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Abstract

The main aim of this thesis is to study the correlations in multispecies exclusion processes
inspired by the research of Ayyer and Linusson (Trans. AMS., 2017) where they studied
correlations in the multispecies TASEP on a ring with one particle of each species. The
focus is on studying various models, such as multispecies TASEP on a continuous ring,
multispecies PASEP on a ring, multispecies B-TASEP and multispecies TASEP on a ring
with multiple copies of each particle. The primary goal is to investigate the two-point
correlations of adjacent particles in these models. The details of these models are given
below:

We study the multispecies TASEP on a continuous ring and prove a conjecture by Aas
and Linusson (AIHPD, 2018) regarding the two-point correlations of adjacent particles.
We use the theory of multiline queues developed by Ferrari and Martin (Ann. Probab.,
2007) to interpret the conjecture in terms of the placements of numbers in triangular
arrays. Additionally, we use projections to calculate correlations in the continuous mul-
tispecies TASEP using a distribution on these placements.

Next, we study the correlations of adjacent particles on the first two sites in the
multispecies PASEP on a finite ring. To prove the results, we use the multiline process
defined by Martin (Electron. J. Probab., 2020), which is a generalisation of the multiline
process defined earlier by Ferrari and Martin.

We then study the multispecies B-TASEP with open boundaries. Aas, Ayyer, Linus-
son and Potka (J. Physics A, 2019) conjectured a formula for the correlations between
adjacent particles on the last two sites in the multispecies B-TASEP. To approach this
problem, we use a Markov chain that is a 3-species TASEP defined on the Weyl group
of type B. This allows us to make conjectures and prove some results towards the above
conjecture.

Finally, we study a more general multispecies TASEP with multiple particles for each
species. We extend the results of Ayyer and Linusson to this case and prove formulas for
two-point correlations and the TASEP speed process.
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Chapter 1

Introduction

This thesis focuses on the study of two-point correlations in different types of multispecies
asymmetric simple exclusion processes (ASEPs) using probabilistic and combinatorial
methods. The exclusion process is a simple yet fundamental model that describes the
probabilistic movement of particles on a lattice, where each site can be occupied by at
most one particle. It is a Markov process where the transitions are defined by letting the
particles jump or swap randomly according to certain stochastic rules. In an ASEP, the
rates at which they move to the left and right are different. When particles are biased to
move only in one direction, we refer to the model as a totally asymmetric simple exclusion
process or a TASEP, due to the extreme asymmetry. Exclusion processes are investigated
in many different settings, and many of their properties are of interest to probabilists,
combinatorialists and statistical physicists. One such property is the correlation of two
or more particles in the stationary distribution of a process. This line of study was
initiated by Ayyer and Linusson [20] where they studied correlations in the multispecies
TASEP on a ring in order to prove conjectures by Lam [71] on random reduced words in
an affine Weyl group. In particular, they gave results on the correlations of two adjacent
points in the multispecies TASEP on a ring. We extend their results in a few different
directions in the next few chapters.

Exclusion processes are an example of a commonly studied class of Markov chains
known as Interacting Particle Systems [48, 75, 76]. In a seminal work in 1970, Frank
Spitzer [94] introduced many different models of interacting particle systems namely the
exclusion process, zero-range process, contact process, voter model, long-range exclusion
process and so on. We work with the exclusion processes in one dimension. We begin
by surveying related works in this chapter while discussing some of the applications of
ASEPs in other areas. Later, we give an overview of the organisation and the layout of
the thesis.

1



2 1. Introduction

1.1 Brief Literature Review

This section highlights key findings in the study of exclusion processes. The Asymmetric
Simple Exclusion Process (ASEP) is a fundamental model that simulates the movement
of particles on a lattice, and it has been widely explored in many variations. The earliest
known publication of the ASEP was by MacDonald, Gibbs, and Pipkin in 1970 as a
prototype to model the dynamics of ribosomes along RNA [77]. The model’s simplicity
and generality make it a valuable tool for understanding the behaviour of a wide range of
systems, while its rich macroscopic behaviour makes it an interesting subject of study in
its own right. Many techniques to solve the exclusion process have been developed and
exact results have been derived since its introduction. The term Exclusion Process was
coined by Spitzer [94] and the word “exclusion” refers to the constraint that there can be
at most one particle at each site of the lattice. The sites that are empty are also referred
to as holes. An exclusion process is simple if each jump of any particle is to an adjacent
site on the lattice. If the particles prefer to jump in a particular direction, the model is
known as an asymmetric exclusion process. In other words, in an ASEP, particles can
carry out forward exchanges with holes at a rate of p and backward exchanges at a rate
of q where 0 ≤ q < p ≤ 1. Depending on the value of q, an ASEP can be of two kinds;
totally asymmetric exclusion process or TASEP where q = 0 and p is usually scaled to 1
and partially asymmetric exclusion process or PASEP where 0 < q < p. An exclusion
process is called a symmetric simple exclusion process if p = q.

Depending on the requirements of the model, the asymmetric simple exclusion process
can be subjected to different boundary conditions. The two main boundary conditions
are open boundaries and periodic boundaries. In an open ASEP, particles can enter and
exit the system at the ends of the lattice. From a physicist’s point of view, models
that are defined on lattice paths with open boundaries connected to reservoirs, that
allow for the exchange of particles, are considered to be more realistic. A common
illustration of such a system is a pipe connecting two or more reservoirs at different
temperatures or chemical potentials. The exact solution of the single species TASEP
with open boundary conditions was determined in 1993 by Derrida, Evans, Hakim and
Pasquier [40] using a technique called matrix product ansatz. Independently, Domany and
Schutz [91] derived the exact phase diagram of the same model using recursion relations
on the size of the system. The seminal contributions of the discovery of boundary-induced
phase transitions in the open exclusion process by Ferrari and Krug [66] and later, of the
matrix ansatz solution [40] have significantly advanced the field. The matrix product
formulation of the steady state on the open boundary system for the single species
PASEP has also been fully worked out [25, 87]. Appropriate representations relevant to
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the matrix product ansatz for these variants were also studied in [49, 86]. Other notable
contributions towards the single-species exclusion process with open boundaries can be
found in various references; see [38, 99].

For the periodic boundary variation of the ASEP, the particles move on a lattice
of finite size and the number of particles is conserved. A single species ASEP on a
periodic boundary has a uniform stationary distribution. The 2-species asymmetric
exclusion process is a generalisation of the single-species ASEP where there are two
kinds of particles occupying the sites of the lattice such that there is at most one particle
at each site. Much of the early investigation towards the solution of the 2-species TASEP
was done with the motivation to study the shock measures in various particle systems [51,
53, 55, 93]. The steady-state distribution of the two-species exclusion process on a ring
Z/nZ, also known as exclusion process with periodic boundaries, was obtained by Derrida,
Janowsky, Lebowitz and Speer [43] using the matrix product representation introduced
in [40]. The exact solution was generalised to different models of the ASEP namely
with impurity [78] and to infinite systems [44]. The 3-species TASEP on a ring was also
studied and solved exactly by Mallick, Mallick and Rajewsky [79] using a matrix ansatz.
Combinatorially, the stationary distribution for the 2-type TASEP was described around
the same time both by Angel [8] and by Duchi and Schaeffer [47]. Ferrari and Martin [56,
57] improved these by constructing multiline queues as a device to study the TASEP with
multiple species of particles by using ideas from Ferrari, Fontes and Kohayakawa [54].
The construction of Ferrari and Martin inspired the later works where their algorithm
was transformed into a matrix product representation of the multispecies TASEP [11, 50].
In 2009, the exact solution for the stationary state measure for the PASEP on a ring with
multiple species was found by Prolhac, Evans and Mallick [83]. This was achieved by
extending the matrix-product representation from [50] to q > 0. For periodic boundary
conditions, the matrix ansatz was developed for the multispecies PASEP in [12] as well.
Using the matrix representation, the probabilistic construction of Ferrari and Martin [57]
was also generalised to the multispecies PASEP by Martin [80] by providing a recursive
construction of the stationary distribution. Ferrari and Martin’s multiline queues have
been widely utilised by researchers to demonstrate nice properties in many different
models of exclusion processes. The recursive approach to the construction of multispecies
particle systems has been extended to a range of different particle systems, including
discrete-time TASEPs [11, 81], inhomogeneous versions of the multi-type TASEP [15,
19, 27], and a variety of zero-range processes [21, 22, 68, 69, 70]. Many different properties
of the multispecies TASEP on a ring have been explored further; see [4, 5, 20].

