the factorization for the numerator and use

that to get factorization for the denominator. Permuting the columns of the determinant

in the numerator of (3.4.2 - by o, from , we see that the numerator of (3.4.2} - is

sgn(oy) det (((wpxi)ﬁa,\o)(/\ﬁrl _ (@p;zi)ﬁq<j)(x)+1> Ki@)
1<j<tn o<p<t—1

= sgn(o) det <wp(q+1) BV (N + QP(Q+1)j§§q)(A)+1) (3.4.3)
xZ; i 1<igsn
1<i<ng(N) / ogprg<t—1
= SgH(CTA) det (wp(qH)A;\J - @p(qH)AcA;,l)osp,qstﬂ :

Applying the blockwise row operations Ry — R+ R+ - -+ R, followed by R; — Ri—%Rl,
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for 2 < i <t, we get

det ((ij(qﬂ)A(/l\’1 _ @p(qH)A;\’l)

A AX
0 e 0 tA 11— Aflg)
A t—1 AN t—1 AX AN
WADJ. — W AO,]. RS w At—271 - wAt_271 O
_ i 3.4.4)
2 AN t—2 AN t—2 AN 2 AN (
= det w AO,l — W A071 o e w At—271 — W At—2,1 O .
t—1 AX AX A t—1 A
w AO’1 — WAo,l . WAt72,1 —w At7271 0

This is now a 2 x 2 block determinant with anti-diagonal blocks. We apply |[Lemma 3.31],

for k = 2 and d = tn, to evaluate this determinant.

If core;(\) is not a symplectic t-core, then by [Corollary 3.22| either ny_1(\) # n or
ni(N) + ne_a—i(A) # 2n for some i € {0,1,...,|52|}. In the first case, i.e. if n,_y(\) #
n, then [Lemma 3.31| shows the determinant is (3.4.4) is 0. If n,_1(\) = n, then the

determinant in (3.4.4)) is

(1) det (A, — A py) x det (WPPA) |, — @AY | ) (3.4.5)

1<p,g<t—1"

using [Lemma 3.31} Observe that the (t — 1)n x (t — 1)n block matrix of the determinant
in (3.4.5) is of the form II; in [Corollary 3.37, Now if n;(\) + ny_o_;(A) # 2n for some

1€ {O, 1,..., [%J}, then the determinant in is 0 by and therefore,

in both cases,

spy(X,wX, ..., X) =0.

If core;(A) is a symplectic t-core, then by [Corollary 3.22, n;—1(\) = n and n;(\) +
ni—a—i(A) =2n,i€{0,1,...,|52|}. Using|Corollary 3.37(2) in (3.4.5), we see that the
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determinant in the numerator of (3.4.2)) is

Sgn(@\)((_l)(t—l)nt)n det (AZ\—M - AZ\—1,1> (_1)21(det(’Yi,j)1<i,j<t—1)n

| 5] Agfm
X det

>\ —
Al 1 det (Aé, — A/}A 1) t even, (3.4.6)
2 2 ’
1 t odd.

<
Il
—

AN A
Aqfl,l Atqul,l

We now simplify the 2 x 2 block determinants. For 1 < ¢ < [%J, multiplying row ¢ in

the top blocks of the matrix by Z7 and row 4 in the bottom blocks by z] for each i € [n],

we get
Ap i | A
det
Af;\—m Ai\—q—m
( B () +1-g <_ﬁ§“q>(x>+1+q
1<isn 1<isn
1<j<ng-1(A) 1<j<ni—1—q(N)
(_ D () +1—¢ ( BT (M) +1+4g
1<i<n 1<igsn
1<jsng-—1(A) 1<gsni—1-4(N)
A?]\—l,l—q A?—q—l,q-‘rl
=det
Ag\fl,lfq Ai\qul,q+1
Combining (3.4.6) and (3.4.7]), we see that the numerator of (3.4.2)) is given by
Sgn(UA)«_l)(t_l)nt)n det (A?_l,l - Ai\—l,l) (1) (det(yi)1<ijee—1)"
- A 1A _
=] Agrig | Agrgn det <A¥ - A 1) t even,
X H det X 27> 27> )
= 1 1 t odd.
o=t A;\fl,lfq Ai\qul,qul ©
(3.4.8)

Evaluating (3.4.8)) at the empty partition and using (3.1.2)), we see that the denominator
of (3.4.2)) is given by



54 3. Factorization of classical characters twisted by roots of unity

t(t—1) n(n+1)
2

(1) > (=10 det (Ar1 = Arr1) (1) (det(i)1<iger1)"

[%J Aqil’liq Atiqil’q+1 det (Aﬁ_l 1 Ai_l 1) t even,
det X 27 2 v
q=1 Aq—l,l—q At—q—l,q-‘rl 1 t Odd,
(3.4.9)
where
[%J 0 t odd,
Y = Z 2n + 5
q=1 n Z n teven

For 0 <i < |52], let ,uz(l) = A2 4 ()\(i),(), N —rev(/\(t_2_i))). Since n;(\) +
n¢_o—i(A) = 2n, [Lemma 3.29| gives

A AN
AP, At 2—1,1+2

det
(") A\ A A,
(—1)(3) Aii | Aiaiiyo
det

5,0 (XX = (3.4.10)

Ai i | Avoiige

Now substitute (3.4.8) and (3.4.9) in (3.4.2)), and then use (3.2.12)) for p =t —1, (3.2.13))
for p = % — 1 and (3.4.10)) for 0 <7 < [%J The symplectic character is thus given by

spy (X, wX, ... W X)

T P
= (—1)sgn(oy)spye—n (X su(_n(Xt,X ) x Atz
i=0 1 t odd,

)(Xt) t even,

where

n+1 teven

1 t odd

t — 1) n( 2]
€ = 2 ; —n X

i < n(n—1) nt_i_g()\)(n;_i_Q()\)—l)>.
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It remains to compute the sign by simplifying the expression for e. Since for 0 < ¢ <

| 52|, ng(A) +ne—2-q(A) = 2n, replacing ng(A) —n by n—n,_5_4()) in the first summation

and then using the facts that t_12(t+1) ”(”2+1) is even for odd ¢ and the parity of =%~ "H (t22_2)
is the same as the parity of ™% ) for odd ¢ shows that e has the same parity as
73 n(n+1)
i <nt o_i(N) + 1) =5 +nr teven,
i=0 0 t odd,
2 ( )+ 1> Ln;l) +nr teven,
= — +
0 t odd,

where 7 is the rank from [Lemma 3.28(1). This completes the proof. ]

3.4.2 Even orthogonal characters

We first recall the matrices A} and A} from (3.2.9). If an (t — 1)n, then

consider the (t — 1)n x (t — 1)n block matrix

M, = (WA + 5" AY)

1<p,g<t—1"
Substitution of U; = A}, V; = —/_1? and for 1 < j <t—1,

i(j+1)

w2 7 odd
w2 j even ,

n [Lemma 3.32| proves the following corollary.
Corollary 3.38. 1. If nj(\) + ny_i(\) # 2n for some i € [|1]], then detIl, = 0.

2. If ny(A) + ny—i(X) = 2n for all i € [|£]], then

t—1
et Ty = (~1)™ (det (31 rcijer1)" ] | det

(3.4.11)
det (A? + Aé) t even

2 2
1 t odd



56 3. Factorization of classical characters twisted by roots of unity

where

o
|
)

ngl

n Y ng(A) t even,

%y =

Il
—

q

0 t odd.

We now give a sketch of the proof of following similar ideas as in the
proof of [I'heorem 3.5,

Proof of [Theorem 3.9. Using the formula for even orthogonal characters is (2.4.5)), we

see that desired polynomial is

2 det (((wp_lxi)ﬁf(’\) + (Qp_lfi)ﬂj(’\)) 1<z<n)
Isgstn /) 1 <p<t

oYM (X, wX, ..., wX) =

(1 + 5)\”“0) det (((wplxi)tnj + ((Z)pfli’i)mfj) 1<@'<n)
1<j<tng | pey
(3.4.12)
After permuting the columns of the determinant in the numerator of (3.4.12)) by o, from
(3.1.1), we see that the numerator of (3.4.12)) becomes

2sgn(oy) det (WP DDA | 4+ P-DED A2 ) (3.4.13)

1<p,g<t”

By applying the block operation Ry — Ry + Ry + --- + R; and then R; — R; — %Rl,
2 <i < t, we see that the numerator of (3.4.12) is

A} + A) 0 . 0 0
0 WA} F WA | WA FWPA) L, | WA | wA)
2sgn(oy) det 0 WA + WA || WA Wt A, | WA |+ wPA)
0 WA + wAY | | WPAY L+ WiT2A) | wA) | Wt A)

This is a 2 x 2 block diagonal matrix.
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If core;(\) is not an orthogonal t-core, then by |Corollary 3.23, either ng(A) # n or

ni(A) + ne—(X) # 2n for some i € [|£]]. If ng(\) # n, then the above determinant is 0

by [Lemma 3.31] If ng(A\) = n, then the numerator of (3.4.12)) is

2sgn(oy)t" det (Ay + Ap) det ((w(p_l)(q_l)Aé‘_l + @(p_l)(q_l)fl;_l)Kp’qgt) . (3.4.14)

where the last determinant in (3.4.14]) is the determinant of Ily, computed in
lary 3.38 If n;(A) 4+ ny—;(\) # 2n for some i € [|£[], then this is 0 by |Corollary 3.38(1).

In both cases,

oM (X, wX, ..., 0 X) =0.

If core;(A) is an orthogonal ¢-core, then by |Corollary 3.23] ng(A\) = n and n;(A\) +
ny—i(A) = 2n, i € [|]]. Using (3.4.14) and |Corollary 3.38(2), we see that the numerator

of (3.4.12) is

2 sgn(a)\)t” det (Ag\ + AS) det((’yi’j)lgi’jgt_l)n(—l)EQ

)

X Hdet

The rest of the proof proceeds in almost complete analogy with the proof of
rem 3.5, Using (3.1.2) and the fact that A, = 0 if and only if A(?) = 0, we see that the

denominator of (3.4.12) is

t(t—1) n(nt1)

(-1) 2 2 tn(l + 5A£Lo)70) det (A() + Ao) det((%j)ngt_l)"(—l)zg

[%J Aq7—q At—q,q det (AL + A£> t even (3416)
X det X 2 2
q=1 A%_q Ai_yq 1 t odd
where s
=
0 n Z n teven
22 = g=1
0 t odd.

Taking ratios, we see that one of the factors is exactly the even orthogonal character of
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A9 and the i’th determinant in the product of (3.4.17) is calculated using

Ag\,—z‘ AZ\—H
det
t 3ot (_1 M ‘le)\—z Ai\—i,i
SM(2) (X ’X ) = n(n—1) — 3 (3417)
' (_1) 2 Ai,—i At—i,z’
det
Ai,—i At—i,z‘

where ,uzm = /\gt_i) + (/\(i), 0,...,0, —rev(/\(t_i))). The only new part is the final deter-
minant, which is calculated using (3.2.14) and (2.4.8)), and we get
det (Aé + A} ) OSER) 41/(X") .
z 72 = - = (—1) i=1" SO)\(t/Z)(_Xt>. (3.4.18)
det <A% + Ag) H(Itp n j¢/2)

i=1

Finally, the even orthogonal character is given by

oy "X, wX, ... ,wtle)
(t/2)

[%J (—1) im1 A

X soyw2 (—X") ¢ even,
= (=1)“sgn(ox)o5Er (XY 5,0 (X', X x A2 ( )

i=1 1 t odd,
where
_tt-1)n(n+1) L) \ n teven
€= 5 +;1(nq<)—n Vo s oad
2]
nn—1)  ni(A)(n—i(A) — 1)
- ; < 2 2 )

After similar simplifications, the parity of € shown to be the same as

& (nz()\)> n D 4 et even,

}; | 2 {t=Ln t odd,

where 7 is the rank by [Lemma 3.28(2), completing the proof. O



3.4. Factorization of other classical characters 59

3.4.3 0Odd orthogonal characters

Recall the matrices A) - and A} from (3.2.9). Consider the tn x tn block matrix

Il = (w(p—l)qu_l — oP=Dlg=1) gA

q— 0) ]_<p q<t

Substitution of U; = A} ||, V; = /71?_170 for 1 < j <tand

(G=1DE+1) .
2 J odd

Vig = G-z .
W > j even

in proves the following corollary.
Corollary 3.39. 1. Ifn;(A\)+ne_1-4()) # 2n for somei € [0, |5]], then det I3 = 0.

2. If ny(A) + my_1—i(X) = 2n for all i € {0,1,..., |52}, then

l%J q 1,1 Ai\ q,0
det Iy = (det(7i)1<i<0)" (—1)™ Hdet
A, A? ol (3.4.19)
det( t—1 1 ) ¢ Odd’
X
1 t even,

where B
2] Z t odd

0 t even.

Proof of |[Theorem 5.11. Starting from the formula for the odd orthogonal character in
(2.4.1f), we see that the desired polynomial is

1<5<tn 1<p<t

son(X,wX,...,wX) = (3.4.20)

det (((wplxi)tnj+1 _ (@pfli.i)tnfj) 1<i<n)

1<j<tn 1<p<t
We again proceed as in the proof of Permuting the columns of the deter-
minant in the numerator in (3.4.20) by the permutation o) from (3.1.1)), we see that the
numerator in (3.4.20)) is

sgn(oy) det (w(p_l)qu_Ll — @(p_l)(q_l)A2—1)1<

<p,g<t

: (3.4.21)
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where the last determinant in ([3.4.14) is the determinant of II,, computed in
lary 3.39| If core; () is not self-conjugate, then by |Corollary 3.18| n;(A) +mn4_1_;(A) # 2n
for some i € {0,1,...,[%5%]}. In that case, the determinant is 0 by [Corollary 3.39(1)

Hence
son(X,wX, ..., wX) =0.

If core,(A) is self-conjugate, then by [Corollary 3.18| n;(\) + ns—1-;(A) = 2n for all
i€{0,1,...,|5*|}. By|Corollary 3.39(2), the numerator in (3.4.20) is

A AN
A ] A

t—q 1 t even,
sgn(oy) (det (i ) 1<) (1) H det X _
ol det (AT A ) t odd.
(3.4.22)

We now evaluate the 2 x 2 block determinant as follows: for 1 < g < [%J, we multiply
row i in the top blocks by Z? and row i in the bottom blocks by x?', for each i. We
then end up with

[%J Aq 1,1—¢q A? a9
Sgn(ak)(det(%ﬁ)l@-?jgt)”(—1)23 flffg . fin det
=1 AN A
q Ao | e /) (3.4.23)
1 t even,

X

det (AL, AL,) ¢ odd

The denominator in (3.4.20) is therefore

i _
t(t—1) n(n+1) . 50 l2J o B Aq_1,1_q At_(m
(1) = (det (’7i,j)1<z’,j<t) (—=1)™ T1To ... T, det
q:1 Aq—l,l—q At—q,q
1 t even,
X —
det (Af L A%) t odd,
(3.4.24)

where

-1
5
22—2271—{— ;n t odd,

qg=1
0 t even.

Taking ratios, we see that the block determinants are proportional to Schur functions
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using [Lemma 3.29,
A/\ t—1—14,5+1
det
n—1—iMN (g1, (A)—1)
— —1
s @ (XX = (=1) - : (3.4.25)
" (1)
det

where ,uZ = )\(t = (/\(i),O, ...,0, —rev()\(t_l_i))). The last ratio of determinants

gives an odd orthogonal character. Finally, the odd orthogonal character is given by

[%J — SO (71> (Xt) t Odd,
son(X,wX, ..., W X) = (=1)sgn(oy) S, (X', X') x A2
i=0 1 t even,
where
hext dd
t(t—1 n+1 todd,
€= ( ) Z )—n) x
2 q=0 1 t even,
I lij n(n — 1) _ nt_l_i()\)(nt_l_i()\) — 1)
— 2 2 :

After similar simplifications, € turns out to have the same parity as

—! (nz(,\) + 1) nr todd
- N
=T

i 0 teven

where 7 is the rank by [Lemma 3.28(3), completing the proof. O]

3.5 Generating functions

We now give enumerative results for z-asymmetric partitions defined in [Definition 3.3,
We first recall that the q-Pochhammer symbol is given by

H

m—

H 1—ag’) (3.5.1)

7=0
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so that (a;q)o = 1. We also define the limiting infinite product

o0
(a:9)0 = | [ (1 ad’). (3.5.2)

7=0
Many generating functions in the theory of partitions can be naturally expressed in
terms of g-Pochhammer symbols. For example, the generating function for all partitions

is 1/(q; q)oo and that of strict partitions is (—¢; q)e.

Proposition 3.40. The number of z-asymmetric partitions of m is equal to the number

of partitions of m with distinct parts of the form 2k + 1+ z, k = 0.

Proof. To prove the proposition, we construct a bijection from the set P, to the set of
partitions of n with distinct parts of the form 2k + 1+ z, £k > 0. If A = (a|a + 2) is a
z-symmetric partition of rank r, then define p of length r by u; = 2a; + 2 + 1. Then all
the parts of u are distinct and of the desired form. This map is clearly invertible. O

[Proposition 3.40/immediately gives an expression of the generating function for z-asymmetric

partitions.

Corollary 3.41. For z e Z,

Z q|)\| _ 1_[(1 + qz+1+2k) _ (_qz+1;q2)oo'

AEP, k=0

We now move on to enumerating z-asymmetric partitions which are also t-cores.
Recall from [Lemma 3.20| that there are no nontrivial partitions if z > t — 2.

t—z

Theorem 3.42. Let z < t — 2. Represent elements of yahel by (zo, - . .,Z[t—z72J) and
2
define b € yahel by by =t —z—1—2i. Then there exists a bijection ¢ : P, — zl=]

—

satisfying |\| = t]|o(\)|2 — b - gb(_}\), where - represents the standard inner product.

Proof. Suppose A € P, of length at most ¢tn for some n > 1. Define the map ¢ by

t—2—-2
(6(N)i == ni(N) —n, 0<i< {Z| |
Since n is not unique, it is not a priori clear that ¢ is well-defined. But from the definition
of n;(A), it is easy to see that n;(A) —n = ni(\,tn +t) —n — 1. Hence, ¢()) is indeed
well-defined.
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To show that ¢ is a bijection, we define the inverse of ¢ as follows. For a vector

U= <v0,vl, . ,vlF%gJ), let n = max{|vo|, |v1], ..., ’Ult—z72J’} and for 0 <i <t—1,
2 2
n+ v, 0<i< |22,
My = AN —Vy_,_1_; [t_ZHJ <1 <t—z-1,.

n otherwise

t—1
By construction, Zmi =tn, mi + my_._1_; = 2n for 0 < i < [t’g’lj, m,; = n for

=0
t—z <i<t—1. By|Lemma 3.21| there is a unique t-core A € P, satisfying n;(\) = m;.

and we set ¢! (7) = A\. Moreover the size of ) is computed as

Al = iﬁiw — m(”;_l) (3.5.3)

Since A is a t-core, tj + i, 0 < j < n;(A\) — 1, 0 < i <t — 1 are the parts of 5(\) (see
[Proposition 2.3)). So,

3500 - 3, (it ¢ MR Z00)
- 3y -y + M S -
Substituting this in (3.5.3)), we get
A = g(i(ni()\) _n)+ ; <2 ns(\)? — m?)
- (i) ) + ;:_Z:mw )’

Now observe that

t—

=] =522
Do+ 1—t+ 20 = (z 41—t +2i)(ng(\) —n).

o]
b=
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Since A € P, using |[Lemma 3.21| we have

t—1

7=>i(n;

=0

i1 Tt z— 2

2
> (m(\) =2 Z —n)* = 2|7*.
i=0 i=0
Hence || = ¢|7]2 — b - @, completing the proof. O

Define the Ramanugjan theta function [23, Equation (18.1)],

L n(n+1) n(n—1)
datT b, (3.5.4)

n=—u

which is related to the Jacobi theta function. We consider f(a,b) to be an element of the
ring of formal power series Z[[a, b]]. There are several nice identities satisfied by f. For
example, f(a,b) = f(b,a), f(1,a) = 2f(a,a®) and f(—1,a) = 0 [23, Chapter 16, Entry
18]. In addition, because of the Jacobi triple product identity, we have [23, Chapter 16,
Entry 19],

fla,b) = (—a; ab)o(—b; ab)w (ab; ab)x

Let p,:(m) be the cardinality of partitions in P, of size m.
Corollary 3.43. For z <t — 2, we have
[(t—2—-2)/2]

Z pz(m)q™ = H f(q2i+z+17 q2t72i7z71).
i=0

m=0

Proof. As a consequence of [Theorem 3.42],

m=0

Z pzvt(m)qm = Z qtv?_(t_Z—l—Qi)Ui
ve ltiTz

Rewriting the exponent and interchanging the order of summation, we see that the

generating function becomes

|=52] . oy lezm22)
I I Qi4z41) U 4 (92— —1) L I | 2itz+1  2—2i—z—1
Z q( it+z+1) ( i—z—1) L _ f(q itz .q i—2 )’
i=0 v, eZ i=0

completing the proof. O
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We remark that the special case of z = 0 (i.e. self-conjugate t-cores) in|Corollary 3.43|
was obtained by Garvan—-Kim—Stanton [41, Equations (7.1a) and (7.1b)]. Thus, our result

can be viewed as a generalization of theirs for symplectic and orthogonal partitions,

leading to an immediate proof of [Theorem 3.15|
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Chapter 4

Factorization of universal characters

twisted by roots of unity

In this chapter, we give different proofs of the factorization results of other classical
characters (Theorem 3.5 [Theorem 3.9 and [Theorem 3.11)) using the Jacobi-Trudi iden-
tities. Chen, Garsia and Remmel [28] gave an alternate proof of the Schur factorization
result (| m ) based on the Jacobi—Trudi identity. Recently using a similar proof
strategy, Albion [2] lifted all the factorization results to the level of universal characters.
In we prove some determinantal identities. We give alternate proofs of the
factorization results of other classical characters in [Section 4.2

4.1 Background results

For r € Z, define

i n-‘rr 1

Up (T, .. ,

i=1 j 1 j#z( - IJ)

The following Lemma expresses u,(x1, ..., z,) in terms of the complete symmetric func-

tions. It is the ¢ = 1 case of classical Bernstein operator,

n+r 1

TI»L?
ZHJ 1g¢z(xz_$) o

where (T, .. f)(z1,...,2n) = f(x1,...,%i—1,qTi, Tit1, - .., Ty), which can be used to con-
struct the modified Hall-Littlewood polynomials [55].

67
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Lemma 4.1. Forre Z,

h(X) r> —n,
UT<X) = n—1 R
(;ll)x hovn(X) r<-—n.
Given an n-tuple a = (ay,...,a,)s € Z", let

V(1 ... x,) = det (az%m_j)

tY %
1<i,j<n

and  Uy(xy,...,x,) = lggt@ (Uay—itj (X)) . (4.1.1)
Remark 4.2. If o is a partition, then U, (z1,...,2,) = Sa(21, ..., 2,).
Theorem 4.3. For an n-tuple a = (aq,...,0p)s € Z",
Va(l'l, e ,:Cn)
Uz, ... ) = — .
7<x1 ! ) VQ('rlu s 7‘rn>
Proof. We note that w,(z1,...,2,-1) = u.(z1,...,2,) — Tptr_1(x1,...,2,). The proof
of the theorem follows from the similar ideas as in [16, Theorem 2| with Hy(z1,...,x,)
replaced by U,. ]

Corollary 4.4. For k € Z, we have

Z/{a-i-k(xla ce sy Ty Ty 7£n) = Z/{a(xla ce sy Xy Ty 7$n)'

Lemma 4.5. Let X\ be a partition of length at most tn. If p,q € {0,1,...,t—1} such that
np(X) +ny(X) = 2n, then we define p,, = AP 4 (A9,0,...,0, —rev(A\P))), where we pad
0's in the middle so that p,q is of length 2n. Then the Schur function s,, (Xt,yt) can

be written as

S0, (X1 X0)

(R, (\@)=nt5 (X5 X))1<isng | (Bg,(3@)=n—j1 (X X)) 1<i<n,
1<j<n 1<jsn
( 1)”p(k>(n2p()\)+1>
= det
n(n+1)
(=1)7=

(hﬁi()\(p))—n—j+1(X7 X))1<isn, (hﬂi()\(l)))—n-}-j (X, X))1<i<n,

1<j<n 1<j<n

(4.1.2)

Corollary 4.6.
AW 4 Bi(AD) — g+ 52 —n,
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(AP P,

(A) =np +7 1)+ (A

(p)

1 _np)

(h)\gp) +/Bi()\(4))—nq+j (Xy X))lliljing (hAgp)"Fﬁi()\(q))—nq"rn-‘rj-‘rl (X, X))llizjiy’znq
det
Uﬁi”)fﬂii,’ﬂfi(»fnmfl (X, X»i@i”,f (hﬁ”)fﬁi’;llfi@)fnﬁﬂnfl (X, X))iﬁ"?f
Proof. Using [Lemma 4.1], we note that
— h (X, X) r > —2n,
U, = u,(X, = o (4.1.3)
—h_ 0 (X, X) 7 < —2n.

Since the complete symmetric functions in the determinant in the right hand side of
(4.1.2)) are indexed by integers greater than —2n, using (4.1.3)), we see that the determi-

nant in right hand side of (4.1.2)) is

(Ugi()\(Q)),n+]’)1<i<nq

(U[)’i()\(Q))fnfjJrl)lgian

1<j<n 1<j<n
det
(Us,00)=n—jri N1<i<ny | (Ug(3@))—ntj)1<isng
1<jsn 1<y<n
Substitution of U, = —U_,_5,, r = —2n in bottom blocks gives
(U, (x@)—ntj)1<i<ng (Ug,(z@)—n—jt+1)1<i<ng
1<j<n 1<j<n
det

(_U_gi()\(p))_n+j_1)ISiSnP
1<j<n

Applying C; < C,,;, for all j € [n], we get

(Uﬁi()\(Q))—nfjJrl)léian
1<j<n

(—1)" det

(=U_p;(00))—n—j)1<i<n,,
1<j<n

(U, (x(@)-n+5)1<i<n,
1<j<n

(_U—ﬁi(/\@))—n—j)lgig”p
1<g<n

(_U_/Bi()\(p))_n_s_j_l)1<i<np
1<j<n
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Reversing the last n, rows and then the first n columns, we have

(U/Bi()\(‘Z))72n+j)1<i<nq (Uﬁi(/\(Q))fn+j>1<i<nq
1<j<n 1<j<n

(U_ﬁnp+1_i()\(z7))_2n+j_1)1<z<np <U—5np+1 i(AP))—n4j— 1)1<z<np
1<j<n 1<j<n

Using (4.1.1)) and then by [Corollary 4.4] we see that the determinant is

(_1)np(n2p+1)
(_1>% (/\(Q)—np,O,...,O,— rev(/\<P))—np> <X7 X)

(—1)"
= (_Dwu,\gp)+(/\<q),o7...,o,— rev(A())) (X, X).
Using completes the proof. .

Lemma 4.7. For a partition of length at most n, the odd orthogonal character soy(X)

is given by

SO,\(X) = det (hgi(,\),nJrj(X,Y) + hﬁi()\),n,jJrl(X, Y)) -

1<ij<n

Proof. Using (2.4.9)), we see that the odd orthogonal character is

sor(X) = det (hy,—i;(X, X, 1) — hx,i,j(x X, 1))

1<i,j<n
Ai—i+] i—i—J
— det ( D hy(X,X) Z hy( )
=0 1< jn (4.1.4)
Ai—i+]
— det ( > k(X X))
p=Xi—i—j+1 1<i,j<n

Applying C; — C;_; for 2 < j < n, we get the required expression. O

Corollary 4.8. For a partition of length at most n, the odd orthogonal character soy(—X)

is given by
SOA(—X) = (—1)21' Ai det (hﬁi()\),nJrj(X, Y) — hﬁi(/\)*”*j+1)1si,j<n (X, X)

Lemma 4.9. Let X be a partition of length at most tn and ; =tn—i. Fixr 0 < z <t—1
t—1—z—y

and0 <y < |=2L|. Assume Z n; = (t—z—2y)n. Define a (t—z—2y)nx(t—z—2y)n

1=y
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matriz with (t — z — 2y) x (t — z — 2y) blocks as

. /
H — << BEP)(A)_BJt_quﬁ(p (>\)+ﬂ]t q Qtn+z+1>1<2<np> )
y<p,gst—z—1—y

1<j<n

where H!, = hy,(X,wX, ..., 0™ X, X, wX,...,0"X).
1. If ny + ny—oo1-p + 2n for some p € [y, | =2=L|], then detII = 0.

2. If ny +my_oy_pp = 2n for all p € [y, |=2L|], then

[MJ S0 (1—:-1\(X") t—2z odd
1 t — z even,

and

[MJ RO )\’Etfzfl/Z) O i (Xt s odd
det I~ = H s (Z) (X', X *) (=1) /\(T)( ) )

1 t — z even,
where
t—z—y—1
. t—zigj—1 ni(A)(ni(AN)£1)  n(nkl) | ; i —mn) t—=z odd,
. _ 1 2 2 = 2
0 t — z even,

and u(z) /\(t a1y ()\(i), 0,...,0,— rev(/\(t_z_l_i))) has 2n parts.

Proof. Consider the permutations ¢ and 7 in S(;—._2y), Which rearranges the columns and
rows of ITI* respectively, blockwise in the following order: 1,t—2z—2y,2,t—z—2y—1,....

In other words, ¢ and 1 can be written in one line notation as

C=1,...;ny,(t—2—=2yn—my_py 1+ 1,...,(t—2=2y)n,ny +1,... 0y + Ny,
. S/ \a 7  \a 7

~~ ~~
Ny Nt—z—y—1 Ny+1

Et — 2= 2YN = Nyyy 1 —Mpepy2 + 1, (t— 2 —2y)n — Mzy-1, - J)
nt—zty—2
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andn=(1,....n,(t—z—2y—Un+1,...,(t — 2z —2y)n,
~—— v

~~
n n

n+1,....2n,(t—z—-2y—2n+1,...,(t—2—2y—1)n,...).

(.

v~ ~
n n

Then, the number of inversions of ¢ and 7 is

inv(() = _2 ni((t—z=2y)n—(ny+-+ngsi)— (Mic1+-+mry1)) (4.1.5)
|52
and s
inv(n) = > n’(2i-2-t+2) (4.1.6)
52

Then permuting the columns and rows of II by ¢ and 7 respectively and then using
Theorem 2.6, it can be seen that

det ITT = sgn(¢) sgn(n) : (4.1.7)

where
h (s (X Y) +H
B (N)—=Bjt— ) — T8 N +B —2tn4z+1
( %ﬂts 1<i<n, i ] 1)tt5+z+1 1<i<n,
1<j<sn 1<jsn
+ _
Wi =
"'I_H (t—z—1—s) H (t—z—1—35)
) SN +Bip_ s —2tn+z+1) B, TN =Bi—
( q t]t s 1<i<ne_» 1« 1 7 G-Dttstztl 1<isng»—1-s
1<j<n 1sjsn
and
* _
Wt—z—l - H (tfzfl) iH tfzfl)
2 A Ty O e e e

t t

Using |[Proposition 2.3| to simplify indices of complete symmetric functions in the above

matrices, we have
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(Ho,x)-nss) i (£Hs, ) -1 ) 1ine
VVSi =
(iHﬂi(A(tfzflfs))_n_jJrl) 1<i<ni—,—1—s (Hﬁi()\(t*Z*1*S))_n+]’) I<isngr—1-s
1sjsn 1<y<n
and

Wti—z—l = H t—z—1 iH t—z—1
2 5i(,\( 2 )>n+j 5¢<)\(2))nj+1

If ng + ny_s1-s + 2n for some s € [y, |52 |], then W} is not a square matrix. This

implies
det II* = 0.

t—z—1
2

Ifng+n; . 15 =2nforall sely, [ J], then applying C; < C,,; for all j € [n] and

then using |[Lemma 4.5 we see that

np_ s (N1 (NED)

(=1) —t
det W = TS 5,6 (X, X0, (4.1.8)
(=1)"=
where pl? = A1) 4 (A9,0,...,0, —rev(AUF179)) y < s < |52 Using

Lemma 4.7 and , we have

det Wity =50 (ipy (XF), det Wiy — ()TN 50 (g1y (-X). (4.19)

Substituting (4.1.8)) and (4.1.9) in (4.1.7)), we see that

| =53] (_1)nmfhm(ntfzflﬂv(wl)

det I1* = sgn(¢)sen(n) | | e
i=y (_1) 2

t <t
Sul(_z) (X ,X)

detWt. , t—=z odd,
2

X
1 t — z even.

All that remains is to compute the sign. By (4.1.5) and (4.1.6)), we get
t—z—y—1
inv(¢) —inv(n) = Z (n —n)(2i =2 —t + 2)n

- | t—2z+1
Z‘[ 2 J
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Therefore, if t — z is even, then inv(¢) — inv(n) is even and sgn(¢)sgn(n) is 1. If ¢t — 2

t—z—y—1

is odd, then the only contribution for sgn({)sgn(n) comes from n 2 (n; —n), since
- t—z+1
i==5=

other terms are even. Substituting the terms completes the proof. O

4.2 Factorization of other classical characters

Proof of [Theorem 3.5, Using the Jacobi-Trudi identity (2.4.10) for the symplectic char-

acters, we see that the desired symplectic character is

spy(X,wX, ..., Wt X)
= det ( i1 Hy it Hy oo Hy g HY e )1<i<m
— / !/ / / !
N (H W-p1 T T Hoonrm—2mrz - Ha00-p0 + Hp,00 480 -2m 40 >1<i<m’

where H = h,(X,wX, ..., o™X, X, wX,...,0w"'X) and 3; = tn — i. Permuting
the rows and the columns of the determinant by o), and oy from (6.1.3) and (6.1.4)),
respectively and then using (2.2.9)), we see that the symplectic character is

P -2 0

(t=1)nx 3 "5 ni(N)
sgn (o) sgn(og) det S , (4.2.1)
0 ‘ annt_l()\)
where
/ !/
P = (( B(P)() Bit—q +HB§P)()\)+Bjtq2tn+2>l<i§np>
1<jsn / o<gp,g<t—2
and

H +H )
( BV N =BG -1y B Y (N +B( - 1)1 —2tn+2 2<j<n / 1<i<ng
(4.2.2)

If core;(\) is not a symplectic t-core, then by |Corollary 3.22 either n; ;(\) # n or
ni(X) + ni_a_;(A) # 2n for some i € [0, | 52]]. In the first case, i.e. if ng_1(A) # n, then

2
by (#.2.1),

_ lA
Q= < B (A 81

spy(X,wX, ..., X) =0.
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In the second case, if n; + n,_o_; # 2n, for some i € [0, [%J], then using [Lemma 4.9 for

y=0and z =1, det P is zero. Hence,

spy (X, wX, ..., X) =0.

Now suppose n; + ny_o—; = 2n,V i € [0, [%J] Then using for y = 0 and

z=1,det Pis

, =] — SO (ﬁ)(Xt) t even,
det P = (—1)° Sugz)(Xt,X ) x AN 2 (4.2.3)
i=0 1 t odd,
where
t—2
S (V) +1) a1 P2l teven,
T 4 2 2 =2
i=| 5] 0 t odd,

and ,ugl) = )\gt_z_i) + ()\(i), 0,...,0,— rev()\(t_Q_i))) has 2n parts for 0 < ¢ < |52]. Using

[Proposition 2.3 we have

.1
NV =i g = (87 0) = Bynen) (42.4)
and 1
N =i = BV 0) = By — 26 = 1)), (42:5)

Using (2.2.9) and then Substituting (4.2.4) and (4.2.5)) in (4.2.2)), we see that the deter-

minant of () is

det )
= det ( h/\(.t_l)—i-i-l(X’ Y) <h)\<t—1)_i+j (X, Y) + h/\(_t—l)

=spye-1 (X").