Among the open boundaries, the ASEP with semipermeable boundaries is an inter-
esting class on its own. Here, different passage rules are applied to different particle
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types, and no species is allowed to pass through both boundaries. The boundaries in
the semipermeable ASEP exhibit a property known as integrability, which is useful for
deriving the matrix product ansatz. The exact solution was derived by Arita [9, 10] in
2006 for the case of 2-species totally asymmetric exclusion process with semipermeable
boundaries. Later, Ayyer, Lebowitz and Speer [17, 18] explained additional properties
of the phase diagram of this model. The phase diagram for a more general version of
the semipermeable ASEP was derived with the help of matrix ansatz and the appropri-
ate representation in terms of orthogonal polynomials [98] and in terms of Koornwinder
polynomials [28]. The two-species TASEP with open integrable conditions was discussed
and solved in [34, 35]. The multispecies version of the semipermeable model was further
investigated in [23, 30, 58]. Recent publications by Aas, Ayyer, Linusson and Potka [1, 2]
also study a variant of the multispecies TASEP on finite sites with open boundaries.

Lam [71] studied Markov chains that can be represented geometrically as random
walks on a regular tessellation of a vector space with the action of an affine Weyl group.
In the case of a symmetric group Sn, Lam and Williams [72] showed that the Markov
chain can be interpreted as a process on permutations of n elements. Ayyer and Linus-
son [19] demonstrated that the Markov chain studied by Lam and Williams is equivalent
to a multispecies TASEP with inhomogeneous transition rates. Arita and Mallick [15]
furthered their work by constructing a matrix product solution of the system. These
developments highlight that techniques developed in non-equilibrium statistical mechan-
ics to study the ASEP can be applied to combinatorial problems and vice-versa. The
connections of exclusion processes to families of symmetric polynomials such as Schu-
bert polynomials and Macdonald polynomials have been explored by various authors
in works like [27, 29, 32, 33, 64] using objects related to the multi-line diagrams. The
ASEP speed process is studied in [6, 7] by considering an infinite volume limit of the
multispecies ASEP.

ASEPs have been studied from several other perspectives, and the different physical
properties of an exclusion process have been investigated. Some of the properties that
are of interest are diffusion constants [36, 42], current fluctuations [39, 52, 84, 97], in-
tegrability [26, 59, 58], correlation functions [4, 7, 20, 41, 100], phase diagrams [1, 10],
certain large deviation functions [37, 46, 45] and mixing times [61] on different models.
Spectral properties of a few models are discussed in [3, 14, 27].



1.2. Applications of exclusion processes 5

1.2 Applications of exclusion processes

The ASEP model is able to capture the essential features of a wide range of physical and
biological systems, such as the transport of particles in a crowded environment, and the
flow of traffic on a highway. The asymmetric simple exclusion process has been widely
used in various fields of research, including physics, biology, and computer science.

1. The ASEP is a widely studied model in the field of physics, particularly in the
context of statistical mechanics and condensed matter physics. It finds application
in the study of driven diffusive systems [67] and spin chains [73]. Fast ionic con-
ductors were modelled as stochastic lattice gas with excluded volume interaction
in [63].

2. The ASEP is a useful model for studying transport flow in various systems. The
multispecies version allows for different treatment of different classes of vehicles on
a single-land road [62]. Other biological and physical transport phenomena like ant
trails, pedestrian dynamics and intracellular transport can also be modelled using
exclusion processes [31, 88, 101].

3. The ASEP has proven to be a valuable tool for understanding the dynamics of
many biological systems including the movement of ribosomes along an RNA
molecule [77], movement of motor proteins along a microtubule (also called molec-
ular motors) [65], DNA replication [90], cellular automata [13, 89] and transport
of neurotransmitters [92, 96].

4. ASEPs are used in other branches of mathematics. Queueing systems can also be
modelled using the ASEP [16, 82]. The exclusion process can be used to study some
variations of card shuffling models [24]. The growth process of n-core partition, a
special class of integer partitions has also been understood in connection to the
multispecies TASEP [20, 71].

1.3 Organisation of the thesis

We are motivated by the work of Ayyer and Linusson [20] to study different models
of exclusion processes and find correlations of adjacent particles. In this thesis, we
study different models of multispecies asymmetric exclusion process, namely multispecies
TASEP on a continuous ring, multispecies PASEP on a ring, multispecies B-TASEP and
multispecies TASEP on a ring with multiple copies of each particle. Our goal is to study
the two-point correlations of adjacent particles in these models.
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We use the theory of multiline processes to study the distribution of exclusion pro-
cesses. This is done by utilizing a procedure known as lumping which projects a larger
Markov process to a smaller Markov process, the latter being an exclusion process for
our case. The organisation of the thesis is as follows:

In Chapter 2, we discuss the background material required for this thesis. We first
discuss the probabilistic prerequisites including the basic theory of Markov processes
and stationary distributions. We briefly describe the lumping process and explain the
exclusion process in detail. This is followed by discussing the algebraic combinatorics
techniques that we use in our proofs.

In Chapter 3, we prove a conjecture by Aas and Linusson [4] on the two-point cor-
relations of adjacent particles in a continuous multispecies TASEP on a ring. We use
the theory of multiline queues as devised by Ferrari and Martin [56, 57] to interpret
the conjecture in terms of placements of numbers in triangular arrays. Further, we
use projections to calculate correlations in the continuous multispecies TASEP using a
distribution on these placements.

Following the combinatorial analysis of the multiline queue construction for the
TASEP [20], it is natural to explore whether an analogous application of appropriate
multiline queues could lead to similar results for multi-point probabilities for the par-
tially asymmetric case. In Chapter 4, we solve this problem of correlations of adjacent
particles on the first two sites in the multispecies PASEP on a finite ring. We use the
multiline processes defined by Martin [80], the dynamics of which also depend on the
asymmetry parameter q, to compute the correlations.

In Chapter 5, we study the correlations of adjacent particles on the last two sites in
the multispecies B-TASEP. We use another Markov chain which is a 3-species TASEP
defined on the Weyl group of type B, similar to the 2-species B-TASEP studied in [2]
to give some results and conjectures towards the aforementioned correlation functions.

Ayyer and Linusson [20] studied the correlations of two or more particles in the mul-
tispecies TASEP on a ring with finite sites. In particular, they studied the correlations
of the first two sites on the ring which has exactly one particle of each type. Finally,
in Chapter 6, we extend their result to the multispecies TASEP such that there is an
arbitrary number of particles of each type.



Chapter 2

Preliminaries

In this chapter, we lay out the basics required for the thesis. In Section 2.1, we review
the basic concepts of Markov processes on finite state spaces and introduce the sta-
tionary distribution and correlation function for these processes. We also discuss some
classic methods used in probability theory. Section 2.2 is dedicated to the algebraic
combinatorics methods we use to prove our results.