_i_j+2(X,X))2<j<n ) (4.2.6)

Substituting (4.2.3) and (4.2.6)) in (4.2.1)) gives the desired symplectic character (3.1.6)

and
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(t=1)(t+1) n(n+1)
2 2

is the same as the parity of 2t "H ) for even t,

Now to compute the sign, we simplify the expression for . Since is even

n( n+1 (t2—2t+2)
2

for odd t and the parity of

€ has the same parity as

( )+ 1> Ln;l) +nr teven,
+
0 t odd,

MT
N\w [N}

where r is the rank from (3.2.6). This completes the proof. [

For the even orthogonal characters, we have G = Oy,, the orthogonal group of

(2tn) x (2tn) square matrices.

Proof of [Theorem 3.9 Using the Jacobi-Trudi identity ([2.4.11)) for the even orthogonal

characters, the required even orthogonal character is

N (X, wX, ... w X)) =det (H) _iyy — H}ij) oo
(4.2.7)
= det (Hg H,Bz +ﬁj*2t”) 1<ij<tn

where H! = h,(X,wX, ..., ™' X, X,wX,..., 0w X) and 8; = tn — j. Permuting the
rows and columns of the determinant by o) and og from (6.1.3) and (6.1.4) respectively
and then using (2.2.9)), we see that the even orthogonal character is

P1<i<n0()\) 0

sgn(oy) sgn(ogy) det I<jsn )
0 ‘ Qe-1nx gt mh)
where
/ !
F= (H ©oy-g; 1 0’(A)+ﬂj—2m>1<l<”0@)
1<]<n
and

_ /
Q o (( ﬁl(p)()‘)fﬁt] q B(p)(A)J”ﬁtJ q72tn> 1<Z<np()‘)> ’
1<p,q<t—1

1<j<n

If core;(A) is not an orthogonal t-core, then by |[Corollary 3.23| either ng(A\) # n or
n;(A) + ny_;(N\) # 2n for some i € {1, . [%J} In the first case, i.e. if ng(A\) # n, then

oy (X, wX, ..., wX) = 0.

In the second case, if n; + n;_; # 2n, for some i € [[%J], then using [Lemma 4.9|for y = 1
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and z = —1, det () is zero. Hence,

oy (X, wX, ..., wX) = 0.

If core;(\) is not an orthogonal ¢-core, then by |Corollary 3.23|, ni+n,; =2n,Vie [[%J]
Then using [Lemma 4.9 for y = 1 and z = —1, det Q is

|5 (t/2)

—1)ZiN T s0 (=Xt t even,
det ) = H S (2) (X? X =) A(f)( )
1 t odd,

where

¢ — E (ni(/\)(ni()\>_1) n(n—l)) ; —n) teven,

i=| 2 0 t odd,

and ,uz(»g) = A(lt_i) + ()\(i),(), ooy 0y —rev()\(t_i))) has 2n parts for 1 < i < [%J Using

[Proposition 2.3 we have

(0)

1 1 1 _
MY —itg = AP n—imntj = S(8")=ntj = S(8" ~tnttf) = (57 —py), (4.2.8)

So, the det P = of{§'(X*). Finally, the even orthogonal character is given by

|5 s A0 .
€ even <t ( 1) =17 SO,\(t/z)(—X) t even,
(_1) Sgn(UA) 0,(0) (Xt) Sugz)(Xt,X ) X
' 1 t odd,

@
Il
—_

where

~
[aary

,_tt=Dnn+1) t‘zl (ni(A)(ni(A)—l) n(n—l)) n —n) teven,

N

t+

2

=[5 0 t odd.

After simplifications, the parity of ¢ shown to be the same as

c_ tif (nz()\)> N 771(”?71) +nr teven,
‘ {=ln t odd,
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This completes the proof. n

For the odd orthogonal characters, we have G = SOq,,1, the orthogonal group of
(2tn + 1) x (2tn + 1) square matrices.

Proof of [Theorem 3.11. Using for the odd orthogonal characters, the desired

odd orthogonal character is

s0x (X, wX, ..., LX) = det (Hgi(A),ﬁj + Hgimwj,zmﬂ) . (4.2.9)

1<i,j<tn

where H! = h,,(X,wX, ..., 0™ X, X, wX, ..., w1 X). Permuting the rows and columns
by oy and oy from (6.1.3) and (6.1.4) respectively, we see that the odd orthogonal char-

acter is

!/ !/
sgn(ox) sgn(og) det ((Hﬂ?“(x)—ﬂw-q * Hﬂ?)(mﬂw—q—%wl) 1<i<nv) '
O0<p,g<i—1

‘ 1<j<n

If core;(A) is not self-conjugate, then using [Corollary 3.18 n, + n;—;_, # 2n for some
—1

pel0,| 5] Applying for z =y = 0, we get

son(X,wX,...,w" X)) =0.

If core;(A) is self-conjugate with rank r, then using [Corollary 3.18| n, + n¢_1_, # 2n for

all p e [0,|5]]. Applying [Lemma 4.9/for z =y =0

1] — SO (Q)(Xt) t odd,
(—1)“sgn(oy) sgn(oy) 5, (X' X)) x A2
i=0 1 t even,

where

i=| %] 0 t even,

and NE:}) = )‘gtilii) + ()\(1)7 07 R 07 _reV()\(t_l_i))) has 2n parts for0 <1< l%J

t—1
=D+ ) S () 1) a1 | 2 () fodd
T2 2 2 2 Ty =t

i=| % 0 t even,
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After similar simplifications, ¢’ turns out to have the same parity as

t=1 ni(\) + 1 nr t odd,
_ Z ) +

0 ¢ even,

where 7 is the rank from (3.2.8). This completes the proof. O
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Chapter 5

Factorization of classical characters

twisted by roots of unity: II

In this chapter, we extend the results to the groups GLyym (0 < m <t —1), SOgpy3,
SPotn42 and Ogy, 4o evaluated at similar specializations: (1) for the GLyy,4.,(C) case, we
set the first tn elements to w/z; for 0 < j <t —1and 1 < i < n and the remaining
m to y,wy,...,w™ ly; (2) for the other three families, the same specializations but
with m = 1. Our motivation is the conjectures of Wagh and Prasad [91] relating the
irreducible representations of Spin,,, ; and SLg,,, SLa,,+1 and Sp,,, as well as Spin,,, , , and
Sp,,- In each case, we characterize partitions for which the character value is nonzero in
terms of what we call (21, 29, k)-asymmetric partitions, where z;, z and k are integers
which depend on the group. We give statements of results and illustrative examples in
We formulate results on beta sets, generating functions and determinant
identities in [Section 5.2l We prove the Schur factorization result in [Section 5.3 We
prove the new factorizations of other classical characters in [Section 5.4, Finally, we
prove generating function formulas for (zi, 29, k)-asymmetric partitions and (z1, 29, k)-
asymmetric ¢-cores in [Section 5.5 A preprint of this work has appeared on arXiv [70].

5.1 Main results

Recall, X = (x1,...,2,) and w is a primitive ¢'th root of unity. Fix 0 < m <t —1. We

first consider the specialized Schur polynomial evaluated at elements twisted by the ¢’th
m—1
w

roots of unity. We denote the indeterminates by X, wX,w?X, ..., w7t X, vy, ..., Y.
Let £ = (e1,...,€em)suchthat t —1>¢€; > --- > e, = 0. We extend F for enumer-
ating the set {0,...,t — 1}\{ei}icpm) as {€ms1 < -+ < €}, denoted E, for convenience.

For a partition A of length at most tn +m, let o¥ be the permutation in Sy, such that

81
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it rearranges parts of 3(\) in the following way:

q—1 q
Boey(N) =eq (modt), for Y ne(\)+1<5< D ne(N), (5.1.1)
i=1 i1
arranged in decreasing order for each ¢ € {1,...,t}. For simplicity, we write 0/\@ as oy.

For the empty partition, 8(&,tn + 1) = (tn,tn — 1,tn — 2,...,0) with

n+1 ¢g=0,
ng(J,tn+1) =
n I1<g<t—1,
and
o =1t+1,....nt+1,t,...,nt,....2,....,(n— 1)t +2) (5.1.2)

in one-line notation with sgn(ogy) = (— )t(t;) mp
Theorem 5.1. Fizx 0 < m <t — 1. Let X\ be a partition of length at most tn + m
indexing an irreducible representation of GLgy m and quo,(A) = (M@ ... AED). Then

the GLyym-character sy(X,wX, ..., 0™ X, y,wy,...,w™ YY) is as follows:

1. If cores(N) = v == (v1,...,Vp) for some vy <t —m, then
sa(X,wX, .. W Xy wy, . W™ y) = sgn(af(y)) sgn(agy))
m t—1
xsy(Lw, W™ ) ] Toneon (X9 [T s (XY,
i=1 =0
J#6)
(5.1.3)
2. Otherwise,
sx(X,wX, .. W Xy wy, . 0™ y) = 0. (5.1.4)

In other words, the nonzero GLy, ., character is the product of m GL, 4, and (t —m)
GL,, characters. For m = 0 and m = 1, is proved by Littlewood [74, Equa-
tion (7.3;3)], [74, Chapter VII, Section IX] and independently by Prasad [90, Theorem
2], [76, Theorem 4.5] for t = 2. For m = 0 the result is also proven in [Chapter 3| In the
case when X = (1,...,1) and core; () is empty, is proved in [87].

Example 5.2. Fort = 2, m = 1, says that the character of the group
GLj3 of the representation indexed by the partition (a,b,c), a = b = ¢ = 0, evaluated at

(x,—x,y) is non-zero if and only if a and b have the same parity or a and ¢ have the
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opposite parity. If cores(a,b,c) is empty, then

—s(%%l)(xz,yz)s(c;)(ﬁ) a even, b and ¢ odd,
S(ape) (T, —2,Y) = 8(375)(:):2,y2)s(%)(x2) a,b,c even,
—3(1);71’%)(%'2,3/2)3((1;—1)(1'2) a and b odd, c even,

and if corey(a, b, c) = (1), then

ys(a;1’%)(x2,y2)s(%)(x2) a odd, b and c even,
S(ape) (T, —2,y) = { —y S(agl’c;l)(lQ,yZ)S(%)<$2) a,b,c odd,
ys(¥7c;1)($2,y2)s(a;z)(:v2) a and b even, ¢ odd.

We now generalize to other classical characters for m = 1. We first need

some definitions.

Definition 5.3. Suppose z; > zo > 0 and ) is a partition of rank r. We say A is (21, 29, k)-
asymmetric for some 0 < k <7, if A= (a1, ..., Q.. 0p]ar + 21, ..., + 215, 0 +
21, 22), in Frobenius coordinates for some strict partition a, where a hat on a coordinate
denotes its omission. (Here & = 0 means no part is omitted and therefore no part is
added). If in addition a (z1, 22, k)-asymmetric partition is also a t-core, we call it a
(21, 22, k)-asymmetric t-core. We denote the set of (21, 2, k)-asymmetric partitions and
(t)

(21, 22, k)-asymmetric t-cores by Q., .,» and Q.

respectively.

Note that the (z,0,0)-asymmetric partition is the z-asymmetric partition defined in
Chapter 3| Recall that a partition \ is z-asymmetric if A = («|3) where 5; = a; + z for
1 <i<rk(N).

To state our results, define, for A\ = (A1,...,\,), the reverse of \ as rev(\) =
(Ans .-, A1). Moreover, if g = (p1,...,p;) is a partition such that py < A,, then we
write the concatenated partition (A, i) = (A1, .., Apy flr, - - -5 ).

For the odd orthogonal case, we take G = SOqy,. 3, the orthogonal group of (2tn +
3) x (2tn + 3) square matrices. For a partition A, if core,(\) is either (2,0, k)- or (2,1, k)-

asymmetric for some k € [rk(core;(\))], then by |[Corollary 5.20, there exists a unique
io € [0, |52 |] such that

2

n+1406, 1 it =i, t—1
ni(A) + ne1-i(A) = i ’ 0<i< { J

2n otherwise,
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For such a partition A, let

a(\) — (_2 ) 121 (( 1)—|—tn(ni()\)—n)), (5.1.5)

and 7T(1) = Agtil*i) + ()\(i), 0,...,0,— rev()\(t’l’i))) has 2n + 0, ;, parts for 0 < i < [%J

We note that the empty partition is vacuously (2,0, 0)-asymmetric with i = 0. Our

result for the factorization of odd orthogonal characters is as follows.

Theorem 5.4. Let \ be a partition of length at most tn + 1. Then the odd orthogonal
character sox(X, wX, ..., w1 X y) is as follows:

1. If corei(N) is either (2,0, k) or (2,1, k)-asymmetric for some k € [rk(core,(\))] and

ig = Tl, then

son(X, wX, ... WX y)

. . 5 e (5.1.6)
_ (_1)61( )+”sgn(a,\) so(%)(y) SO)\(tf )(X Y X | Sﬂ_gl)(X , X ).

=]

2. If corey(N) is either (2,0, k) or (2,1, k)-asymmetric for some k € [rk(core;(\))] and
1o + %, then

son( X, wX, ..., W™ X y)

/1(1) 1 =t ¢ (1)
(}\)(y W(l)(X7X7y) yZOS(l)(X X y))
€1 20

(y—1)

. so (-1 (XY t odd,
X 1_[ Sw(l)(Xt,Xt) X A(T>( )

~ sgn(on)(~1)

i=0 1 t even,
1710
(5.1.7)
where u( ) t()\gtflin) + Nt—1-ig)(A) — n) — io.
3. If neither of the above conditions hold, then
son(X, wX, ..., w1 X, y) = 0. (5.1.8)

Remark 5.5. We note that the first factor on the right side of (5.1.7) is a Laurent
polynomial and approaches to (1 — 2u(1))swgl)(Xt,7t, 1) asy — 1.
0

20
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Example 5.6. Fort = 2, says that the character of the group SO7 of the
representation indexed by the partition (a,b,c), a = b > c = 0, evaluated at (x,—x,y) is

non-zero. If cores(a, b, c) is empty, which is (2,0,0)-asymmetric and ig = 0, then

2— _ -1 o
—yilcS(a#—;—l,b-;c)(sz,$2,y2) + Zils(a+§_1jbgc)(:€2,x2,y2) a even, b and ¢ odd,
1-b _ b _ _
=44 S(aQb,b;c)(x2,$2,y2) — ﬁs(%ﬂ,7bgc)(m2,x2,y2) a, b, c even,
- _ +1 _ _
—z—_is(%ﬂ,ngﬁ)(m?,xz,y% + Za_l S(%M7a+§+1>($2,$2,y2) a and b odd, c even.

If cores(a, b, c) = (1) = (0|0), which is (2,0, 1)-asymmetric and ig = 0, then

So(a,b,c) (.ﬁE, -, y)

y—° 2 22,2 yot! 2 22 =2
_ﬁs(a+§_17a_g_1)(x L T5Y°) + = S(a+§—l7a—;—l)(x ,T%,Y%)  a odd, b and c even,

a+1

=<y 2 =2 .2 y 2 -2 -9
s a257QEC)(a: , T y*) — = s(a2b7a50)(x , T Y%) a,b,c odd,
1-b b
_y 2 =2 2\ b 2 2 2
y_ls(a-;b7b—g—1)($ LT Y%) + y_ls(aQbyb—c—l)(x , T, Y%) a and b even, ¢ odd.

If cores(a, b, c) = (2,1) = (1]1), which is (2,1, 1)-asymmetric and ig = 0, then

So(a,b,c) (l‘, —Z, y) =

)(‘7‘27 ‘%27 y2) -

Y
a—2 b—1
2

2 =2 =2
y_]_s(gz S(a72b—?1 )(f,U,I‘,y)

[S1[eY

<
’2

)

Lastly, if corey(a,b,c) = (3,2,1) = (2,0/2,0) (a and ¢ are odd, and b is even), which is
(2,0, 1)-asymmetric and ig = 0, then

y—a
y—1

SO(a,b,c) (ZL’, —Z, y) =

S(a—g—Q,a—g—l)(xQ,g_’;z’y2) _ — 1S(a—c—2 a_g—1)(l‘ ,Ilf ,y )

For the symplectic case, we take G = Spy,, s, the symplectic group of (2tn + 2) x
(2tn + 2) matrices. If A is a partition such that core,(\) is either (3,0,k) or (3,2, k)-
asymmetric for some k € [rk(core;(A))], then by |Corollary 5.21| there exists a unique
io € [0,|52|] U {t — 1} such that

n+1406, =2 ifi=7ig, t—9
ni(A) + ng_a—i(A) = 05" ° for 0<i< {J ,
2n otherwise, 2

n+ 1 ifi =i,
and ny_q(\) = °

n otherwise.
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For such a partition A, let

—_

t—1 t—

€a(A) = Z ni—1(A) + Z
o

i=t—ig t+2J
2

((ni_lg\) i 1) + (= Dn(ni(A) - n)) . (5.1.9)

and ng) = Aﬁ”‘“ + ()\(i), 0,...,0,— rev(/\(t_2_i))) has 2n + 9, ;, parts for 0 < < [%J
We note that the empty partition is vacuously (3,0, 0)-asymmetric with ig = 0.

Theorem 5.7. Let A be a partition of length at most tn + 1. The symplectic character
spy(X, wX, ..., X y) is as follows:

1. If corei(N) is either (3,0,k) or (3,2, k)-asymmetric, for some k € [rk(core;(\))]
and 19 =t — 1, then

spA(X, wX, .., w' T X y) = (=1)2W sgn(04) sp—1) (¥) spac-— (X', )

|52 SO i2y (XY) t even
T s T« ’
i=0 1 t odd.

(5.1.10)

2. If corei(N) is either (3,0,k) or (3,2, k)-asymmetric, for some k € [rk(core;(\))]
t—

and 19 = 72, then
2)(9) spae-1 (X)

-t
< | SW§2)(Xt,X ) X SOA(%>(Xt,yt).

(5.1.11)

3. If corey(N) is either (3,0,k) or (3,2, k)-asymmetric, for some k € [rk(core,()))]
and 19 #t—1, %, then

SP)\(X7 wX? st 7wt71X7 y)
—u? t bt s t Yt ot
(y 0s XL XLy) —ylios (XX ,y))
ig

0

— sgn(oy)(—1)2W

(y —v)
-z S0 (12 (X)) t is even
% 1_[ 5r@ (Xt>yt> X spy-n (X) x A<T)( ) ’
= 1 t is odd,

(5.1.12)
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where u( ) t()\gt_z_i") + Nt—2-ig)(A) —n) — io.
4. If none of the above conditions hold, then

spA (X, wX, ..., W X y) = 0. (5.1.13)

Remark 5.8. We note that the first factor on the right side of is a Laurent
polynomial and approaches to —,ug)swgz) (X t,yt, 1)asy — 1.
20

Example 5.9. Fort = 2, says that the character of the group Spg of the
representation indexed by the partition (a,b,c), a = b = ¢ = 0, evaluated at (x,—z,y)
is mon-zero if and only if a and b have the same parity or a and ¢ have the opposite
parity same as in [Ezample 5.9 If cores(a,b,c) is empty, which is (3,0,0)-asymmetric
and ig = 0, then

50(g bi1) xQ,yz)sp(c;;)(a?) a even, b and ¢ odd,
SD(a,b,) (T, =T, ) = so(%,g)(:cQ,yQ)sp(%)(xQ) a,b,c even,
— 50(11 g)(:c2,y2)sp(a;1)(x2) a and b odd, ¢ even,

and if coreg(a, b, c) = (1) = (0|0), which is (3,0, 1)-asymmetric and iy = 1, then

(y + y)sp(;l %)(:v2,y2)so(g)(x2) a odd, b and ¢ even,

SP(ap,e) (T =T, y) = 4 —(y +9) 1) (@%,y%) s0pe1 (27)  a,bc odd,

(y +y)sp(72 1 )( 2,y )SO(aTH)(x2) a and b even, ¢ odd.

For the even orthogonal case, we take G = Og, 19, the orthogonal group of (2tn +2) x

(2tn + 2) square matrices. If X is a partition such that core;(A) is (1,0, k)-asymmetric

for some k € [rk(core;()))], then by [Corollary 5.19| there exists a unique i € [|£|] such
that

2n+1+6;, + iti=1
no(A) =n, ni(A) +ni(A) = oz ’ 1<i< {| :

2n otherwise

For such a partition A, let

es(\) ::( ti MA)) +’=t§ (("9)) +(t—1)n(ni()\)—n)>, (5.1.14)

i=t+1—1ig
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and 771(3) = )\gt_i) + ()\(i),O, ..., 0, —rev()\(t_i))) has 2n + §,,, parts for 1 < ¢ < [%J

Note that for (1,0, 0)-asymmetric ¢-cores, ig = 0.

Theorem 5.10. Let A be a partition of length at most tn + 1. The even orthogonal

character o§*"(X, wX,...,w'™ ' X y) is as follows:

1. If cores(A) is (1,0,0)-asymmetric, then

=]

even(X (,uX t71X’ y) = (—1)63( ) sgn(O')\)O)\@ ( ,y H S (3) X X)
(1) A soyw2) (—X")  t even,
X
1 t odd.
(5.1.15)

2. If corey(N) is (1,0, k)-asymmetric for some k € [rk(core,(X))] and i = %, then

O (X, wX, .. T X ) = (—1)° sgn(na) of 7 () o5 (X)

t—2

N — (t/2)

5,0 (X' X ) (12 s0y0m (=X, =),
q

<
Il
—_

(5.1.16)

8. If corey(N) is (1,0, k)-asymmetric for some k € [rk(core,())] and ig # £, then

O (X, wX, T X y) = (1) sgn(oy)ofiE (X)
—uY t 3t =t Lz ] t 3t
X(y “’08(3>(X X' y)+y‘“08<3>(X X 33>> s (X5 X7)

[
[

S,
C=

2

o

(—1)% N soyw2 (—X') ¢ even,
1 t odd,

X
(5.1.17)
where Y =t 4 iy (A) = n) —io.
4. If none of the above conditions hold, then

oM X, wX, ..., w' X, y) = 0.
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Example 5.11. Fort = 2, |[Theorem 5.1() says that the character of the group Og of the
representation indexed by the partition (a,b,c), a = b = ¢ = 0, evaluated at (x,—x,y)

is mon-zero if and only if a and b have the same parity or a and c¢ have the opposite

parity same as in [Example 5.2 and |Example 5.9. If cores(a,b,c) is empty, which is

(1,0,0)-asymmetric, then

(—1)651023267@)(95 ,y?)s0ge-1y(—2?)  a even, b and ¢ odd,
27 2
Ofs,eby?c)(xu —z,y) = (—1)%(323%6%)(95273/2)So(g)(_xQ) a,b,c even,

a+1 e

(D) (y+79) 50(%173)(—132, ) Ofg‘in(ﬁ) a odd, b and c even,

even

O(a,b,c)(xa —x,y) = (_1) 2 (y + g) So(a—fl,c;l)(_x 7_y2) O b1 (l'2> a, b7C Odd;
2 2 ( 2 )

(71)b+§_3 (y+7) S0(b-2 C;;)(fﬁ, —yQ)ofﬁ)(ﬁ) a and b even, ¢ odd.
’ 2

Remark 5.12. The factorization of characters of classical groups of type B, C' and

D specialized with tn variables are considered in We will not recover the
factorization results proved in by substituting y = 0 in the above factorization

results as these are Laurent polynomials in Clxy, 27, ..., 2., 271, 3,57t (See [64]).

It is natural to ask if there are infinitely many (z1, 22, k)-asymmetric ¢-cores. Our last

N . ) . t
result answers this question in a special case. For z; > 2, let le) o = U Qil) s
k

Theorem 5.13. There are infinitely many t-cores QS?FQ,O v QS—?—Z,Z-H fort = z.

This is proved in

5.2 Background results

5.2.1 Properties of beta sets

We use the shorthand notations [m] = {1,...,m}, [m1,ms] = {mq,...,me} and m, :=

max(m,0). We first recall a useful property of the beta numbers. For a partition A of

length at most m, we see by (3.2.1]) in [Chapter 3

n;(A,m) = n;(core;(\),m), 0<i<t—1. (5.2.1)
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Lemma 5.14. If X is a t-core of length at most tn + 1, then

t—1

rk(A) = (no(A) —n — 14 + > (ni(A) — n). (5.2.2)

=1

Proof. If £(\) < tn, then using no(A\,tn + 1) = ny_1(\,tn) + 1 and n;(A\, tn + 1) =
ni—1(Atn), 1 < i <t —1 in [Equation (3.2.5), we see that the result holds. Assume
(X)) = tn + 1. Since A is a t-core, ng(A) = 0. Let 1 < iy < -+ < iy <t — 1 such that
ni;(A) > n for 1 < j < k. Since A is a t-core, the parts of 3()) greater than tn for each

7 are:

If  is the number of parts of F(\) greater than tn, then

r= Z(n%(}\) —n)= 2(7%()\) —n)y.

i=1

Moreover, f3,.(\) is the smallest part of S(\) greater than tn and is therefore equal to
ir, + tn. This implies A\, = 5,(\) = (tn+1—7r)=tn+ip—(tn+1—r)=ip+r—1>r

and \,.,1 < tn — (tn —r) < r, which implies the rank of \ is r. ]

Recall the following corollary from [Chapter 3|

Lemma 5.15. Let A\ be a partition of length at most tn. Then core(\) is (1,0,0)-

asymmetric if and only if

ni (A tn) + ng_oi(\tn) =2n, 0<i<t—2, m_1(\tn)=n+1.

Lemma 5.16. Let X be a partition of length at most tn + 1. Then core,(\) is (1,0,0)-

asymmetric if and only if

no(A\tn+1)=n+1, nA\tn+1)+n_;(A\tn+1)=2n, 1<i<t—1

Proof. As ¢(\) < tn+ 1 < t(n + 1), considering A\ with ¢(\) < tn + ¢, we get by
Lemma 5. 15

ni(Atn+t) +ng o i(Mtn+1t)=2n+2, 0<i<t—2, n1(\tn+t)=n+1.
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Now the proof of the lemma follows by noting:

ng_1 (A, tn +t 1 =0,
ni(Atn+1) = -1 )

nig(AMtn+t)—1 1<i<t-—1.

Recall the definitions Q., .,  and Q(Zt) from |Definition 5.3

17Z27k

Lemma 5.17. Let A be a partition of length at most £ and rank r. Then the following

statements are equivalent.

1. \e Qth%k.

2. B(X\, L) is obtained from the sequence (g + €, ..., 0.+ £, 0—1,...,1,0) by deleting
the numbers {—1—zo > 0—1—z1—qa > - >0—1—z1—app > 0—1—z1—p_1 >

"'>€—1—Zl—0é1.

Proof. First, note that A € Q., ., » if and only if A is of the form

A=(a1+1,...,0p+r,ry..orr—1, .o r—=1r—2,....r—2,..., k,....k |
22 art+z1—2z2—1 ar_1—or—1 Qg1 —apa—1
k=1, k—1k—2...k—2....1,...,1).
~ ~ ah ~ d ~——
Qp—1—0py1—1 ag_g—ap_1—1 aj—ag—1

In that case, its beta set reads as:

BNEO =(cq +4,...;0p,+ 00 =1, 0 —z0 0 —20—2,... 0 — (a, + 21),

7

g R
22 ort+z1—20—1
—_— —_—
l—a,—z—10—a,—2—2,....0 —(ap_1 + 21),0 — a1 — 21 — 1,
. ~ J/
ar_1—or—1
'-7£_ak+2_21_17€_ak+2_31_27'--78_(Oék+1+2127£_05k+1_21_17

Y

Qpy1—0py2—1
e

C—ap1—21—2,. .. 0—ap—2z1,....0— (g1 +21), 0 —agp1— 21— 1

/

v~

op—1—0y1—1

g—ak,l—zl—2,...,6—(ak,2+zl),€—ak,2—zl—1,...,5—042—,21—1,

J

~
ag_g—ap_1—1

g—OéQ—Zl—2,...,€—(051+Zl>,€—061/—\21—1,€—061—21—2,...,0>.

. >

~" ~
o1 —ags—1 l—a1—2z1—1

So, [[tem 1| and [[tem 2| are equivalent. O
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Lemma 5.18. Let A\ be a t-core of length at mosttn +1 and 0 < 2z +2 <t + 2. Then

forige[0,| == Ut — 2t —1],

n4+ 1406, =201 ifi =1, t—2z—1
ni(\) + nua () = A {ZJ ,
2n otherwise, 2
n+1 ifi=1y,
and n;(\) = / ’ for t—z<i<t—1,
n otherwise,
(5.2.3)

if and only if X € 9222,071@ v QS?FQ,ZJFL,f for some 1 < k < tk()).

Proof. Assume ([5.2.3)) holds for A. Suppose we have 0 < iy, < iy < -+ <@y <t—2z—1
such that n;;(A) > n for all j € [m]. Since A is a t-core, for each j, the parts of 5()\)

greater than and equal to tn are:
ij +t(ng,(A) —1)>--->i;+t(n+1)>i; +1in

Note that by [Lemma 5.14] the rank r of X is same as the number of parts of 5(\) greater
than tn. Let 75, 1 < s < r be the sequence of these parts greater than tn arranged

in decreasing order. Note that v, = ag + tn + 1 for some oy > 0, 1 < s < r. Since

t—z—1
2

from the sequence (tn — 1,tn —2,...,0) by deleting the numbers

Ni—z-1-i;(A) < nfor je[m], i; # , the parts of B(\) lesser than tn are obtained

t(nt,zflfi].()q + 1) —ij —z—1< t(ntfzflfij()\) +2) —Z—ij —1l<--< tn—zj —z—1.

Suppose ig € [0,t — z —1]. Then either n; (A) > n, or ny_, 14, (A) > n. If ng(A) = n,
then tn € B()\), and the deleted numbers are tn — 2z — 1, 2tn — 2z — 1 — ~,, s € [r],
vs # do + t(niy(A) — 1) or t — 2z — 1 —ig + t(ng—r—1-4,(A) — 1). So, B(A\,tn + 1) is
obtained from the sequence (o +tn + 1,...,a, +tn + 1,tn,...,1,0) by deleting the
numbers tn —z—-1>th—2—-2—qa, > -+ >tn—2—2—qpy >th—2—2—
Qap_q > - > tn — 2z — 2 — ay. Therefore by A€ Q.91 Here k is
the position of t(n;,(A\) — 1) +igort —z—1—ig + t(ny_,_1-5,(A) — 1) in (N, tn + 1),
because their counterpart 2tn — z — 1 — t(n;,(A\) — 1) —ig = tny_, 14, (A\) =g —2z—1 or
2tn —z—1—t+z+1+1ip —t(ng_r_1-4,(A) — 1) = t(n;,(A) — 1) + o weren’t removed
from the sequence (tn — 1,tn —2,...,0). If ng(A) < n, then B(\,tn + 1) is obtained
from the sequence (ay +tn+1,...,a, +tn+1,tn—1,...,1,0) by deleting the numbers

th—z—2—a,>--->th—2—2—ap1 >th—2—2—ap_1>--->th—2—2— .
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Therefore by [Lemma 5.17, A € Q120

Suppose iy € [t—z,t—1]. In this case n;,(A) = n+1. If ng(\) = n, then tn € (). and
B(\, tn+1) is obtained from the sequence (o +tn+1, ..., a,.+tn+1,tn,tn—1,...,1,0) by
deleting the numbers tn—z—1 > tn—2—2—a,, > -+ - > tn—z—2—ay 1 > th—2—2—ap_1 >
o> tn—z—2—aq. So by, A€ Q. io i1k LEng(A) <n, then B\, tn+1) is
obtained from the sequence (ag +tn+1,...,a, +tn+1,tn—1,...,1,0) by deleting the
numbers tn—z—2—aq, > - >tn—z—2—qp1 >th—z2—2—qp_1 > - >tnh—2z—2—q.
S0, A€ Q190

Conversely, suppose A € Q400 and rk(A) = r. By , B(\) is obtained
from the sequence (ay +tn+1,...,a,+tn+1,tn—1,...,1,0) by deleting the numbers
th—z—2—a, >--->th—2—2—ap1 >th—2—2—ap_1>--->th—2—2— .
Note that if tn — 2 — 2 — a; = 6; (mod t), then o; +tn + 1=t —2—1—6; (mod t) for
i € [r]. In that case n;—,_1_g,(\) increases by one and ny,(A) decreases by one. Since A
is a t-core and tn ¢ B(N), 0;, for all i € [r], i # k can not be equal to t — z — 1. If
. t—z—1-0p ift—2—-1-0,€[0,[=22]]ut—2t—1],
N 0y otherwise,

then it is suffices to show that 6; € [0,¢ — z — 2|, for each i € [r]\{k}, to prove (5.2.3).
We prove this successively in reverse order starting from 6, and going all the way to
0;. Since \ is a t-core, if tn — z — 2 — a, does not occur in B(\), then neither does
tn—z—2—a, +t. Since tn — z — 2 — v, is the largest number deleted from (tn—1,...,0)
to get S(A), tn —z—2—a, +t =tn. So, o, + 2+ 2 € [z + 2,t]; and 0, € [0, — z — 2].
There is nothing to show if #,._; = 0,.. So, assume 6,_; # 0,.. Similarly, since \ is a t-core,
if tn — z — 2 — a,_1 does not occur in 5(\), then neither does tn — z — 2 — a1 + t. Since
tn — z — 2 — a1 is the largest number congruent to 6,_; deleted from (tn —1,...,0)
to get B(N), ap—1 + 2+ 2 €[22+ 2,t] and 0,1 € [0, — z — 2]. Proceeding in this way,
0; € [0,t — 2z — 2] Vi € [r]\{k}. Also, if A € Q, 2,414 then holds by similar
arguments. O

The following three corollaries are needed in the proof of the main results. These are

easily shown by applying for z = —1,0, 1 respectively, and using the facts
that ¢(core;(\)) < U(N\) <tn+ 1 and (5.2.1) for m = tn + 1.

Corollary 5.19. Let A be a partition of length at most tn + 1, and ig € [1, [%J] Then

2n+1+6, + ifi=1
no(N) = 1, 1) + 1y s(A) = n it Hi=rio for 1<i< {;J , (5.2.4)

2n otherwise
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if and only if core () € Q%J{: for some 1 < k < rk(core(N)).

Corollary 5.20. Let A\ be a partition of length at most tn+ 1, and ig € [0, |52 |]. Then

2n+1+06;, 0 ifi=i t—1
nl()\) + nt_l_i()\) = o 21 f 0 fOT’ 0<1< {| y (525)
2n otherwise 2

if and only if core,(\) € Q20k Q2 Lk for some 1 < k < tk(corey())).

Corollary 5.21. Let A be a partition of length at most tn+1, and iy € [0, | 52 |Ju{t—1}.
Then

W+ 146, o ifi—i t—2
ni(A) + ng—o—i(A) = ozt FT=o for O<i<{|’

2n otherwise 2

(5.2.6)

n+1 ifig=t—-1
and ny_1(\) = Jio
n otherwise

if and only if core,(\) € ngk v Qgt)gk for some 1 < k < rk(cores(N)).