2.1 Probability Theory Background

In this section, we discuss Markov processes with finite state space. We state a few
results which will be helpful in the later chapters. Most of the notation in this section is
borrowed from [74] and [85].

2.1.1 Markov processes

Consider a stochastic process {Xt, t ≥ 0} where Xt takes values from a set Ω of non-
negative integers. Ω is called the state space of the process. If Xt = i, for some t then
the process is said to be in state i at time t.

Definition 2.1. Let Ω be a finite set.The process {Xt, t ≥ 0} is said to be a continuous-
time Markov process with state space Ω if for all s, t ≥ 0 and i, j ∈ Ω,

P{X(t+s) = j|Xs = i, X(u) = x(u), 0 ≤ u ≤ s} = P{Xt+s = j|Xs = i}, (2.1.1)

where x(u) are non-negative integers for u ∈ [0, s].

Equation (2.1.1), also known as the Markov property, means that a future state is
dependent on the present state only and not on any past state. The quantity in (2.1.1)

7
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is denoted by Pt(i, j). For all i, j ∈ Ω, let qij denote the rate of transition of the process
from j to i. The transition rate matrix Q = (Q)i,j is defined as

(Q)i,j =

qij, i ̸= j,

−∑
k ̸=i qki, i = j.

The Markov process X(t) is said to be irreducible if

Pt(i, j) > 0, for all i, j ∈ Ω and t > 0.

Let Π = (Πi; i ∈ Ω) denote the long-term probability of being in state i, where Πi ≥ 0
for all i and ∑i Πi = 1. The vector Π, provided it exists, is also known as the stationary
distribution of the process, and it satisfies the equation ΠQ = 0. An irreducible Markov
process has a unique stationary distribution.

2.1.2 Projection of chains

In probability theory, it is fairly common to create a new Markov process from an existing
one through a process called projection or lumping of chains. Consider a Markov process
X = {Xt, t ≥ 0} with state space Ω and transition matrix P such that there is an
equivalence relation ∼ that partitions Ω into equivalence classes. Let [x] denote the
equivalence class of x ∈ Ω such that P(x, [y]) = P(x′, [y]) for x ∼ x′, y ∈ Ω. Then, [X] is
a Markov process with Ω̃ = {[x] : x ∈ Ω} as its state space (see [74, Lemma 2.5]). The
transition matrix for the new Markov process is given by P̃ where P̃([x], [y]) := P(x, [y]).
We use this technique extensively in the following chapters of this thesis to prove our
results.

2.1.3 Exclusion Process

We focus on the study of the one-dimensional asymmetric exclusion process. This process
can be modelled on a path graph or a cycle graph with the constraint that there is at
most one particle at each site. The empty sits are called holes. The particles move
according to certain rules, such that they can hop to a neighbouring empty site but not
occupy the same site. This is illustrated in Figure 2.1 for a path and a cycle graph. The
rates at which these transitions occur are given by p, when the particle moves left (or
clockwise) and q, when the particle moves rightwards (or counterclockwise).

In a multispecies exclusion process, the particles have a certain hierarchy, charac-
terized by an integer labelling each particle. This label is known as the type or the
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Figure 2.1: Transitions in an asymmetric exclusion process.

species of the particle. The ASEP with particles of types {1, . . . , N} (along with empty
sites or holes) can be viewed as a coupling of N one-type ASEPs. Specifically, for any
n = 1, . . . , N , we can consider a projection under which types r ≤ n are considered
“particles” and types r > n are considered “holes” or “vacancies”. For each n, the image
of the process under this projection is a one-type ASEP. The state of the system at any
given time is defined by the configuration of labelled particles and vacancies on the sites
of the lattice. The vacant sites can be treated as particles with the highest label. Each
particle carries an exponential clock which rings with rate 1, and the particle tries to
jump to its neighbouring site whenever the clock rings. Let the former site be occupied
with a particle labelled i and the latter be with a particle labelled j. The interactions
happen with rates given as

ij → ji with rate

p, if i > j,

q, if i < j.

The exclusion process where the particles jump only in a preferred direction (towards
the right in this case) with the rate 1 is known as totally asymmetric exclusion process
or TASEP in short. That is, the TASEP is a special case of the ASEP with p = 1 and
q = 0. For the multispecies case, if the site towards the right of a higher particle is
occupied by a particle of lower species, the two particles exchange places with rate 1
(note that the holes are treated as particles of the highest type). The TASEP is known
to be irreducible and therefore has a unique stationary distribution.

On the other hand, in a partially asymmetric exclusion process or PASEP, particles
can jump both to the right (with rate p scaled to 1) and to the left (with rate q ∈ (0, 1)).
In the multiple species case, a particle labelled i switches position with a particle labelled
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j on its right with rate 1 if i > j, and with rate q if i < j. The rate q is called the
asymmetry parameter of the PASEP.

A multiline process is also a Markov process defined on a structure which is a collection
of disjoint path graphs or cycle graphs of the same length. It can also be seen as a stack
of these graphs with particles occupying some of the sites on the graph. These structures
are known as multiline queues (or MLQs). The multiline process can be projected to the
multispecies exclusion process by lumping.

2.2 Algebraic Combinatorics Background

In this section, we see some of the key concepts from combinatorics that are useful in
our thesis. We discuss topics like Young tableaux and their enumeration. Most of our
notation is borrowed from [95].

2.2.1 Standard Young tableaux

Recall that Sn is the group of all bijections or permutations on [n] := {1, . . . , n}.

Definition 2.2. A partition λ of a positive integer n is defined as a weakly decreasing

sequence (λ1, λ2, . . . , λℓ) of positive integers, called parts, such that
ℓ∑

i=1
λi = n. It is

denoted as λ ⊢ n or n = |λ|.

Definition 2.3. Let λ = (λ1, λ2, . . . , λℓ) ⊢ n. The Young diagram of a partition λ is
an array of ℓ left-justified rows of boxes with λi boxes in the ith row. The following is a
Young diagram of shape (5, 3, 1) ⊢ 9.

Definition 2.4. A standard Young tableau or an SYT of a shape λ is a filling of a Young
diagram of λ with integers 1, 2, . . . , n in such a way that the entries are strictly increasing
along each row and column.

Example 2.5. Let λ = (5, 3, 1) be a partition of 9. The following is an example of a
standard Young tableau of shape λ.

1 2 5 6 9
3 7 8
4
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Definition 2.6. The hook of a box a in a Young diagram is defined as the set of boxes
directly to its right and directly below it, including itself. The hook length of a, denoted
by ha, is the number of boxes in the hook of a.

Example 2.7. The following is the Young diagram of shape λ = (5, 3, 1) with the
respective hook lengths stated in each box.

7 5 4 2 1
4 2 1
1

The set of all standard Young tableaux of a given shape λ is denoted by tab(λ) and the
cardinality of this set is denoted by fλ. For example, f(3,2) = 5 and all the standard
Young tableaux of shape (3, 2) are shown in Figure 2.2 below.

1 2 3
4 5

1 2 4
3 5

1 3 4
2 5

1 3 5
2 4

1 2 5
3 4

Figure 2.2: Standard Young tableaux of shape (3, 2)

This number can be counted using the following result by Frame, Robinson and Thrall
which is known as the hook-length formula.

Theorem 2.8. [60] Let λ ⊢ n be an integer partition. The number of standard Young
tableaux of a shape λ is given by

fλ = n!
Πa∈λha

, (2.2.1)

where the product is over all the boxes in the Young diagram of λ and ha is the hook
length of box a.