5.2.2 Determinantal identities

Let A be a partition with ¢(\) < tn + 1. Recall, Bj(p)()\), for0<p<t—1,1<j<ny\)
are the parts of S(\) that are congruent to p modulo ¢, arranged in decreasing order.
Additionly, for g e Z U (Z + 1/2), define n x n,(\) matrices

BT (N)+aq _BY(N)+aq
A/\ = ( Ly ) 1<i<n AA = < Ly ) 1<i<n 0 (5'2'7)
p(

1<j<np(N) 1<j<n

and 1 x n,(\) matrices

By, = (y7 ) B, = (550) . 5.2.8
pa Y 1<j<np(A) L J 1<j<np(N) ( )

The corresponding matrices for the empty partition are denoted by

t(n+0p,0—7)+p+ 1 —t(n+0p,0—7)+p+
A,y = (%n p,0—3)+P q) Lien Ay, = (xln p,0—3)+P q) e (5.2.9)
1<j<n+6p.0 1<j<n+6,,0
and
_ (b (n+8p0—5)+p+ D (,t(n+dp0—i)+pt

B,, = (y (n+8p,0—7)+p q)1<j<n+5p,o’ By = (y (n+6p,0—35)+p q)1<j<n+6p,o‘ (5.2.10)
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In all cases, whenever ¢ = 0, we will omit it. For example, we will write Apj\ instead of

A;O. We write down alternate formulas for the classical characters using the relation(s):
t3;(AP) = B (N) —p, 1<j<n.

Recall, X! = (24,...,2t). If n,(\) = n, then using (2.3.1)—(2.4.5)) respectively, we have:
1 n P

det A>
sy (X') = o ’)’ L : (5.2.11)
det (mz J )
1<ij<n
A AN
spam (X1) = det (A1 = Api-y) (5.2.12)
A(P) det (l.Z(nJ"l_j) B :i,z(n""l_j)) 9 L.
1<ij<n
det (A>,  — A
soxm (X') = ey =4 ) : (5.2.13)

det (xé(n+1—j) _ ft,(n—j))
! ! 1<i,j<n
A 1A
_ 2 det (Ap7,p + Apﬁp)
(1+ 6,0) det (x’;f(nfj) — gl

oS (XY) (5.2.14)

>1<i,j<n

corresponding to the Schur polynomial, the symplectic character, the even orthogonal
and the odd orthogonal character. If n,(\) = n + 1, then using formulas ({2.3.1)—(2.4.5)

respectively, we have:

A)‘
det (”’_p )
B
sy (X' ') = L, (5.2.15)
det Ao
By
A 7P
det Ap,tfp - Ap,tfp
B — B
spao (X4t = i 5.2.16
A Yy
det AO,t - AO,t
ot [————
By, — Boy
A 7P
Ap,t—p o Aprp
det
B — B
soym (X1 yt) = pip PP (5.2.17)
Aoy — Ao
det | ———

Boy — By
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A AN
Apv_p + Apa_p

2det
B  + B
oS (XY = e (5.2.18)
Ay + Ay

(]. + 671_;,_170) det
By + By

corresponding to the Schur polynomial, the symplectic character, the even orthogonal

and the odd orthogonal character. Recall the following lemma from

Lemma 5.22. Let A be a partition of length at most tn with quo,(\) = (A@, ... A1),
If p,q € {0,1,...,t — 1} such that ny,(\) + ny(\) = 2n, then we define p,, = AP 4
(M@0, —rev(AP))), where we pad 0's in the middle so that p,, is of length 2n. Then the

Schur function spp}q(Xt,Yt) can be written as

A AN
Aq —q Ap,tfp
det
npN)(np(M)—1) T A
— -1 AN | A
Sppa (X', X) = =D e A L (5.2.19)
(_1)? Aq,—q Apﬂt—p
det
Aqﬁq Ap,tfp

Lemma 5.23. Let \ be a partition of length at most tn +1 and 0 < p,q <t —1. If
np(A) +ng(A) = 2n + 1, then define p} = AP 4 (A9 0, —rev(A\P))), where we pad 0's
in the middle so that py , is of length 2n + 1. Then the Schur function sp;q(Xt,yt,yt)

can be written as

np(A)(np(A)—1
(_1) p(M)( 210( ) )yt(Agp)""np()\))

Spk (X*, X', yh) = det | A} | A

q,—q p,t—p ’

(5.2.20)

Vv (Xt,yt,yt>

where V. (X,Y, y) = H (i — ;) (2, — ;) (x; — 2;) (T — Zj) ﬁ(mi—y)(xi—i‘i)(:?i—y).

1<i<j<n i=1

Proof. We think of the first n,()\) parts of p* = as coming from A9 and the rest from
AP Using the Schur polynomial expression (2.3.1]) for 8 (X t,yt,yt), the numerator
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in the expression is

mt(x(f’ A 1 on+1—j) xt(A§P>—Agﬁ?+2_].+2n+1—j)
g 1<i<n ! 1<i<n

1<j<ng(\) ng(A)+1<j<2n+1

(xt(,\§”>—,\g‘jf+2j+2n+1—j)
i

() (@) .
t Y 12n41
det ;f.( ! J " 7
1<t

¢ i<n 1<i<n
1<j<ng(N) ng(A)+1<j<2n+1
(yt(/\gp)+)\;.q)+2n+lfj)) (yt(,\gp)f/\g,’fwfj+2n+1fj))
1<j<ng(N) ng(A)+1<j<2n+1
. . . _tAP +n,p(\)
Multiplying row ¢ in the top block and middle block of the numerator by z,”"* 7
(») , NO)
and xz(Al () respectively, for each i = 1,2,...,n, the last row by g/ M) and

then reversing the last n,(\) columns, the numerator equals

np(N(np(N=1) 4 (p) Dy @ 1
(—1) 2 A () gy (j( @ 4ng—j) (O 1)
1<isn 1<i<n

np(N) (np(M)—1)

—(—1) P00 ot | A | AN

Hence, (5.2.20)) holds. O]
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Lemma 5.24 ([68, Lemma 2]). The following identities hold true.

n+2—j —n+27j)
det (a:l L 1<i,j<n+1

n
= <_1)n‘r:r?1 (anrl - jnJrl) H(xz - anrl)(j:i - xn+1) det ('T?Jrlij - ji +17J)1<i,]sn
i=1
1—j | —ntl—j
det (IL’;H_ J + IL’?+ ])1<i,j<n+1
n
= (=1)"z, H(xl — Tn1)(T; — Tpyr) det (2777 + T] _])ngn
i=1
det(ﬁ?_j%m + j?_j+3/2)1<i,j<n+1
n
= (=12 P @+ D) [ [ (@1 = @) (@ = ) det(@) 72 4 2772 4
i=1
det($?_j+3/2 — j?_j+3/2)1<i,j<n+1
n
= (_1)7195;21_1/2(37%1 —1) (i — Tp41)(Ti — Tnsa) det(l"?_ﬁl/z - j?_J+l/2)1<i,j<n-

.
[y

Lemma 5.25. Fori=1,...,k, fit {;, m; € Z" such that 1+01+---+{, = my+---+my, =
d. Let S; and T; be matrices of order 1 x m; and {; x m; respectively. Define a (k+1) x k
block matrix

Sl 52 Sk
Ty
Uk’ = T2 O
0 T,
1. If for some ig € [k],
li+1 g =i,
m; = ! J ‘ 1 <] < k,
l; otherwise,

then

%0

det(Uy) = (=1)Zi<io “ det (SZO> ﬁdet (T3) . (5.2.21)
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2. Otherwise
det(Uk) = 0.

Proof. 1t is easy to see that the lemma holds in the case when m; > ¢1 + 1. If my < ¢4,

then applying the blockwise row operations Ry <> Ry, we see that

ma <£1,

(—1)81Uk_1 my = fl.

det Uk =

Proceeding recursively in the case m; = ¢, ((5.2.21]) holds. This completes the proof. [
Recall the following lemma from |[Chapter 3|

Lemma 5.26. Suppose uq, ..., ux are positive integers summing up to kn. Further, let
(Vi) 1<ick L<j<hil be a matriz of parameters such that v; p41 = Vig, 1 <1 <k and I' be
the square matriz consisting of its first k columns. Let U; and V; be matrices of order

n x u; for j € [k]. Finally, define a kn x kn matriz with k x k blocks as
I = (")/i,ijlUj - %',QjV') 1<i<k (’Yi,2k+272jUj - %,2k+172jv') 1<i<k )
1<G<| 5 S |<

1. If up + ugr1-p # 2n for some p € [k], then det Il = 0.

2. Else if u, + upy1-p = 2n for all p € [k], then

55

detTT = (—1)*(detT)" || det W;, (5.2.22)
i=1
where
Ui | —Vit1—
k1 l<i< [%J ’
Wi = —Vi| Ukt
(Ui = Vi) k odd and i = £,
and
0 k even,
T k
n Z w; k odd.
j=kt3
Lemma 5.27. Suppose uy, ..., u; are positive integers summing up to kn + 1. Further,

let (Vig)i<icki<j<ksr V€ @ matriz of parameters such that vix+1 = ik, 1 < i < k and

I' be the square matriz consisting of its first k columns. Let M; and N; be matrices of
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order 1 x u; for j € [k], and U; and V; be matrices of order n x u; for j € [k]. Finally,
define a (kn + 1) x (kn + 1) matriz with (k + 1) x k blocks as

(Mj * Nj)lgjgl%J (Mj * Nj)[k23J<]<k
A =
(Vi2i—1Uj —%i2;V;) 1<isk | (Vigkro—2Uj — Yiok+1-2;Vj)  1<i<k
SN EES <<k

1. If for some 1 < ig < [%J ,

2n+1+5i0% J =10,
Uj + uk+1_j = ’

2n otherwise,
then
k+1
o\ L
det A = (_1)X<det F)n det X0 1_[ det VVi, (5'2'23)
0 zZ:zlo
where
O, — (MziNz Mk+1—iiNk+1_i> Zf1<2<[§J7
(M% + N%) k odd and i = %7
Ui | —Vig1—i
k+1 L<iv [gJ |
VVi - _‘/74 Uk—i—l—z
(Ui = Vip) k odd and i — 21,
2 2
and

2. Otherwise
det A = 0.

Proof. Consider the permutation ¢ in Sk, 1 which rearranges the columns of A blockwise

in the following order: 1,k,2,k — 1,.... In other words, ( can be written in one-line
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notation as
C=(1,...;u,kn—ug+2,.... kn+1,
— ~ D)
ul Uk
w1, Uy ug ko —ug —ug—1 + 2, kn 4+ 1 —ug, ...
;; U;i1
Then, the number of inversions of ( is
k
i=| 2
Here we note that
Mj// i Nj”
det A = sgn(() det : (5.2.25)

Vi Ujr = i Vi

1<i,j<k
where
, i+l i odd,
j=7j—(-1) and j"= ; J
k+1—2 jeven.
Now we see that
01 Oy
Mj” i Nj” 1 O Wl
- X Wy
Vi, Ujr — Vi g Vi 1<i <k 0| (ijIn)r<ij<k O

Since the matrix (7; ;15 )1<ij<k is the tensor product I'® I,,,

det = (detT)".

0| (Vi dn)i<ij<k

O]

ey
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Therefore,

01 02 O[k 1J
Mj// i Nj// Wl

det = (detT")" det Ws O . (5.2.26)

If
2n+1+ 6i07k+1 J =10,

Uj + Uk+1_j = 2
2n otherwise,

for some 1 < ip < |%3L|, then using [Lemma 5.25(in (5.2.26) and substituting in (5.2.25)),

we have

Oi,
Wi,

|51
) [ detw:. (5.2.27)
iio
Otherwise, using [Lemma 5.25] the determinant of the last matrix in (5.2.26) is zero.
Hence, by ,

det A = (—1)X(det I")" det (

det A = 0.

This completes the proof. O

5.3 Schur factorization

In this section, we give a proof of [I'heorem 5.1}

Lemma 5.28. Fixr 0 <m<t—1and 0 < v, <---<vy <t—m. Let \ be a partition

of length at most tn + m. Then

n+1 ift=v;,+m—1 for somei
corey(A) = (v1, ..., Um) if and only if n;(\) = ! i
n otherwise.

Proof. Tt is obvious that core,(\) = (v4,...,1,,) if and only if S(core,(A)) = (v + tn +
m—1,...,Up+tn,tn—1,...,0). This further implies that core;(\) = (v1, ..., vy) if and
only if
n+1 ifi=v; +m — 1 for some ¢
ni(A) = O

n otherwise.
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Proof of [Theorem 5.1 By Definition ([2.3.1]), we see that the desired Schur polynomial

1S

(((wp_lxi)ﬁj(’\)) 1<i<n )
1<j<tn+m 1<p<t

det
((wi—ly)ﬁj(k)) 1<i<m
s\(X,. W Xy, 0 y) = lsjstntm . (5.3.1)
dot SIS 1<p<t

((wi—1y>tn+m—j) l<i<m
1<j<tn+m
We first consider the case when n.(\) > n + 1 for some 0 < ¢ < t — 1. Permuting the
columns of the matrix in the numerator in (5.3.1) by o§ from (5.1.1) (m = 1,e; = ¢), we
see that the numerator in the right hand side of (5.3.1)) is

(WPDE AN o (w(p—n(j—l)A]A,_l)Kpgt
1<j<t
j#c+1

sgn(o$) det ) (5-32)
(WP VOB e (w(p—l)(j—l)BjA_l)Kpgm
1<j<t
j#c+l
where “
2o () mamo ()
s ¢ 1<i<n 5 1<j<ns ()
1<j<ns

For p € [t], multiplying the rows of the p'™ block by w!~¢ and for p € [m] and multi-
plying the row of the (¢ + p)™ block by w77, we get

(A?)Kpgt (w(pfl)(j*“l)A?_l)Kpgt

1<j<t
j#c+1

sgn(o$) det (5.3.3)

(B2)1<p<m (W(pfl)(jfcfl)B}\—l)KKm

1< <t
j#c+1

Applying the blockwise row operations R; — R; — Ry for i € [2,t], R; — R; — Ry, for
i € [t +2,t+ m] and then permuting rows R;, i € [2,t + 1] cyclically, we have
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A (A} Disjst
j#c+1
B (Bi_1)1<j=t
Jj#c+1

c t—1
sgn(of)(—1)"" det (0)2epes | (WP DG — 1)A‘;\71>2<p<t (5.3.4)

1<j<t
j#c+1

(0)2<pem | (WP V=D —1)BY | )ocperm
IS
j#c+1

Since n.(A) > n + 1, the determinant in ([5.3.4)) is zero. Substituting in (5.3.1)), we see
that the required Schur polynomial vanishes. Now consider the case when n;(\) <n+1
for all 4 € [0,¢ — 1]. Since ), n;(\) = tn + m, using pigeonhole principle there exist
{e1,...,em} < [0,t — 1] such that n.,(\) =n+ 1, i€ [m]. Let e; = v; + m — i for all
i € [m]. Permuting the columns of the determinant in the numerator of by of
from (5.1.1)), we see that the numerator is

(w(p—l)(ej)Aé) l<p<t
1<j<m

p—1)(J—1) AX .
(W( A )Aj_1) - 1spy<t
j#e1+1,....em+1

sgn (o 0m) det (5.3.5)

(w(pfl)(ej)Bé\j)Kpém
1<j<m

p—1)(J—1) RA .
(W( X )Bj—l) - 1<p<t
j#e1+1,....em+1

Consider the permutation ¢* in Sy, .., which rearranges the rows of the numerator block-

wise as: 1,t+1,2,t+2,...,m,t+m,m+1,...,t. Then it can be seen that the numerator

is
( 5 )
B O
[ A)\
Sgn(o‘*) Sgn(o‘i'f‘ m) det(rm()\)) det ﬁ ’
" A
O €m+1

€t

(5.3.6)
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where the set {en,41 < -+ < e} is same as {0,...,t — 1}\{e;}ie[m) and

i—1) (e i—1)(j—1
(WO ni1) 1<icm | (WD) 1<icm
1<j<m 1<j<t
j#e1+1,...em+1

i—1 . i—1)(7—1
(WD L) mirzise | (WD) macise
1<jsm 1<j<t
j¢51+17---367rL+1

We note that the last determinant in ([5.3.6|) is non-zero if and only if

n+1 ifj=ey,....em,
n;i(A) =

n otherwise.

So, by [Lemma 5.28| we see that the Schur polynomial is non-zero if and only if core;(\) =

(v1, ..., V). In this case, the numerator is

m A)\ t—1
sen(o*) sgn(a¥0m) det(T,, (A det | —&— det A2, 5.3.7
gn(c*) sgn(oy ") (())H (Bé)g ; (5.3.7)
i#e;,4€[m]
Permuting the columns Cy,, s, - . ., Cpom 0f Iy (A) cyclically in succession fors = 1,...,m

and then rows in the similar way, we have

(WD) 1sise | (WD) g O
1<j<m 1<j<t
j#e1+1,....e;m+1

det '), (N) =

0 0 ()

Finally, we evaluate det I';,(\) at the empty partition and note that

det I, (M)

= re 17 )t mil‘ =
et (2) ~ % (L ws W™ (5.3.8)

Since the denominator in ([5.3.1)) is same as the numerator evaluated at the empty par-
tition. Evaluating (5.3.7) for the empty partition and substituting in (5.1.3) completes
the proof. O
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5.4 Factorization of other classical characters

In this section, we prove ITheorem D. 4]7 |[Theorem 5.7 and [Theorem 5.10, Recall, the
matrices A%, A»  from and B, By, from (5.2.8).

p,q’

5.4.1 odd orthogonal

Consider the (tn + 1) x (tn + 1) block matrix

(B&\—Ll - Bg—l,o)lgqst

Ay = . (5.4.1)

(p—1)g AX (p—1)(g—1) AX
(w Aq_l CL) Aq 10)1<pq<t

Substituting M; = B} 1, Nj = B}, Uj = A} ,,V; = A} for 1 <j<tand

(=1)G+1) j odd
Vi T gy
w 2 J even
in [Lemma 5.27] proves the following corollary.
Corollary 5.29. 1. If
2n+1+0; 1 if i =iy, t—1
ni(A) +ng_1-i(A\) = 05 / 0 0<i< {J , (5.4.2)
2n otherwise,

for some 0 < iy < [%J, then

det A; = (—1)¥(det I')" det " [T detw, (5.4.3)
Wi )iz
v 110

where

oM —

)

_ _ . . 2
< Bz)\l Bzo ‘ Bt/\—1—i,1 - Bt/\—1—i,o ) if 0 <i< [TJ
(Btl1 Btlo) toddandz-%

)
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A | =R
- t—2
W,(l):< ) OnglTJ,
’ _AE\,O Ai\—l—i,l
L(A%J—A%O) t odd and i = 5L,

and

X1=< Z ni—l()\)>+ Z tnn;_1(N).
Sy

i=t+1—10

2. Otherwise
det A; = 0. (5.4.4)

Proof of [Theorem 5.4 By (2.4.1)), we see that the numerator of desired odd orthogonal
character is given by

<((wp—1xi)/3j()\)+1 — (@p—li-i)ﬂj(A)) l<i<n )
1<jstnt1 ) | ey

det (5.4.5)

(yﬂj(/\)ﬂ — gﬂj(/\))

1<j<tn+1

Permuting the columns of the matrix in (5.4.5) by oy from (5.1.1)) (m = 1,d; = 0) and
then the t + 1 row blocks of the numerator cyclically, the numerator is

A R A R A R
Bo,1 — Bj B171 — By e Bt—l,l - B,

A AN A AN A AN
AO,l — Aj A1,1 — Aj o At—l,l — A,

" PP 2AN =1 A PN oY
t—1 AX AN t—2 AN AN A t—1 AN

(5.4.6)
where A7), /_1;,‘, By, and B;‘ are defined in (5.2.7) and (5.2.8]). We note that the matrix
in is Ay defined in (5.4.1). We use [Corollary 5.29 to get the determinant. Since
the denominator in is same as its numerator evaluated at the empty partition and
no(,tn+1) =n+1, n;(F,tn+1) = n for all i € [1,¢ — 1], evaluating the numerator in
and then using , we see that the denominator of the desired odd orthogonal

character is
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Box — Boo | Bi-11 — Bi-1p
sgn(og) (—1) (=147 (det )" det | Aoy ~ A g
— Ao Ai11

|22 Agi | =Ar1g0 det (Atq — A > t is odd

t=1g 0 ’

X det X 2 2
q=1 _Aq,ﬂ Ari_g1 1 t is even,
(5.4.7)
where

ey

If core; () ¢ Qg%7ku Q(Qt)lk for all k € [rk(core;()))], then by|Corollary 5.20{and (5.4.4)), the
numerator in (5.4.6) is 0. So, so\(X, wX, ..., w1 X y) = 0. If core;(\) € Q%,k v ng)lﬁk
for some 1 < k < rk(core;(N)), then we use [Corollary 5.20f and (5.4.3)) to factorize the
numerator in ([5.4.6)).

Case 1. If t is odd and iy = %, then the numerator is

B%I_B%,O 5 Aé\l Ay q,0
sgn(o,)(=1) (=1)X* (det )" det | [ det
A%,l N A%,O =0 _Az?o Al q,1
(5.4.8)
By |Lemma 5.24] we have
Bo,1 — Boyo | Bi—1,1 — Bi-1,0
det AO,l —At—l,o
— Ao Ar-11
n Aog | —Aiip
="y = D] ] (@l —y)@ - y) det | ——
=1 —Aoo | Aim1a
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By s — By e

’ 2

and det

AO t+1 — AO,%

’ 2

= (_1)ny7tn+(17t)/2<yt — 1) H ((x;‘/ — yt)<jf — yt)) det (A%J — At—1’0> .

i=1

©) y—1 e Agr | =Aia-q0
sen(og)(—1)"(=1)X1 (det F)ny(l—t)ﬂ(yt Y det i
q=0

_A ,0 At—l— 1
R (5.4.9)
By esr — By e
x det
A — Ay

For ¢ € [0, 52], multiplying by z; ! and Z; ¢ to the i row in upper and lower blocks
respectively for i € [n], both in numerator and denominator, by [Lemma 5.22] we have

A(;\,l _Ai\—l—q,(]
det
714)\0 Ai\_l_ 1 . "tflfq(k)(ngflfq(k)‘*'l) .,
e [\ = T G
q,1 —¢—1—¢q,0 — 2
det
_Aq,() Atflfq,l

Taking the ratio of (5.4.8) and (5.4.9) and using (5.1.2)), (5.4.10) and ((5.2.17)), we see

that the required odd orthogonal character is

t—3

_1\et+n Y — 1 = t 3t
sgn(oy)(—1) SR ) ]‘[sﬂél) (X, X7) x50 (s

1)(Xt)7

2

where
€ = t(t 2— 1) n(n2+ 1) + (l_t;_io nil()\)> + Zt:s tn(ni_1(A\) —n)
2 R (5.4.11)
v (PN (e A + D) 1)
* q;) ( 2 2 )
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Since eréﬁ@ is even for odd ¢, the parity of € is same as €;(\) defined in (5.1.5)).

Case 2. If igp # 5%, then (5.4.3) for the determinant in (5.4.6), we see that the

2 )
numerator is

B{}) 1 B{}) 0 337171'0,1 - Bt{kio,o
sgn(oy)(—1)¥***(det T')™ det A;\O L _Afe\fkio,o
5.4.12
~A, Ay (5:4.12)
t=2 A _AX _
=] Aur | ~Aimag0 det (AL, =AY, ) tis odd,
X H det X 2 2
_ 1 1 i .
g l% —Aq’\70 AtA i t 1s even

For g € [0, |52 ]]\{é0}, multiplying by 277" to the i*" row in upper blocks and by z; ¢
to the i*" row in lower blocks for i € [n], both in numerator and denominator, and then

by [Lemma 5.22, we have

Ag\,l _Ai\flfq,(]
det
_A)\ A)\_ B 1 ng_1—q\)(ng_1_q(\)+1) B
Q,O f 1 (Ll _ ( ) n(n2+1) Sﬂ—(l)(Xt’Xt)_ (5413>
Agr | —Aim1q0 (=1) = q
det
_Aq,o Atflfq,l

Evaluating one of the factors in (5.4.7)), we have

Bo1— Boyo | Bi—11 — Bi—1,0

det Ao —A 10

= ()T a o, (T ) VXX
=)z, (P - ) VXL X g,
(5.4.14)

where V(X! X', 3t) = [Ticicjenl@l — b)) () — ) (2 — 2)(7F — 25) | | (2f — ") (25 —
-1

1

z')(zt — y'). Using [Lemma 5.23| and ([5.4.14)), we see that
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By — Bio | Biisia — Blisio
det A%,l _A?—lfio,o R .
_A?O,O AN ion (—1)nt_1_i0( Ne1mig WD
Boyi — Boo | Bi-1n — Bi-10 (—1)@ (y—1)
det Ap1 _Atfl,o
— Ao Ai 1

(t—1—iq) . —t
—t(A 11— i) (N) =) Fig+1 t t
x(y & (t—1-ig) (N) =) +io s (XX, y)
0

(t-1-ig) : ~
. yt()\lt 1= +nt717i0(>\)—n)—203ﬂ(1)(Xt,Xt, gt)> (5415)

0

Thus, using (5.4.13)), (5.4.15)) and

(—1)° <y7t()\§t_1_i0)+n(t717¢0)()\)7n)+i0+18 (1)(Xt7yt7 Yt — yt(xy—l—ioum,l,io(AH)%
7'('2.0

1= S0 (i1 (XY)  tis odd
Sﬂ(l)(Xtaytagt)> X | | 5. (M (Xt,Yt) X ,\( 2 )< ) ’
’ 'ii-o z 1 t is even,
1#10

where € is defined in (5.4.11f). Since W= ntl) g even for even ¢ and w@

2 2 2
is even for odd t, the parity of € is same as €;(\) defined in (5.1.5), completing the
proof. n

5.4.2 Symplectic characters

=2
If Z n;(A) = (t — 1)n, then consider the (¢t — 1)n x (¢t — 1)n matrix
i=0

_ (,,,Pq AN _ TP AA )
I, (w Aq—Ll w Aq—lal 1<p,g<t—1 "
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Substituting U; = A 1 V= 1213\7171 for1<j<t—1and
W 7 odd,

w % j even,

in proves the following corollary.

Corollary 5.30. 1. Ifn;(A)+ne_a_;(A) # 2n for somei € [0, |52]], then det Iy = 0.

2. If ny(A) + ny_a—i(X) = 2n for all i € {0,1,...,|52]}, then

A 7P
Ai,l _At—2—i,1

det I, = (—1)>2 (det T)" ]_[ det

—AX A
A ] Ao (5.4.16)
y det (A)t‘ 11 A’L“) t even,
1 t odd,
where
t—1
n Z ng—1(\) t even,
Yo = =2
0 t odd.
t—2
If an()\) = (t — 1)n + 1, then consider the (t — 1)n + 1 x (t — 1)n + 1 matrix
=0
(Bé\—l,l - B3—1,1)1<q<t71
Bz = : (5.4.17)

Pq AN _ Pq AN
(WrAQ 4, — w1 AY

71) 1<p,q<t—1

Substituting M; = B}, N; = B}y, Uj = A} |, V; = A} | forall 1< j<t—1

and
i(j+1)

w2 7 odd,

Vi = _ii .
w2 j even,

in proves the following corollary.
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Corollary 5.31. 1. If

2n+1+5ig 7 =1, ) t—2
n]()\) + nt_g_j()\) = 072 ] € |:O, {2|‘| s
2n otherwise,

for some ig € [0,|52]], then

det Ay = (—1)%(det T')" det " [T detw, (5.4.18)
2 L
Wio izazi?)
where
— — . . _3
0P _ < BZ\,l - Bi),\l ‘ Bt/\—Z—i,l - Bt)\—Q—i,l ) if0<i< ltTJ
Z <Bf%71 — Bf%& t even and i1 = %,
A'Z\l _A?—2—z 1
. _|t=3
W-(2)=< - ngg[TJ’
' —AN | Ala
<A¢;21—21¢;2 1) t even and i = 52,
\ 2 2
and

2. Otherwise
det AQ = 0.

Proof of [Theorem 5.7 By (2.4.3)), we see that the numerator of the required symplectic

character is given by

(((wp—lwi)ﬁj(/\)ﬂ — (@p—lji)ﬂj(/\)ﬂ) l<i<n

» 1<j<tn+1) 1<pst | (5.4.19)

(yﬁj(A)H . gﬁj(/\)ﬂ)

1<j<tn+1

Permuting the columns of the determinant in the numerator by oy from (5.1.1) (m =

1,d; = 0) and applying blockwise row operations Ry — Ry + -+ Ry, R; — R; — %Rl,
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2 <1 <t and then permute the last ¢ rows cyclically, we see that the numerator is

0 0 Al — Al
By, — By, B,y — By, By, — By,
sgn(o)t"(—1) T det | wAG, — WA, WA 51 —wAY 0 ;
Wt_lA(/},l - WAS,l WA1?\72,1 - Wt_llei\le 0
(5.4.20)
where A A By and By, are defined in (5.2.7) and (5.2.8). If core,()) ¢ Q:(g%ku Q:(%t)zk

for all k € [rk(\)], then using [Corollary 5.21} [Corollary 5.30| and |[Corollary 5.31|

spy (X, wX, ..., X y) = 0.

If corey () € ng}’k v Qéf)m for some k € [rk(\)], then using |Corollary 5.21| we factorize
the numerator using [Corollary 5.30{and [Corollary 5.31 Since the denominator in
is its numerator evaluated for the empty partition, and the empty partition is vacuously
(3,0,0)-asymmetric with no(,tn+1) = n+1 and n;(F,tn+1) = n for all i e [1,t—1],

the factorization for the denominator of required symplectic character is

(—1)%" (det T)" sgn(o g )" (—1) DD det (4,4 ) — Ay 1)

By — Bo,1 By o1 — Bt—2,1 )
- 5] Aig | —Aiami
x det Apq —At a1 X det
_ = _Ai,l Aain
— Ao Ap 21
y (A%’1 — A% 1) t even,
1 t odd,
(5.4.21)

where
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Case 1. ip = t — 1. In this case n;—1(A\) = n + 1 and the matrix in (5.4.20]) is block
anti-diagonal 2 x 2 matrix. Using ([5.4.16)), the numerator in this case is

A AN
At—l,l - At—l,l

sgn(oy )t (—1) DD (L)% (det T)™ det

A DA
Bt—l,l - Bt—l,l

. . (5.4.22)
t—3 _ _
|52 A7y Al g det (Ai;z - A, 1) t even,
X det X 2 2
i=0 AN AN, 1 t odd.
By |Lemma 5.24] we have
By — By | Biag — Bt—2,1
det A071 _At—Q,l
—Ao Ap 21
n AO 1 _At72 1
=y "y -9 | [ ((«f =)@l —y")) det | —
=1 —Ao1 | Ai2a
and
Aoy — Aoy n B
det | | = (=" " (" = D] [ ((«f —y)(@ —9")) det (Ara — Arn) -
Bot — Boy =1
Substituting in (5.4.21]), the denominator in this case is
(0) 9 (y2t . ) AO,t - AO
(1) *7(det T)" sgn(og)t" (1) D0 +1)+”ﬁ det
y'(y —9)
Byt — Bo
_ (5.4.23)
t—3 ) o _
%] A Ar2-in det (At—Q | — A 1) t even,
X det X 2
i=0 _Ai,l Ay g iy 1 t odd

So, using [Lemma 5.22| (5.2.13]) and ([5.2.16)), we see that the required symplectic char-
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acter, the ratio of (5.4.22)) and (5.4.23)), is

2t [%J SO /49 Xt t even,
(—1)62 sgn(gA)MspA(t_l) (Xt, yt) H Sm(f) (Xt, Yt) y )\(T) ( )

3
q=0 1 t odd,

where
15
tt—1)n(n+1) N—o—g(A) (Ni—2—qg(A) +1)  n(n+1)
€& == 5 +(t—1)n+q§< 5 -5 )
t—1 n 3 ng—1(A) t even
— Z (t—1)n*+ q_zt:;z W
=[] 0 t odd.

(5.4.24)

Since (Hléﬁw is even for odd t and the parity o

L";l) for even ¢, (—1) is the same as (—1)™ defined in (5.1.9).

t2—2t+2 1) .
f %”("; ) is the same as

If 79 # t — 1, then n;_; = n and the numerator in (5.4.20)) is

(32—1,1 - 32—1,1)1@@—1

sgn(oy )t (—1)ED0P 0+ gep (A?_Ll - /_1?_1’1) det

g AN _ Pq AN )
(w A — WAL

1<p,q<t—1
The last determinant is Ay defined in (5.4.17)).
Case 2. ig = %, then using ((5.4.18)), the numerator in this case is
(—1)*(det )" Sgn(“A)tn(_1)(t71)(n2+1)+n det (AZ\—l,l - AZ\—l,l)
A DA . 1
Bg—m - Bg—1,1 51 AZ\J _Ail%z',l
x det X H det
A AX i= 1
Ag—u B Ag—m 0 _Az?:l A?—Q—i,l

(5.4.25)
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By [Lemma 5.24; we have

By — Boi | Bi—21 — Bi—21

det Aoa —Ai 21
—Ag; Ao
n Aox | —Ai—aa
=y "y —9) ] [ ((ef =)@ —y") det | ——
= —Ao1 | Aray
and
oné - A(x% n )
det — (_1)ny—tn—t/2(yt 1) H(gg}f — ") (zh — ') det <At52 1= A%J)
Bo,g — BO,% i=1

Substituting in (5.4.21]), the denominator in this case is

1 g0>+n det T)™ n (t—=1)(n?+1)+n (yt - 1) d A)\ A)\
(—1) (detT') sgn(ag)t (—1) e et( t—1,1 tfl,l)

Y2y —y)
_ r Ao,g - Ao,g
|5 Ain | —Ai2-in det | ——| ¢ even, (5.4.26)
X det X 4 _
= —Aix | Arasia Bos = Bog
1 t odd.