We now calculate the hook length formulae of two-row and three-row Young diagrams
as we come across these shapes frequently in our analysis in this thesis. For λ = (a, b),
the hook lengths of each of the boxes are depicted as:

a+1 . . . a−b+2 a−b . . . 1

b . . . 1
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Thus, the number of standard Young tableaux of shape λ is given by

f(a,b) = (a + b)!(a − b + 1)
(a + 1)!b! = a − b + 1

a + 1

(
a + b

a

)
. (2.2.2)

Similarly for µ = (a, b, c), we have

a+2 . . . a−c+3 a−c+1 . . . a−b+2 a−b . . . 1

b+1 . . . b−c+2 b−c . . . 1

c . . . 1

f(a,b,c) = (a + b + c)!(a − c + 2)(a − b + 1)(b − c + 1)
(a + 2)!(b + 1)!c!

= (a − c + 2)(a − b + 1)(b − c + 1)
(a + 2)(a + 1)(b + 1)

(
a + b + c

a, b, c

)
. (2.2.3)

Remark 2.9. It is straightforward to verify from (2.2.2), that f(a,b) satisfies an interesting
recurrence relation given by:

f(a,b) = f(a−1,b) + f(a,b−1).

Definition 2.10. Given two partitions λ, µ such that µ ⊆ λ (containment order, i.e.,
µi ≤ λi for all i), the skew shape λ/µ is a Young diagram that is obtained by subtracting
the Young diagram of shape µ from that of λ.

Figure 2.3: Skew shapes (4, 3, 2, 1)/(2, 1) and (5, 3, 2)/(2) respectively

Definition 2.11. A standard Young tableau of a skew shape λ/µ is a filling of the Young
diagram of the skew shape by positive integers that are strictly increasing in rows and
columns.

Example 2.12. Following are a few of the many standard Young tableaux of the same
shape (4, 3, 2, 1)/(2, 1).
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1 4
2 3

5 6
7

1 2
5 7

3 6
4

2 3
1 7

4 6
5

Let fλ/µ denote the number of SYTs of a skew shape λ/µ. This number is counted
using the Frobenius’ determinant formula as follows.

Theorem 2.13. [95, Corollary 7.16.3] Let |λ/µ| = n be the number of boxes in the skew
shape λ/µ that has ℓ parts. Then,

fλ/µ = n! det
( 1

(λi − µj − i + j)!

)ℓ

i,j=1
(2.2.4)

Note that we take 0! = 1 and k! = 0 for any k < 0 as a convention.

Example 2.14. Let λ/µ = (6, 4)/(3). Then, n = |λ/µ| = 7 and ℓ = 2. We have,

fλ/µ = 7!

∣∣∣∣∣∣∣∣∣
1

(6−3−1+1)!
1

(6−0−1+2)!
1

(4−3−2+1)!
1

(4−0−2+2)!

∣∣∣∣∣∣∣∣∣ = 34.

Example 2.15. Let λ/µ = (5, 3, 2)/(2). Then, n = |λ/µ| = 8 and ℓ = 3. We have,

fλ/µ = 8!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(5−2−1+1)!

1
(5−0−1+2)!

1
(5−0−1+3)!

1
(3−2−2+1)!

1
(3−0−2+2)!

1
(3−0−2+3)!

1
(2−2−3+1)!

1
(2−0−3+2)!

1
(2−0−3+3)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 260.
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Chapter 3

Correlations in the continuous
multispecies TASEP on a ring

3.1 Introduction

Multispecies exclusion processes and their different properties have been a popular topic
of investigation in recent times. One property which is of great interest is the correlation
of two or more particles in the stationary distribution of the process. In this chapter,
we prove a result of correlations of two adjacent points in a multispecies TASEP on a
continuous ring. We will give the exact definitions in Section 3.2.

One of the first instances where the continuous multispecies TASEP on a ring was
mentioned is by Aas and Linusson [4]. They studied a distribution which should be a
certain infinite limit of the stationary distribution of the multispecies TASEP on a ring.
They also conjectured [4, Conjecture 4.2] a formula for correlations ci,j which is given by
the probability that the two particles, labelled i and j are next to each other with i on
the left of j in the limit distribution. We prove it first for the case i > j (Theorem 3.1) in
Section 3.3 and for then the case i < j (Theorem 3.2) in Section 3.4. The technique we
use is similar to and inspired by the work of Ayyer and Linusson [20] where they study
correlations in the multispecies TASEP on a ring with a finite number of sites.

To carry out the analysis, we use the theory of the multiline process that Ferrari
and Martin described in [57]. The multiline process is defined on structures known as
multiline queues or MLQs. This process can be projected to the multispecies TASEP
using a procedure known as lumping of chains (see [74, Lemma 2.5]). This projection
lets us study the stationary distribution of the multiline process to infer results for
the stationary distribution of the multispecies TASEP and is defined using an algorithm
known as bully path projection which projects a multiline queue to a word. See Section 3.2

15
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for the precise definitions.
We study the two-point correlations in a continuous TASEP with type ⟨1n⟩ = (1, . . . , 1)︸ ︷︷ ︸

n

.

Note that each particle has a distinct label in this case. In this regard, let ci,j(n) denote
the correlation of two particles of types i and j lying adjacent on a ring for the multi-
species TASEP with type ⟨1n⟩, with i followed by j. Aas and Linusson gave an explicit
conjecture ([4, Conjecture 4.2]) for calculating ci,j(n). We prove their conjecture in this
chapter separately for the two cases.

Theorem 3.1. For n ≥ 2 and i > j, we have the following two-point correlations:

ci,j(n) =


n

(n+j
2 ) − n

(n+i
2 ) , if j < i < n,

n(j+1)
(n+j

2 ) − n(j−1)
(n+j−1

2 ) − n

(2n
2 ) , if j < i = n.

Theorem 3.2. For n ≥ 2 and i < j, we have the following two-point correlations:

ci,j(n) =


n

(n+j
2 ) , if i + 1 < j ≤ n,

n

(n+j
2 ) + ni

(n+i
2 ) , if i + 1 = j ≤ n.

3.2 Preliminaries

A multispecies TASEP is a stochastic process on a graph. We first define the multispecies
TASEP on a ring before proceeding to study the continuous multispecies TASEP on a
ring.

3.2.1 Multispecies TASEP

A multispecies TASEP is a continuous-time Markov process which can be defined on a
ring with L sites. For a tuple m = (m1, . . . , mn), a multispecies TASEP of type m has
m1 + · · ·+mn sites occupied with particles. Each particle is assigned a label from the set
[n] and there are exactly mk particles with the label k. The unoccupied sites are treated
as particles with the highest label n + 1. The states of the multispecies TASEP are
words of length L with the letter k occurring mk times for all k ∈ [n] and n+1 occurring
L − ∑

i mi times. The dynamics of the process are as follows: Each particle carries an
exponential clock that rings with rate 1. The particle tries to jump to the site on its left
whenever the clock rings. Let this particle be labelled i. The jump is successful only if
the site on the left has a label greater than i. In that case, the two particles exchange
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positions. In other words, let the current state be π with πk = i and πk+1 = j for some
k. The particles labelled i and j interchange positions with rate 1 if i > j.