So, using [Lemma 5.22] (5.2.12)) and ((5.2.17)), we see that the required symplectic char-
acter, the ratio of (5.4.25)) and (5.4.26)) is

(y'—1) spyce—1 (X7) 1_[ s <2)(Xt,7t) X SO/\(t;)(Xt7yt)>

—1 €l2+”sgn ON)—F7%,
( ) ( )yt/2<y _ y) pol; Tq )

€ 5 5 _2 ni 1 (\) + (t — D)n(ni_1(\) —n)
Zvjo =1 (5.4.27)
S (2N (n—2-q(A) + 1) n(n+1)
P G



118 5. Factorization of classical characters twisted by roots of unity: 11

Since the parity of & 2t+2) n(n2+1)

(—1)2XN*+1 defined in ([5.1.9).
Case 3. ig # % Using ((5.4.18)), the numerator in this case is

1) ;s
is the same as "("; for even t, (—1)% is the same as

(=1)(det )" Sgn(a/\>tn(_1)(t71)(n2+1)+n det (A?q,l - 21?71,1)

BZ)S, - Bz)E) 1 Bt/\foio,l - Bt{inO,l -
- |552] A=A,
x det Ay —A} 5 i1 X H det -
o —AN | Al
_Al)\o 1 A?—Q—iml
AY,  — AL ) t even,
x (ke -~ A, (5.4.28)
1 t odd.
By [Lemma 5.24} we have
Boi — Boy | Bioag — Bioaa
det Aoq _At—Q,l
— Ao At o
n(n—1) —in —tn— —t
=(-1)" 7z a1z, (Y -y VXL XY

n(n—1)

= (=) wy o, (y -y Y VXX, (5.4.29)

(25 — y') (@i —

=

~
I
—

~t — _ _ _ _
where V(X' X', ¢") = Hl<i<j<n($§ — aj)(z} — 25) (25 — 7)) (T} — 7))

z!)(zt — y'). Using [Lemma 5.23| and (5.4.29)), we see that

A A A A
B - B Bt—2—i0 1 Bt 2—10,1

10,1 10,1
det Ai})y _At)\—Q—io,l
A A ng—2—ig (M) (ng_a_45 (N)+1)
—Aia Al ign (=) 2
— = - n(n+1) 5
Boyx — Boa | Bi21 — Bi21 (—1) = y—y
det Ao —Ap 21
— Ao Ao

Ly (t—2—ig) ) _ i >t
x (y t 1 (1-2-ig) () ")HOSW(n(Xt,X y)

(t=1—ip)
_yt(Alt 1) L, ig(AN)—n)— B0 g (1)<Xt Xt,gt)). (5430)

"O
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Thus, using |Lemma 5.22| ((5.4.30)) and

det (A}, — Ab, )
det (A%1 Ais

the ratio of (5.4.28]) and ([5.4.21]) is:

sgn(cu) (—1)6_2 <y_t(>\gt—2f’i0)+n(t_2_i0)(/\) )-HOS e )(X X Ly ) yt(/\gtfz’iO)Jrntfzin(A)—n)—io
y—vy

so (-1 (X') tis odd,
NG

1 t is even,

Tig
72
2
s (X, X', —t) Hs<2)X X

where €} is defined in ([5.4.27)). Since (t+1)2(t_1) nrtl) s even for odd ¢, (—1)% is the same

2

as (—1)2™ defined in (5.1.9). This completes the proof. O

5.4.3 Even orthogonal characters

If Z n;(A) = (t — 1)n, then consider the (t — 1)n x (¢t — 1)n block matrix

I == (WPA) + WP A)) (5.4.31)

1<p,g<t—1"

Substituting U; = A}, V; = =A% and for 1 < j <t —1,

i(G+1) .
w2 7 odd,

Yig = ij .
w2 J even,

n [Lemma 5.26] we get the following corollary.
Corollary 5.32. 1. Ifni(\) + n_i(\) # 2n for some i € [|£]], then detIl; = 0.

2. If ny(A) + ny—i(X) = 2n for all i € [|£]], then

det H3 = ( )23 (det(’}/zj 1<i,j<t— 1 1_[ det
(5.4.32)
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where -
n 2 ng(A\) t even,

23 = q=¥
0 t odd.

t—1
If Z n;(A) = (t — 1)n + 1, then consider the ((t —1)n+ 1) x ((¢ — 1)n + 1) block matrix
i=1

(By + B))1<q<t—1

Pg AN t—pg AN
(w Ay +w Aq)1<p,q<t—1

Substituting M; = BJ’-\, N; = BJ’-\, U; = Aj, V= —14_13\ and for 1 <j <t—1,

i(j+1)

w2 7 odd,
Vi Ty .
w2 J even,

in [Lemma 5.27], we get the following corollary.
Corollary 5.33. 1. If

2n +1 +5i0,% J = o,

nj(A\, tn+1)+n,_ (A, tn+1) = je[t—1], (5.4.34)

2n otherwise,
for some ig € [|1]], then
3 \ |5 "
det Az = (—1)%*(det T")" det ( W-E)g) ) H det W, (5.4.35)
20 L=
1510

where

' B} + Bé‘) t even and 1 = 3,
2 2
AN AN
_z t—1 1 <i< lﬂj’
W =\ A Ay i



5.4. Factorization of other classical characters 121

2. Otherwise, det Az = 0.

Proof of [Theorem 5.10, By ({2.4.5)), we see that the numerator of the required even or-

thogonal character is:

1<j<tn+1 1<p<t

2 det

(yﬁj N 4 gﬁj(k))

1<j<tnt1

First permuting the columns of the matrix in the numerator by oy from (5.1.1) (m =

1,d; = 0) and then permuting the last ¢ rows cyclically, we see that the numerator is

A+A)| A+ A L. AN+ AY
By+By| BY+B' |...| B}, +B},
A} + A) | wAY + WA | | WTIAY | wA)
2sgn(oy)(—1)Y det ° ° : : = = :
A+ A) WA FwAY | L | wA) | WA
where A) A%, By and B) are defined in (5.2.7) and (5.2.8). Applying blockwise row

operations Ry - Ry + R3 + --- + R;1 and then R, — R; — %Rl, 3<1<t+1, we get

A} + A} 0 . 0
By + By B} + B} . B} + B},
0 WA + 1AM | WA L+ wAN
2t" sgn (o) (—1) Y det : : = =
0 WA + wAY | L | wA) | wtTA)

(5.4.36)
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Since the denominator in ([2.4.5)) is the numerator evaluated at the empty partition and
no(J,tn+1) =n+1, n;(J,tn + 1) = n for all i € [1,t — 1], evaluating the numerator
in (5.4.36) and then using [Corollary 5.32] we see that the denominator of the required

even orthogonal character is:

Ao+ Ay

(1 + Gpar )" sgn (o) (1) D+ (det )" det

where
t—1
2
Z n~ t even,
=52

0 t odd.

If cores(N) ¢ Q%ﬂ v Qgt)lk for all k € [rk(core;()))], then by [Lemma 5.16} |Corollary 5.19|
[Corollary 5.32| and [Corollary 5.33| the numerator in ((5.4.36) is 0. So,

o™X, wX, ..., WX, y) = 0.

If corey(N) € Q%p, then by |[Lemma 5.16] ng(A) = n + 1 and n;(\) + ne—;(A) = 2n and

the numerator in ([5.4.36)) is the same as:

A+ A) )
2t" sgn(oy)(—=1) " Vdet | ———— | x det ( wijAjA- + wt_ijA? ) . (5.4.38)
BS‘ —I—BS‘ 1<i,j<t—1

The last matrix in ([5.4.38]) is II3 defined in (5.4.31]). Using [Corollary 5.32 we see that

the numerator is

A+ A)

2t" sgn(oy ) (—1) Vs (det T)" det
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By (5.2.14) and (2.4.8)), we note that

det (A’% + fl’})

2

det (A% + flg)

(t/2)
= (—1)22' A SO)\(t/2)(_Xt).

So, applying (5.2.18)) and [Lemma 5.22| the ratio of (5.4.39) and ([5.4.37)), the required

even orthogonal character is

1
=] )T A _ it
(1) sgn(ox)of© (X H S (3) (X! X (=1) sozwz2 (—X') t even,
= 1 t odd,
where

=1 nn+1) |7 2 (V) —n) teven,

€3 = Ty =P

2 2
0 t odd (5.4.40)

|5
‘ <nt_i(A><nt2_z-<A> -1 n<n2— 1>> |

If no(A) = n, then the numerator is

2t" sgn (o) (—1)Y det (A) + Ap) x det

(w' AJA- + Wt A?)

1<i,j<t—1

The last matrix is the same as Az defined in (5.4.33). We use [Corollary 5.33| to factorize
the determinant. If core;()\) € Q2 1. for all k € [rk(core;(A))], then by |Corollary 5.19)
holds. Case 1. t is even and ig = 5. Then nys(A) = n + 1 and using
lary 5.33] the factorization for the numerator is

Sy,
poler >
+
ool
[NIENT
T

w@mmqwﬂm@wwm(%+@)w‘———f det

o
NI
_|_

|
N+ >~
)
l
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By [Lemma 5.24; we have

- 1 nei)  _t—) T _
+A%> = 5 det(@l" ) + N (i + 2. (5.4.42)

t
2 .
i=1

det (A

Substituting in (5.4.37)), the denominator is

Ao+ Ao
(1 + Gpar )" sgn (o) (—1) D+ (det )" det | ———
By + By
[%J 1 ) Lo
< | det x5 det(z" ) + "N (i + 27?).
q=1 =1

(5.4.43)

By (5.2.14)) and (2.4.8)), we note that

B} + B}
2 2
det
Ay + A (t/2)
5 —— = ()N (Y 4 ) sorem (X, ).
By + By
[T (i + 2%) det
AO + f_lo

Note that Ayyq is zero iff A, Hence, using (5.2.14), [Lemma 5.22| and the ratio of

(5.4.41)) and (5.4.43)), the even orthogonal character is

(=1 sgn(oa) (572 + 572) oS (XT) () ZA 505002 (X, —y) SV (X', X,

g=1
where
tt—1)nn+1) 9 =
&= S+ _tz (V) |+ Dt = Dn(ni()) - n)
i=t+1—ig ZZ[%J
N (nt—q(A)(nt—q(A) —1) nln-— 1))
* 2 2
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Case 2. ig # % In this case, the factorization for the numerator is

B) + B} | B}, + B},
2" sgn (o) (—1) DX (det T)" det ( Ay + A) ) det A} A
A A
Ay A 2n+1x2n+1

12
X H det
q=1

q#io

det(A}, + A},) s even,
1 t is odd.

By [Lemmia 5.2, we have

- H(y —x)(y — ;) det (] + 2777),
i=1

t/2
7

+ 535/2) det(x

),

(2

det D7 | Gl = = 2 - )@ - 7)) | [ - ),

In this case, using |Lemma 5.23| and [Lemma 5.22| the required even orthogonal character

is

(t—ig)

(_1)63 Sgn(d)\)Oi\(’S?(Xt) (y—t(kgt_m)'*‘”(t—io)(A)—n)ﬂ'os @) (Xt, Yt’ yt)_|_yt(>\1 +ni—ip (A)+n)—io

5]

(—1)%s A soywz (—X') tis even,

1 t is odd.

—

o

X Sﬂ(g)(Xt,Yt,gt)> X Sﬂ(g)(Xt,yt) X
'LO K2

7

Sl
S

This completes the proof. n

5.5 Generating functions

We now give enumerative results for (z1, 29, k)-asymmetric partitions defined in ([5.3)).

Proposition 5.34. Fiz z; > 20 = 0 and k = 1. The number of (z1, 22, k)-asymmetric

partitions of m is equal to the number of partitions of m of the form
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2(r—1)+r2r—1,...,2r—1,2r—3,...,2r—3,...,2k—1,...,2k — 1,

J

~~ ~~ ~~
Qr Qr—1—Qr O —CQk+1

%—2,...,2k—2,...,2,...,2,1,....1], (5.5.1)

~ v —_——— ———
Af—1—0k a1 —02 z2
forr =1 and {ay,..., .}~ € Zs.
Proof. Let A = (o, ..., Qp, ..., cp|loq + 21,.. ., Qp + 21, .., 0 + 21, 22) be a (21, 20, k)-
asymmetric partition of m. It is easy to see that the mapping A to the partition in ([5.5.1))
gives the required bijection. O]

[Proposition 5.34| gives an expression for the generating function:

Corollary 5.35.

q(z1 +n)(n—1)+z2+k

Al
2 dM =), 1=¢)- A=) (1 =g 1) (1—¢g> ")

)\egzl,zg,k n=1

Recall, Q

from [Definition 5.3| For z; > 23, let

21 29 l J QZI,ZL

21,22,k

We now enumerate the t-core partitions in Q") 22,0 Y QZ t2..+1- Represent the elements of
755 « {O,...,[t =t =2t 1} by (U,0) = (vo,...,v[t_z_zj,b).
2

2

Theorem 5.36. Fiz 0 < 2+ 2 <t + 2. Define bezl=l by Z;Z =t—2—1—2i. Then

there exists a bijection 1) : QSZ)FQ,O v QS?FQ,ZH ~zI= ]« {0, RPN [%J b=z, 0= 1}

satisfying

DN ey _ _ t—z—1
A = O~ v +{ “ v elt -zt -1l (52,
t(nw\(;)()\) —n)+t—2z—1 otherwise,

where - represents the standard inner product.

Proof. Suppose A\ € Q,(ztlz,o v Qitlg,zﬂ such that ¢(\) < tn + 1 for some n > 1. Then by

Lemma 5.18] there exists a unique ig € [0, | =5 |] U [t — 2, — 1] such that (5.2.3) holds.
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Define the map 1 by

(GO = mi(N) — 1, o<z<v_;‘2|, T = i

Since n is not unique, it is not a priori clear that ¢ is well-defined. But from the definition

of n;(A)), it is easy to see that n;(\,tn+ 1) —n = n;(A\,tn +t + 1) —n — 1. Hence, ()
is indeed well-defined.

To show that 1 is a bijection, we define the inverse of ¢ as follows. For a vector

(0,0) = <vo, . ,Ult7z72J,{)>, let n = max{|v|, |v1],..., v == 2J|} and for 0 <i <t —1,
2
n+ v 0<i<|==], .
m;+1 1=0,
mi=An—v_.1- |5 J i<t—z-—1, andr; =
m; otherwise.
n otherwise,
t—1
By construction, Z r =tn+ 1,
i=0
2n+ 140,20 ifi=0 , t—2z—1
Ty + 11— = T2 for 0<i<|——],
2n otherwise 2
n+1 ifi=7 ‘
and 1r; = for t—z<i<t—1,

n otherwise

By [Lemma 5.18] there is a unique ¢-core \ € Q,(ztiz,o V) QQQ’Z“ satisfying n;(\) = r;. and

we set ¢~ 1(7,0) = X\. Moreover the size of ) is computed as
tn+1
(tn + 1
I\ = Z Bi(A 7). (5.5.2)

Since A is a t-core, tj +1i, 0 < j < ny(A\) — 1, 0 < i <t — 1 are the parts of 5(\) (see

[Proposition 2.3)). So,

tn+1 t—1

n;(A)(ni(A) — 1)t
2@ Z((M)H : )
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Substituting this in (5.5.2]) gives

sziymmm—n»+;<§ymmﬁwﬁ—an_g

= 3L 0n) =) + 5 3, ()~ — 5

Since \ € Qgizo U QQZZ“, using [Lemma 5.18, we have

H
|
—

velt—zt—1 tez=ly
(ns(N) — n)? = 2|7 + 1 — [ o5

i=0 2(ng(\) —n) otherwise,
and
t—1 | =53] . « t—z—1
v velt—z,t—1|uU )
DN —n) = > Qita+1-t)(ni(\)—n)+ [ o=
i=0 =0 t—z—1 otherwise.
Now observe that [
2
b7 = (2 + 2+ 1 —t)(ns(\) — n)
i=0
. =1 U velt—zt—1]u {21,
—b-7="> i(n;(\) —n)— [ Jo =)
i=0 t—2z—1 otherwise.
£ t . 0 velt—zt—1]u {2}
5 24 (mi(A) = n)* - 3= tv]* ~ ‘ ?
i=0 t(ny(A) —n) otherwise.
Hence
v velt—zt—1]u{==],

A = o> =& -7 +
t(ny(A\) —n) +t—2—1 otherwise,

completing the proof. O

Corollary 5.37. There are infinitely many t-cores in QQQ,O U Q,(Ztlz’zﬂ fort = z.



Chapter 6

Skew hook Schur functions and the

cyclic sieving phenomenon

In of this chapter, we consider specialized skew hook Schur (supersymmmet-
ric skew Schur) polynomial hs) (X, wX, ..., 0 ' X/Y,wY,...,w"™'Y), where w*X =
(Wray, .. wh,), WY = (Wryy, ... why,) for 0 < k <t — 1 and give a combinatorial
interpretation of hsy,(1,w?, ..., w1 /1 wd . wdm=1)) for all divisors d of ¢, in
terms of ribbon supertableaux. Then we give a combinatorial proof of the skew Schur
factorization result in [Section 6.2] Furthermore, in we use the combinato-
rial interpretation to prove the cyclic sieving phenomenon on the set of semistandard
supertableaux of shape A/u for odd ¢, and using a similar proof strategy, we give a com-
plete generalization of a result of Lee-Oh [73] for the cyclic sieving phenomenon on the
set of skew SSYT conjectured by Alexandersson—-Pfannerer—-Rubey—Uhlin [6]. A preprint
of this work has appeared on arXiv [71].

6.1 Skew hook Schur polynomial factorization

In this section, we consider the specialized skew hook Schur polynomials. Recall, X =
(x1,...,2Z0n), Y = (¥1,...,Ym) and w is a primitive ¢'th root of unity. We denote our
indeterminates by (X©) /Y @) := (X, wX,w?X, ..., ' X /Y, wY,w?Y,.. ., w7Y).

Theorem 6.1. For k > 0, the complete supersymmetric function Hy(X©) /Y @) is given

by
0 ifk#£0 (mod t),

H(X9/Y) =
He( X/ (=1)YY)  otherwise.

129
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Proof. By (2.5.2), the required complete supersymmetric function is
H (X )y @) Zhl Nep_i (Y. (6.1.1)

By the generating function identities in ([2.2.5)), we have

m

2e¥ g =T [0 +4g)(1 +ywa) .. .(1+ g’ "q)

r=0 i=1

= H (1+ wt(tz 1) f t) . Z e ((_1)tflyt) qbt

b=0

and

= 1 t ¢
Z he(XE) g = H (1—2;9)(1 —zwq)...(1 —xw1q) - Z hn(X)¢’

b=0

On comparing the coefficients, we see that e,.(Y“)) and h,.(X“)) are nonzero if and only

if t divides r. In that case

e (Y®) =e: (-1)7'Y")  and  h (X)) = hs (X7). (6.1.2)

I3

If ¢ does not divide k, then for each I € [0, k], either h;(X®)) or e;_;(Y“)) is zero. This
implies Hy(X® /Y ) = 0. And if ¢ divides k, then substituting the values (6.1.2) in
(6.1.1)), we have

D

Hy(XW/Y©) = hi(Xex (-1)71Y") = He(X*/(=1)1Y").