Now we define a Markov process known as the multiline process which can be pro-
jected to the multispecies TASEP through lumping. A multiline process is a Markov
process defined on a graph which is a collection of disjoint cycle graphs of the same
length. We refer to each path graph as a row and the rows are numbered from top to
bottom. Each row has the same number of sites and each site may or may not be occupied
by a particle. For an n-tuple m = (m1, . . . , mn) with mk ≥ 0 and L ≥ m1 + · · · + mn, a
multiline queue of type m is a collection of n rows, each having L sites, stacked on top of
each other. In the ith row from the top, Si = m1 + · · · + mi of the sites are occupied. See
Figure 3.1 for an example of a multiline queue. The dynamics of the multiline process

Figure 3.1: A multiline queue of type (2, 1, 2, 2) on 13 sites.

are described in detail in [57] via transitions on the multiline queues of a fixed type. The
stationary distribution of the process is stated in the following theorem.

Theorem 3.3. [57, Theorem 3.1] The stationary distribution of the multiline process of
type m is uniform.

A multiline queue of type m can be projected to a word by an algorithm known as
the bully path procedure which we define recursively as follows:

(1) Let M be a multiline queue of type m. We construct bully paths that contain exactly
one particle from each row. Start with the first row in M . The bully path starting at
any particle in the first row moves downwards and then rightwards along the multiline
queue until it runs into a particle in the second row. It again moves downwards and
rightwards in the third row till it hits another particle, and so on all the way to the
last row. All the particles encountered by this bully path are labelled 1. We similarly
construct the bully paths starting from other particles in the first row. It turns out
that the order in which these particles are constructed starting from the particles in
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the first row does not matter. At the end of this construction, we have a total of m1

bully paths. That is, m1 particles of the last row are labelled 1. See Figure 3.2 for
the construction of bully paths to the multiline queue in Figure 3.1.

(2) Next, we construct bully paths starting with the unlabelled particles in the second
row by repeating the same process from Step (1). We label the ends of all such paths
as 2 and they are m2 in number. We repeat these steps for all the subsequent rows.
Finally, label all the particles that are left unlabelled in the last row as n and all the
unoccupied sites as n + 1.

(3) Hence for each ℓ, mℓ particles in the last row are labelled as ℓ. Let ω denote the word
formed by the labels in the last row. Then, ω is a configuration of the multispecies
TASEP of type m. Let B denote this projection map. Then, ω is known as the
projected word of M and we write it as ω = B(M). The projected word for the
multiline queue in Figure 3.1 is 3345515525145; see Figure 3.2.

Figure 3.2: Bully path projection on the multiline queue from Figure 3.1. The bully
paths starting in the first, second and third rows are shown in colours blue, red and
green respectively.

The connection between the stationary distributions of the multiline process and the
multispecies TASEP is established by the following theorem given by Ferrari and Mar-
tin [57].

Theorem 3.4. [57, Theorem 4.1] The process on the last row of the multiline process of
type m is the same as the multispecies TASEP of type m.

3.2.2 Continuous multispecies TASEP

Fix m = (m1, . . . , mn) and let Si = m1 + · · · + mi, for all i ∈ [n]. The continuous
multispecies TASEP is a formal limit of the stationary distribution of the multispecies
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TASEP on a ring with L sites. First, we consider a multispecies TASEP on a ring with
L sites. Let ΠL

n denote the stationary distribution of this TASEP. Then, L is taken
to infinity keeping the vector m constant, i.e., the number of unoccupied sites tends
to infinity. The ring is then scaled to the continuous interval [0, 1). The limit of the
stationary distribution ΠL

n gives a distribution Πn of labelled particles on a continuous
ring. Note that Πn is not yet shown to be the stationary distribution of any Markov
process yet.

Similar to the multiline queues in [57], we can look at the continuous multiline queues
of a given type. For m = (m1, . . . , mn) and Si = m1+· · ·+mi, for all i ∈ [n], a continuous
multiline queue of type m is defined on a collection of n copies of [0, 1) stacked on top
of each other with Si particles in ith ring from the top.

The location of each particle is considered to be a real number in the continuous
interval [0, 1). In the distribution that we will consider, the horizontal position of each
particle will almost surely be distinct.

Example 3.5. See Figure 3.3 for an example of a continuous multiline queue of type
(1, 3, 1, 2). The rows have 1, 4, 5 and 7 particles respectively. Ignore the labels of the
particles for now. Note that there is no particle directly above or below any other particle.

Figure 3.3: A continuous multiline queue of type (1, 3, 1, 2)

Consider the labels of the particles in Figure 3.3. The labels are assigned in the order
of the horizontal positions of the particles as seen from left to right. We now refer to
an integer representation of a continuous multiline queue which is also used by Aas and
Linusson [4].

Definition 3.6. Let m = (m1, . . . , mn) be an n-tuple, let Si = m1 + · · · + mi, and let
N = ∑n

i=1 Si. A placement of a continuous multiline queue of type m is a triangular
array (pi,k) with distinct integers from the set [N ] such that the integer pi,k stands for
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the relative horizontal position of kth particle in the ith row of the multiline queue as
seen from left to right.

Example 3.7. The placement corresponding to the continuous multiline queue in Fig-
ure 3.3 is

5
1 3 7 9
8 10 13 15 16
2 4 6 11 12 14 17.

For our purpose, it is enough to know the relative positions of the particles on the
rows and hence a continuous multiline queue will be represented by its placement and
we will use the two terms interchangeably. The number of different placements of type
m is given by

(
N

S1 ,..., Sn

)
.

The bully path projection is a map from the set of continuous multiline queues of
type m to the words of type m. Let M be a continuous multiline queue. We define the
algorithm recursively which takes M and maps it to a word ω as follows:

(1) Consider the placement of M . For each integer k1 in the first row, look for the
smallest available entry larger than k1 in the second row and mark it as k2. If k1 is
larger than all the available integers in the second row, we mark the smallest available
integer in the second row as k2. This is known as wrapping from the first row to the
second row. We say that k1 “bullies” k2 and write it as k1 → k2; or k1

W−→ k2 in the
case of wrapping. See Figure 3.4 for the map applied to Example 3.7.

(2) Look for the smallest available integer in the third row larger than k2 and label it k3

and so on. The sequence k1, k2, . . . , kn thus obtained is called a bully path starting at
k1 and these integers are now unavailable for further bullying. Label the endpoints
of all such paths with 1. There are m1 such paths and we call them type 1 bully
paths. In Figure 3.4, 5 → 7 → 8 → 11 is a bully path of type 1. The order in which
we construct the bully paths starting in the first row does not matter.

(3) Next, we construct bully paths starting with the available integers in the second row
by following steps (1) and (2). We label the ends of all such paths with 2 and they
are m2 in number. We repeat these steps for all the other rows sequentially. The
bully paths of type n are just the integers in the last row that are remaining after
the construction of all type (n − 1) bully paths.

(4) Therefore, there are mℓ bully paths of type ℓ for each ℓ. Let ω denote the word
formed by the labels in the last row. Then, ω gives the relative ordering of labelled
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particles in a configuration of the continuous multispecies TASEP on a ring. Let B
denote this projection map. Then, ω = B(M) is known as the projected word of M .
The projected word for the continuous multiline queue in Example 3.7 is 3441222;
see Figure 3.4.

Figure 3.4: Bully path procedure on a continuous multiline queue of type (1,3,1,2). The
type 1, 2 and 3 bully paths are shown in colours blue, red and green respectively.

The distribution of the words of type m is the same as the distribution of the last row
of continuous multiline queues of type m which can be obtained by taking the limit of
the distribution of the last row for discrete multiline queues. Also, the distribution of
the last row for discrete multiline queues is ΠL

n by Theorem 3.4. Therefore, Πn gives
the distribution of the labels on the last row for a uniformly chosen continuous multiline
queue. Thus, to study the correlations of two adjacent particles with labels i and j in
the continuous multispecies TASEP, it is enough to count the number of placements that
project to the words with i and j as adjacent particles. Next, we define an operator on
the space of all continuous multiline queues of a fixed type.

Definition 3.8. Let M be a continuous multiline of type m. Let S be an operator such
that if M ′ = S(M), then M ′ is obtained from M by adding 1 mod N to each entry of
M and then rearranging any row in increasing order if needed. S is known as the shift
operator and we will refer to M ′ as the shifted multiline queue.

Example 3.9. Let M be the multiline queue from Example 3.7, then S(M) = M ′ is
given by

M ′ =

6
2 4 8 10
9 11 14 16 17
1 3 5 7 12 13 15.



22 3. Correlations in the continuous multispecies TASEP on a ring

The following lemma relates the projected words of a continuous multiline queue and
its shifted continuous multiline queue.

Lemma 3.10. Let M be a continuous multiline queue of type m with N =
n∑

i=1
Si particles.

Shifting M rotates the projected word by one position to the right when the largest entry
N is in the last row of the placement and preserves the word otherwise. In other words,
if M ′ = S(M), ω = B(M) and ω′ = B(M ′), then ω and ω′ are related in the following
way:

1. If N is not in the last row, then ω′ = ω.

2. If N is in the last row, then ω′ is obtained by rotating ω one position to the right.

Proof. Let N be in the rth row of the placement of M . First, let r < n. M ′ is obtained
from M by replacing N with 1 and adding 1 to every other integer. By the increasing
property of the rows, the rth row is now rotated by one position to the right. If N lies on
a bully path that starts in some row above r, then all the bully paths remain the same.
This is true because N wraps around and bullies the first entry in (r + 1)st row available
to it. Whereas in M ′, 1 being the smallest integer bullies the first entry available to it
which is exactly the translation of the entry bullied by N in M . The remaining bully
paths are the same since the inequalities among all other elements do not change.

On the other hand, let there be a bully path of type r in M that starts at N . Let
s = r + 1 and the available integers in the sth row in M after the construction of all the
bully paths of a type less than r be s1 < s2 < · · · < snt . If N

W−→ sx (say) in M , then
observe that there exist elements in rth row namely ri (1 ≤ i ≤ x−1) such that r1 bullies
s1, r2 bullies s2, . . . , rx−1 bullies sx−1 in M . In M ′, the bully paths that begin in a row
above the rth are the same as those in M . For a type r bully path, 1 bullies (s1 + 1),
(r1 + 1) bullies (s2 + 1), . . . , (rx−1 + 1) bullies (sx + 1). The construction of these type
r bully paths in M ′ from here onwards is the same as the construction of those in M .
Thus, the projected word remains the same.

Finally, when r = n, i.e., when N is in the last row, the last row rotates by one
position to the right when adding 1 mod N to each entry in M . The bully paths
remain the same and therefore, the projected word which is obtained from the labels of
the particles in the last row is rotated by one position to the right.

Let ⟨1n⟩ = (1, . . . , 1) be an n-tuple. Define ci,j(n) = P{ηa = i, ηa+1 = j; a ∈ [n]}.
To make the analysis of the continuous multispecies TASEP of type ⟨1n⟩ easy, we use
a classical property known as the projection principle which states that particles of two
consecutive types cannot be distinguished by particles of other types. Thus, identifying



3.2. Preliminaries 23

two consecutive labels k and k + 1 defines a natural projection from the n-TASEP
onto the (n − 1)-TASEP. This is a key observation in [11, Section 1]. Therefore, to
obtain ci,j(n) for i > j, it is enough to find the probability that 4 is followed by a 2
in the projection of the word of the five-species continuous multiline queue with type
mi,j = (j − 1, 1, i − j − 1, 1, n − i).

We can further simplify the task at hand by projecting many such continuous mul-
tiline queues to a three-species system. Given a continuous multiline queue with type
⟨1n⟩, consider its projection to a continuous multiline queue of type ms,t = (s, t, n−s− t)
where j > s and i > s + t. Thus, a particle of class j becomes a 2 and that of class
i becomes a 3 whenever t, n − s − t > 0. So, to compute the correlation of particles
labelled i and j in a multispecies TASEP of type ⟨1n⟩, we need to look at the correlation
of particles labelled 3 and 2 in the projected words of continuous multiline queues of type
ms,t. Similarly, to formulate the correlation of particles labelled i and j for i < j, we
need to look at the correlation of 2 and 3 in the projected words of continuous multiline
queues with type ms,t.

Let M be a continuous multiline queue of type ⟨1n⟩ and η = B(M) be the word that
is projected from M using bully path projection. For 1 ≤ i, j ≤ n, let Ea

i,j(n) = P{ηa =
i, ηa+1 = j} for a ∈ [n]. Thus,

ci,j =
n∑

a=1
Ea

i,j. (3.2.1)

Consider a continuous multiline queue M ′ of type ms,t. Let the projected word of M ′ be
ω. If

Θ<
a (s, t) = P{ωa = 2, ωa+1 = 3},

and Θ>
a (s, t) = P{ωa = 3, ωa+1 = 2}

for a ∈ [n], then by projection principle, we have

Θ<
a (s, t) =

n∑
j=s+t+1

s+t∑
i=s+1

Ea
i,j,

and Θ>
a (s, t) =

n∑
i=s+t+1

s+t∑
j=s+1

Ea
i,j.
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Let T< (respectively T>) be the sum of Θ<
a (respectively Θ>

a ) over the index a. We have,

T<(s, t) =
n∑

a=1

n∑
j=s+t+1

s+t∑
i=s+1

Ea
i,j(n)

=
n∑

j=s+t+1

s+t∑
i=s+1

ci,j(n).

The last equality follows from (3.2.1). Similarly,

T>(s, t) =
n∑

i=s+t+1

s+t∑
j=s+1

ci,j(n).

For i < j, the principle of inclusion-exclusion then gives us

ci,j(n) = T<(i − 1, j − i) − T<(i, j − i − 1) − T<(i − 1, j − i + 1) + T<(i, j − i), (3.2.2)

and for i > j, we have

ci,j(n) = T>(j − 1, i − j) − T>(j, i − j − 1) − T>(j − 1, i − j + 1) + T>(j, i − j). (3.2.3)

For a ∈ [n], if we let

T <
a (s, t) = P{ωa = 2, ωa+1 = 3, M ′

3,n = N},

and T >
a (s, t) = P{ωa = 3, ωa+1 = 2, M ′

3,n = N},

then the following lemma holds.

Lemma 3.11. T<(s, t) = (n + 2s + t) T <
a (s, t) for any a ∈ [n].

Proof. Let M ′ be a continuous multiline queue of type ms,t. Shifting it N = n + 2s + t

times generates all the rotations of the projected word. By Lemma 3.10, in exactly n

out of N shifted continuous multiline queues, the projected word rotates one unit to
the right and in the remaining shifts, the projected word remains the same. For a fixed
a ∈ [n], any continuous multiline queue which contributes to T<(s, t) can be obtained as
a rotation of a continuous multiline queue for which

(i) the projected word has 3 and 2 (or 2 and 3) in positions a and a + 1 mod n

respectively, and

(ii) N is in the last row.
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Note that if a word has a 3 followed by a 2 in p separate positions, it occurs as a rotation
of p different words with ωa = 3, ωa+1 = 2. Hence, the result.