=0

This completes the proof. n

For a partition of length at most tn, let o) € Sy, be the permutation that rearranges
the parts of S(\) such that

q—1 q
BonpN) =q  (mod 1), Y im(A)+1<j< ) m(N), (6.1.3)
i=0 i=0
arranged in decreasing order for each ¢ € {0,1,...,t — 1}. For the empty partition,

B(,tn) = (tn — 1,tn — 2,...,0) with n,(,tn) =n, 0 < ¢<t—1and

og=(t,....,nt,t—1,....nt—1,...,1,....(n — 1)t + 1), (6.1.4)
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. . . . t(t—1) n(n+1)
in one line notation with sgn(oy) = (=1)" 2z 2

Lemma 6.2 ([77, Chapter 1.1, Example 8(a)]). Let A, u be partitions of length at most
¢ such that p = X\, and such that \/u is a border strip of length t. Then B(u) can be
obtained from B(X) by subtracting t from some part B;(\) and rearranging in descending

order.

Lemma 6.3. Let A and p be partitions of length at most tn such that core;(\)/corey (1)
is empty. Then

sgn(oy) Sgn(gﬂ) = (—]_)Z:BeRib(A/u) ht(B)

Proof. Suppose p is obtained from A by removing a border strip £. By |Lemma 6.2
we see that [(u) can be obtained from [(A) by subtracting ¢ from some part [;(\)

and rearranging in descending order. The height of £ is precisely the number of shifted

transpositions we applied. Proceeding inductively completes the proof. O

By [Proposition 2.3 one can easily see that the holds true.

Remark 6.4. For partitions A and g of length at most tn, core;(\)/core,(p) is empty if
and only if n;(\) = n;(p) for all i € [0, — 1].

Theorem 6.5. Let A and p be partitions of length at most tn. Then the skew hook Schur
polynomial hsA/u(X(“’)/Y(W)) is given by

1. If corei(X)/corey () is non-empty, then

hsy /(X /y @) = 0.

2. If cores(\)/cores(n) is empty, then
t—1

hSA/u<X(w)/Y(w)) = sgn(oy) sgn(o,) H hs ) /00 (X' (=1,

=0

Proof. By the Jacobi—Trudi type identity (2.5.6|) for the skew hook Schur polynomials,

we see that the required skew hook Schur polynomial is
hsy (XY ) = det (Hy—py—iny (X @)Y @) = det(Hg, g, (X /Y ). (6.1.5)

Permuting the rows and columns of the determinant by o, and o, respectively, defined

in (6.1.3), we see that the skew hook Schur polynomial is

sgn(a)\) sgn(au) det ( H/BU)\(i)()‘)_BUH(j)(M) > )

1<i,j<tn
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where H; = H;(X“ /Y @) for all j € Z. By [Theorem 6.1, we have H; = 0 if j = 0

(mod t) and j > 0. Also, H; = 0 if j < 0. Substituting these values in the above

determinant, we see that the skew hook Schur polynomial is

So
5, 0
sgn(oy) sgn(o,) det ' ’
U 5
where
S = <H5§p)(/\)75§p’(u)> 1<i<n,(\) ' P € [0, —1].

1<j<ny(p)

If core; () /core,(p) is non-empty, then by [Remark 6.4} n;(\) # n;(u) for some i € [0,t—1],
then the (i + 1) diagonal block is not a square block. So, hsy/,(X©)/Y®@) = 0. If

coreg(\)/core; () is empty, then again by [Remark 6.4} n;(\) = n;(u) for all 0 <7 <t —1.
Finally, by [Proposition 2.3{and ({2.5.6)),

det(S,) = hsy (X'/(—=1)EDYY).

we get the desired result. O]
Since hsy ., (X/) = sy/u(X), we have the following corollary.

Corollary 6.6. Let A and p be partitions of length at most tn. Then the skew Schur
polynomial sy, (X)) is given by

1. If core () /core () is non-empty, then

SA/M(X(“})) = 0

2. If corey(N)/corey () is empty, then

t—1

SA/M(X(M)) = sgn(ox) sgn(oy,) H SA@ /(0 (X7).

1=0

A generalization of |Corollary 6.6/ to skew characters was discovered by Farahat [36].
He gave an algebraic proof stated in an alternative language of star diagrams. In addition,

a character-theoretic proof is given by Kerber, Sanger, and Wagner in [59]. Furthermore,
Evseev, Paget and Wildon prove the result bijectively [35]. Also, [Theorem 6.5| can be
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derived from using the notion of plethystic difference of variables X and
Y. See [22, 146 [72] for background on plethysm and plethystic notation.

For a ribbon tableau or supertableau S, let Rib(.S) be the set of its ribbons and for
¢ € Rib(95), we define position of £ in the shape of S as

pos(§) = max{j —i|(4,j) € £}.
In [115, Proposition 3.1.2], if we take A = [n] U [m], then we have the following result.

Theorem 6.7. Let A and p are partitions of length at most tn such that core;(\)/core, (1)
is empty and n;(\, tn) = n;(u,tn) = n; for all i € [0,t — 1]. Then there is a bijection
between the set of standard t-ribbon supertableauz S of shape \/u with entries in [n]u[m],
and the set of t-tuples (So, S1,...,Si—1) of standard supertableauz, where S; has shape
AD /@ and the sets of entries of the S; are mutually disjoint. If x is a square of
MO /D then Si(x) = S(€) for a & € Rib(S) with pos(€) = t(pos(x) + n; —n) + 1.

For a bijection similar to the above theorem involving semistandard supertableaux,
without the condition of disjointness on entries, we define a standardisation of semis-
tandard supertableau. The standardisation of a semistandard supertableau is a standard
supertableau obtained from it by renumbering its entries such that the relative order of
distinct entries is preserved, and equal unprimed and primed entries are made increasing
from left to right and top to bottom respectively. It is well defined since the ribbons
with same entries have distinct positions and ordering them by increasing position (for
unprimed entries) and decreasing position (for primed entries) gives a valid standard
supertableau. See for an example of standardisation. Therefore, we have the

following generalization of [115, Proposition 3.2.2]

3 3
1 1

2 3 2 Py
3 2 4 P

Figure 6.1: semistandard 3-ribbon supertableau and its standardization

Theorem 6.8. There is a natural bijection between the set of semistandard t-ribbon
supertableauz T of shape \/u, and the set of t-tuples (Ty, T1,...,Ti—1) of semistandard
supertableauz, with T; of shape N /u® | and [._) wt(T;) = wt(T).
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Proof. 1t is sufficient to show that the T; are semistandard supertableaux, and that the
map is invertible. Let z,y € A®/u®@ such that T;(x) = Ti(y) and S;(z) < S;(y), and are
unprimed. Suppose £,& € Rib(S) = Rib(T) by S(§) = S;(z) and S(¢') = S;(y). Then
T (&) =T(&'), so that pos(§) < pos(£’), while pos(§) = pos(¢’) =i (mod t); therefore by
Theorem 6.7, we have pos(z) < pos(y). Similar argument holds if T;(z) and T;(y) are
primed. So, T; is semistandard. For invertibility we need to order all the occurrences of
the same entry in any of the tableaux 7; , in order to determine the .S; ; makes clear that
these occurrences T;(x) should be ordered by increasing value of t(pos(x) + n; —n) + i
if T;(x) are unprimed, and by decreasing value of t(pos(x) + n; — n) + i if T;(z) are
primed. O

As an example, the semistandard 3-ribbon tableau and its standardisation displayed

in [Figure 6.1| corresponds to

1|3 1712 X 113 12
213 3 2|4 4

Corollary 6.9. Let A and u be partitions of length at most tn. Then for all divisors d|t,

L

HhS)\(t)/#(z) X /Yt Zwt

1=0

where R runs over the set of é—m’bbon supertableaux of shape \/p filled with entries
[dn] U [dm].

Remark 6.10. Let A and p be partitions of length at most ¢n such that core;(\)/core, ()

is empty. If sgn(oy) = sgn(o,), then by |Corollary 6.6 and [Corollary 6.9 at X =
(1,...,1), Y = ¢, for all divisors dt, sy, (1,w? ... ,w?™=V) is the number of -
ribbon tableaux of shape A/u filled with entries [dn]. Moreover, if ¢ is odd, then
hsy /(1 w?, . w0 /1wt w1 s the number of L-ribbon supertableaux of

shape \/p filled with entries [dn] U [dm], for all d|t.

Corollary 6.11. Suppose t is prime. Let ¢y, (r,s) be the number of r-ribbon tableauz
of shape N/ filled with entries in [s]. Then ¢y, (1,tn) — ¢y, (8, n) is a multiple of t.

Proof. If core(A\) + corey(u), then by [Definition 2.12, ¢,/ (t,n) = 0. By (2.3.8)), we

have

tn—l) _ Z WZ?SJ (n2+it(T)+2n3+it(T)+...+(t71)n(i+1)t(T)) —0,

TeSSYTyn (M 1)

Sayp(liw, .. w
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where the second equality uses |Corollary 6.6/at X = (1,...,1). Since 3'_, a;w’ = 0 for

some a; € Z implies a; = ¢ for all 4, ¢,/ (1,%n) is a multiple of ¢ and the corollary holds.

If core;(\) = core(p), then by [Remark 6.10

Gaju (1,t1) — Py (t, 1)

— Z (1 _ sgn((f)\) Sgn(gu)WZ?;J (n2+it(T)+2n3+it(T)+"'+(t_1)n(i+1)t(T))) ]
TeSSYTen (M p)

Since ¢y, (1,tn) — ¢x/ (t,n) is an integer, and Sl aw' = 0 for some a; € Z implies

a; = c for all i, ¢/, (1,tn) — ¢/, (t,n) is a multiple of ¢. This completes the proof. [

Remark 6.12. A result similar to|Corollary 6.11] holds for the number of supertableaux.

Suppose ¢ is an odd prime. Let ¢5/,(r, s/u) be the number of r-ribbon supertableaux
of shape \/p filled with entries in [s] U [u]. Then 1y, (1,tn/tm) — ¥y, (t,n/m) is a
multiple of ¢.

6.2 Combinatorial proof of skew Schur factorization
at t =2

We now give a combinatorial proof of the [Corollary 6.6 when ¢ = 2. We recall the
definition of domino tableau and coverable tableau from [Remark 2.13|and [Definition 2.15
respectively. For a domino tableau D € D,(\/u), let XP = 231 23% 224 here d; is

the number of dominoes filled with the entry .

Theorem 6.13 ([115, Corollary 3.2.3]). Let A and u be partitions of length at most 2n.
Then

S)\<0)/M(0) (X2>8>‘(1)/N(1) <X2) = 2 XD,
D

where D runs over the set of domino tableauz of shape \/u.

Proof of [Corollary 6.6 The required skew Schur polynomial is given by

Syu(X,=X) = (X, -X)",

T

where the sum is over all semi-standard Young tableau T" of shape A/p filled with entries
in {1,2,...,2n}. Suppose Co,(N/it) be the set of coverable tableaux of shape \/u filled
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with entries in {1,2,...,2n}. Then

Syu(X, —X) = (X, -X)T + (X, —X)T. (6.2.1)
TeCon (M 1) T¢Con (M 1)

By [Lemma 2.T8] we have
(X, -X)T =0.
T¢Con (M 1)
If cores(A\/p) is non-empty, then Co,(M\/p) = &. So, by (6.2.1)), syu(X,—X) = 0.
Otherwise, by [Lemma 2.16| we have

Z (X, - X)) = Z (1)) XP — sgn (o)) sgn(aM)ZXD,
TeCon (M) DeDn(M\p) D

where the last equality comes from for ¢ = 2 and [Lemma 6.3] Then using
[Theorem 6.13| completes the proof. O

6.3 Cyclic sieving phenomenon

Let C; be the cyclic group of order ¢ acting on a finite set X and f(¢q) a polynomial with
nonnegative integer coefficients. Then the triple (X, Cy, f(q)) is said to exhibit the cyclic
sieving phenomenon (CSP) if, for any integer k > 0,

{ze X |o" o =2} = f(wh), (6.3.1)

where o is a generator of C,, and w is a primitive ¢!

root of unity.
Theorem 6.14. [95, Theorem 11.1] The triple
(SSYTen((k)), Ci, hi(L g, q"™ )

exhibits the cyclic sieving phenomenon. If, in addition, t is odd then the triple

<<[tl:‘]), oy ex(l,q, ... ,qt”_1)>
[tn]

where ( & ) is the set of k-element subsets of [tn], exhibits the cyclic sieving phenomenon.

By [73l Remark 3.3] and ({2.5.2)), we have the following corollary.
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Corollary 6.15. Ift is odd, then
(SSYTtn/tm((k>>7 Cta Hk(]-7 q,... aqtn_l/la q,.- .. 7qtm_1))
exhibits the cyclic sieving phenomenon.

Lemma 6.16. [J, Theorem 2.7] Suppose f(q) € Zsolq] and f(w?) € Zsq, for each
jed{l,... . t}. Let X be any set of size f(1). Then there exists an action of the cyclic
group Cy of order t on X such that (X, Cy, f(q)) exhibits the cyclic sieving phenomenon
if and only if for each dlt,
=i (6.3.2)
Jld

for some nonnegative integers c;.

Recall the definition of oy from (6.1.3]).

Theorem 6.17. Let A\ and p be partitions of length at most tn such that sgn(oy) =
sgn(o,). Then there exists an action of the cyclic group C; of order t such that the triple

(SSYTtn(A/M>7 Ct7 S)\/M(17 q, ... 7qtn_1)) (633)

exhibits the cyclic sieving phenomenon.

Proof. Let f(q) = sxu(l,q,...,¢" ). Since f(q) is given by ([2.3.8), f(q) € Z=o| ] By
Lemma 6.16] it is sufficient to show for each d|t there exists ¢; = 0 such that (

holds.

We prove this by induction on t. If t = 2, then take ¢; = ¢5/,(2,a) and 2¢c; =
dru(1,2a) — dx/u(2,a) = 0, as derived in [Corollary 6. 11| at t = 2. Assume that the result
holds for all positive integers less than ¢. Fix ¢. If A\/u = (k), then by [Theorem 6.14] m and

Cetmma 618 for all df

hk(lawda" dltm= 1 Z]a]>

jld
for some non negative integers &?. Since (ij]) (quj) = erj, where r; =
jld Jjld jld
Z i(piq; + pjqi), by the Jacobi-Trudi identity (2.3.9)), for all d|t, we see that

ild,i<j

f(w?) = det <2ja§‘iujiﬂ) = chj. (6.3.4)

jld jld
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Therefore,
Fa)=Ye+g¢ +--+¢) (mod ¢ —1).
Jlt
Since f(q) € Z=o|q], ¢ = 0. Fix d < t. Then by |Corollary 6.6/at X = (1,...,1),
d
0 coreé()\) + coreg(,u),
flw) =< (6.3.5)
H Sx@ /i (L, -+ -5 1) coreé()\) = Coreé(,u).
Since d < t, by inductive argument, for all e|d and i € [0, % — 1],
SN /i) (1, whed ,wte(d”_l)/d) = Zjdy), (6.3.6)

jle

for some nonnegative integers dg-i). If coreg(A) = core

and substitute in (6.3.5)) to get

Fe®) = | (&dﬁ“) =Y jc,

i=0 jld jld

(1), then take e = d in (6.3.6))

t
d

where the last equality uses (6.3.4). The uniqueness of ¢; implies ¢; > 0 for all j|d. This
completes the proof. n

We now state our final result and give a sketch of the proof following similar ideas as
in the proof of [Theorem 6.17]

Theorem 6.18. Suppose t is odd. Let A and p be partitions of length at most tn such
that sgn(oy) = sgn(o,). Then there exists an action of the cyclic group Cy of order t
such that the triple

(SSYTtn/tm<)\//'L)7 Ct7 hs)\/u(la q,... 7qtn71/17 q,--. 7qtm71))

exhibits the cyclic sieving phenomenon.

Proof. Tet £(g) = bsyu(La,,q"/1,q,...,¢"™ ). Since f(q) is given by (Z53),
f(q) € Z=0lq]. We apply |[Lemma 6.16| to prove the result.

The proof proceeds by induction on ¢t. If ¢ = 3, then take ¢; = 9,,,(3,a) and

3cg = Ya/u(l,3a) —¥yu(3,a) = 0, as in [Remark 6.12/at ¢ = 3. Assume that the result
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holds for all odd integers less than ¢. Fix ¢t. If A/u = (k), then by [Corollary 6.15 and

Lemma 6.16], for all d|t,

Hy(1,w?, .. w1 o dltm=1) Zjaj,
Jld

for some non-negative integers a . Then by the Jacobi-Trudi identity ({2.5.6} , for all d|t,

we see that
Flw?) = det <Zja;‘iﬂji+j) - chj. (6.3.7)
jld jld
Therefore,
f(q) EZCJ<1+Q§ ++q§(ﬂ_1)) (mOd qt—l)
Jlt
Since f(q) € Zsolq], ¢ = 0. Fix d < t. Then by [Theorem 6.5, at X = (1,...,1) and
d
Y =(1,...,1), we have
&V_J
dm
0 coreé()\) + coreé(,u),
Flw?) = { ot (6.3.8)
Hhs)\( /0 ( 1/1 1) Core%()\) =core§(,u).

dn dm

Since d < t and d is odd, by inductive argument, for all e|d and i € [0, £ — 1],

hs ) /00 (1,wte/d, - ,wte(d”_l)/d/l, wheld L gteldm= 1)/d Zjd] , (6.3.9)

Jjle

for some nonnegative integers dg-i). If core%(k) = coret (i), then take e = d in
and substitute in (6.3.8) to get

Qe

1 (m@) e,

=0 \ j|d jld

where the last equality uses (6.3.7). The uniqueness of ¢; implies ¢; = 0 for all j|d. This
completes the proof. n
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