We also have T>(s, t) = (n + 2s + t)T >
a (s, t) for any a ∈ [n]. Further, Lemma 3.11

holds for a = 1 in particular. Henceforth, we will write T <
1 (respectively T >

1 ) as T <

(respectively T >) for simplicity. Then, (3.2.2) and (3.2.3) become

ci,j(n) =(n + i + j − 2) T <(i − 1, j − i) − (n + i + j − 1) T <(i, j − i − 1)

− (n + i + j − 1) T <(i − 1, j − i + 1) + (n + i + j) T <(i, j − i), (3.2.4)

and

ci,j(n) =(n + i + j − 2) T >(j − 1, i − j) − (n + i + j − 1) T >(j, i − j − 1)

− (n + i + j − 1) T >(j − 1, i − j + 1) + (n + i + j) T >(j, i − j) (3.2.5)

respectively.

Lemma 3.12. Let m = (m1, . . . , mn) be a tuple and let Si = m1 + · · · + mi, for all
i ∈ [n]. The set of continuous multiline queues of type m that have no wrapping under
the bully path projection is in bijection with standard Young tableaux of shape λ where
λi = Sn−i+1 = m1 + · · · + mn−i+1.

Proof. Let M be a continuous multiline queue of type m such that N = S1 + · · · + Sn is
the largest integer in M . For 1 ≤ i ≤ i, 1 ≤ j ≤ Si, let Mi,j be distinct integers from 1
to N . Then, we have

M =

M1,1 . . . M1,S1

M2,1 . . . . . . M2,S2
...

Mn,1 . . . . . . . . . Mn,Sn .

No wrapping from the first row to the second row implies M1,S1−k < M2,S2−k for all
0 ≤ k ≤ S1 − 1. Similarly, M2,S2−k < M3,S3−k for all 0 ≤ k ≤ S2 − 1, and so on. This
along with the increasing property of the rows gives us
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M1,1 < · · · < M1,S1−i < · · · < M1,S1

∧ ∧ · · · ∧
M2,1 < · · · < · · · < M2,M=S2−i < · · · < M2,S2

∧ ∧ ∧
...

Mn,1 < · · · < · · · < · · · < Mn,Sn−i < · · · < Mn,Sn .

Hence, M is in bijection with a standard Young tableau Y of shape (Sn, . . . , S1) and the
bijection is given by Yi,j = N − Mn−i+1,S(n−i+1)−j+1 + 1. Thus, the number of continuous
multiline queues of type m with no wrapping is given by f(Sn,...,S1).

3.2.3 Two species continuous TASEP

Let m = (s, t). In this section, we study the continuous TASEP with two kinds of
particles and a hole. Because of the simplicity of the structure, it is easy to completely
calculate the stationary distribution of the continuous TASEP on two species. Let the
correlation ci,j(n) be defined as the probability that the particle labelled i is immediately
followed on the ring by a particle labelled j in the limit distribution. Once again, we use
the continuous multiline queues of type m to find these correlations.

Let Ωs,t be the set of continuous multiline queues of type (s, t) and let n = s + t.
That is, M ∈ Ωs,n−s is a continuous multiline queue that has s integers in the first row
and n integers in the second row. For c ∈ {1, 2}, let δc(s, n) be the number of continuous
multiline queues of Ωs,n−s with the largest integer n + s in the second row such that
the projected word has c in the first position. By the well-known property of rotational
symmetry of the multispecies TASEP (see [20, Proposition 2.1 (iii)]), we have

δ1(s, n) = s

n

(
n + s − 1

s

)
, (3.2.6)

δ2(s, n) = n − s

n

(
n + s − 1

s

)
. (3.2.7)

Remark 3.13. Note that the number of configurations of Ωs,n−s with n+s in the second
row such that the projected word has c in the ath position is the same for any a ∈ [n] by
rotational symmetry.

Similarly, let δc,d(s, n) count the number of continuous multiline queues of type (s, n−
s) that have the largest integer n + s in the second row such that the projected word has
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c in the first place and d in the second place. Using Remark 3.13, we have the following
system of independent equations for fixed s and n.

δ1,1 + δ1,2 = δ1, (3.2.8)

δ1,1 + δ2,1 = δ1, (3.2.9)

δ1,2 + δ2,2 = δ2. (3.2.10)

Therefore, finding δc,d for any (c, d) ∈ {1, 2} × {1, 2} solves the system of equation. In
particular, let c = d = 2. Consider an arbitrary continuous multiline queue M ′ such that
π = B(M ′) with the following configuration:

a1 a2 . . . as

b1 b2 . . . . . . bn−1 n + s

π = 2 2 . . . . . . . . . . . .

.

Since π1 = π2 = 2, b1 and b2 are not bullied by any ai in M ′. Therefore, a1 > b2. We
also have b2 > b1 by the increasing property of the rows. This forces b1 = 1 and b2 = 2.
Moreover, there is no wrapping from the first row to the second row. This implies that
the integers in M ′ other than b1 and b2 satisfy the following inequalities:

a1 < · · · < as−1 < as

∧ · · · ∧ ∧
b3 < · · · < bn−s+1 < · · · < bn−1 < n + s.

Such configurations are in bijection with standard Young tableaux of shape (n − 2, s) by
Lemma 3.12. Therefore using (2.2.2), we get

δ2,2(s, n) = f(n−2,s) = n − s − 1
n + s − 1

(
n + s − 1

s

)
. (3.2.11)

Using (3.2.6)-(3.2.11), we can solve for all the remaining δc,d as follows:

δ1,2(s, n) = δ2,1(s, n) = n − s + 1
n + s − 1

(
n + s − 1

s − 1

)
, (3.2.12)

δ1,1(s, n) = 2
(

n + s − 2
s − 2

)
. (3.2.13)
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3.3 Proof of Theorem 3.1

In this section, we prove Theorem 3.1 using the tools developed in Section 3.2. Let
ms,t = (s, t, n − s − t) and let Ss,t be the set of all continuous multiline queues M of
type ms,t that satisfy ω1 = 3 and Let ms,t = (s, t, n − s − t) and let Ss,t be the set of
all continuous multiline queues M of type ms,t that satisfy ω1 = 3 and ω2 = 2 where
ω = B(M). Recall that T >(s, t) = P{ω1 = 3, ω2 = 2, M3,n = N}. We first compute
T >(s, t) and then substitute it in (3.2.3) to solve for ci,j for the case i > j. Let τs,t denote
the cardinality of the set Ss,t. That is, τs,t counts the continuous multiline queues which
have the following structure where ai, bi and ci be distinct integers from the set [N ].

a1 a2 . . . . . . as

b1 b2 . . . bk . . . bs+t

c1 c2 . . . . . . . . . . . . cn = N.

ω = 3 2 . . . . . . . . . . . . . . .

Lemma 3.14. Let M be a continuous multiline queue of type ms,t. M ∈ Ss,t if and only
if the following conditions hold:

(1) If a1 → bk, then bk > c2,

(2) c1 = 1 and b1 = 2,

(3) there is no wrapping from any of the two rows.

Proof. Let M ∈ Ss,t and suppose that a1 → bk. If bk < c2, then bk bullies either c1 or
c2 and we get ω1 = 1 or ω2 = 1. Hence, (1) holds. If there is any wrapping from the
second row to the third row, then we have ω1 = 1 or 2, which is a contradiction. Further
ω2 = 2 implies that b1 → c2 and b1 is not bullied by any ai. Therefore, c1 < b1 < c2 and
b1 < a1, and hence c1 = 1 and b1 = 2.

If there is any wrapping from the first row to the second row, then we have ai → b1 for
some i, which is a contradiction, thus proving the remaining half of 3. It is straightforward
to verify that the three conditions imply ω1 = 3, ω2 = 2 and cn = N .

Proof of Theorem 3.1. Let M ∈ Ss,t. We have c1 = 1, b1 = 2 and cn = N and we have
to find the number of ways the remaining entries of M can be assigned values from the
set {3, . . . , N − 1} complying with the three conditions of Lemma 3.14.

Any bℓ which is bullied by some am should be larger than c2. Thus, there are at least
s integers in the second row that are larger than c2. Therefore, c2 ∈ {3, 4, . . . , s+t+2} as
there can be at most s integers in the first row and at most t integers in the second row
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that are less than c2. Let c2 = i and let a1 → bk. Then, c2 < bk and bk−1 < a1 < bk. So, all
the numbers from 3 to i−1 are assigned, in order, to b2 < · · · < bk−1 < a1 < · · · < ai−k−1.
Therefore, 0 ≤ i − k − 1 ≤ s, i.e., i − s − 1 ≤ k ≤ i − 1. Also, since k − 1 is the number
of entries in the second row that are smaller than c2, it is bounded by 1 and t. Hence,
2 ≤ k ≤ t + 1.

The ways in which the remaining entries can be assigned values are in bijection with
standard Young tableaux of shape λi,k = (n−2, s+ t−k +1, s− i+k +1) by Lemma 3.12
because there is no wrapping from any of the rows. This gives us

τs,t =
s+t+2∑

i=3

min{i−1,t+1}∑
k=max{2,i−s−1}

fλi,k
, (3.3.1)

where fλ is the number of standard Young tableaux of shape λ. By the hook length
formula for a 3-row partition (2.2.3), we have:

fλi,k
= (n + 2s + t − i)!(n − s + i − k − 1)(n − s − t + k − 2)(t + i − 2k + 1)

n!(s + t − k + 2)!(s − i + k + 1)!

= (n − s + i − k − 1)(n − s − t + k − 2)(t + i − 2k + 1)
(n + 2s + t − i + 3)(n + 2s + t − i + 2)(n + 2s + t − i + 1)

×
(

n + 2s + t − i + 3
n, s + t − k + 2, s + k − i + 1

)
.

Substituting this formula in (3.3.1) and changing k to k′ = k − 2 and i to j = i − 3, we
get

τs,t =
s+t−1∑

j=0

min {j,t−1}∑
k′=max {j−s,0}

(n − s + j − k′)(n − s − t + k′)(t + j − 2k′)
(n + 2s + t − j)(n + 2s + t − j − 1)(n + 2s + t − j − 2)

×
(

n + 2s + t − j

n, s + t − k′, s − j + k′

)
. (3.3.2)

Note that when j ≥ s and k′ ≤ j − s, the multinomial coefficient in (3.3.2) becomes 0.
Therefore, the index k′ can equivalently be summed over the range 0 to min{j, t − 1}.
Substituting v for s + t − j − 1 and u for s − j + k′ in (3.3.2), we get

τs,t =
s+t−1∑

v=0

min{s,v}∑
u=v−t+1

(n − u)(n + u − s − v − 1)(s + v + 1 − 2u)
(n + s + v + 1)(n + s + v)(n + s + v − 1)

(
n + s + v + 1

n, s + v + 1 − u, u

)

=
s+t−1∑

v=0

min{s,v}∑
u=v−t+1

(n + s + v − 2)!
n!(s + v + 1)! ζs,t, (3.3.3)
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where
ζs,t = (n − u)(n + u − s − v − 1)(s + v + 1 − 2u)

(
s + v + 1

u

)
.

We expand the expression on the right-hand side in order to write ζs,t as a sum of
two parts as follows:

ζs,t = ((n2 − n(s + v + 1) + u(s + v + 1 − 2u))

×
(

(s + v + 1 − u)
(

s + v + 1
u

)
− u

(
v + s + 1

u

))

= (n2 − n(s + v + 1))(s + v + 1)
((

s + v

u

)
−
(

s + v

u − 1

))

+ (s + v + 1)(s + v)(s + v − 1)
((

s + v − 2
u − 1

)
−
(

s + v − 2
u − 2

))
.

Plugging ζs,t in (3.3.3), we have a telescoping sum which computes easily to give

τs,t =
s+t−1∑

v=0

(n + s + v − 2)!
n!(s + v + 1)! (n2 − n(s + v + 1))(s + v + 1)

((
s + v

s

)
−
(

s + v

v − t

))

+
s+t−1∑

v=0

(n + s + v − 2)!
n!(s + v + 1)! (s + v + 1)(s + v)(s + v − 1)

((
s + v − 2

s − 1

)
−
(

s + v − 2
v − t − 1

))

=
s+t−1∑

v=0

(
n + s + v

s + v

)
n2 − n(s + v + 1)

(n + s + v)(n + s + v − 1)

((
s + v

s

)
−
(

s + v

v − t

))

+
s+t−1∑

v=0

(
n + s + v − 2

s + v − 2

)((
s + v − 2

s − 1

)
−
(

s + v − 2
v − t − 1

))

This simplifies to

τs,t =

(
n+2s+t
n,s+t,s

)
n + 2s + t

× nt(s + t)
(n + s)(n + s + t)

(
−1 + s

n
+ (n + s)(n2 + nt − t − s(s + t) − 1)

(n + s − 1)(s + t)(n + s + t − 1)

)
.

(3.3.4)
By substituting τs,t =

(
n+2s+t
n,s+t,s

)
T >(s, t), we get

(n + 2s + t)T >(s, t) = −nt(s + t)
(n + s)(n + s + t) + st(s + t)

(n + s)(n + s + t)

+ nt(n2 + nt − t − s(s + t) − 1)
(n + s − 1)(n + s + t)(n + s + t − 1) . (3.3.5)

Let i < n. Denote the terms on the right-hand side of (3.3.5) by A(s, t), B(s, t) and
C(s, t) respectively. We first compute A(j − 1, i − j) − A(j, i − j − 1) − A(j − 1, i − j +
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1) + A(j, i − j) = A(say).

A = n(i − 1)
n + i − 1

(
j − i

n + j − 1 + i − j − 1
n + j

)
− ni

n + i

(
j − i − 1
n + j − 1 + i − j

n + j

)

= n

2
(

n+j
2

) .

If we define B and C similarly as A using the inclusion-exclusion formula, we get B =
n

2(n+j
2 ) − n

2(n+i
2 ) and C = −n

2(n+i
2 ) . Since ci,j = A + B + C, we have

ci,j = n(
n+j

2

) − n(
n+i

2

) .

Note that when s + t = n, T >(s, t) = 0. When j < i = n, (3.2.5) becomes

ci,j = (n + i + j − 2) T >(j − 1, i − j) − (n + i + j − 1) T >(j, i − j − 1).

Let A′ = A(j − 1, n − j) − A(j, n − j − 1) and define B′ and C′ similarly. Simplifying the
equations resulting from substituting the expressions for A(s, t), B(s, t) and C(s, t), we
get

cn,j = A′ + B′ + C′

= −1
2n − 1 − −2n(n − 1)

(n + j − 1)(n + j) + 2n(n − 1)
(n + j − 1)(n + j − 2)

= n(j + 1)(
n+j

2

) − n(j − 1)(
n+j−1

2

) − n(
2n
2

) ,

thereby proving Theorem 3.1.

3.4 Proof of Theorem 3.2

Recall that ms,t = (s, t, n−s−t) and N = n+2s+t. Recall from (3.2.4) that to find ci,j(n)
for i < j, we need to know the probability T <(s, t) = P {ω1 = 2, ω2 = 3, M3,n = N},
where ω is the projected word of a continuous multiline queue M of type ms,t.

Let Ps,t be the set of all continuous multiline queues M of type ms,t that satisfy
ω1 = 2, ω2 = 3 and M3,n = N where ω = B(M). Let θs,t be the cardinality of set Ps,t.
First, consider the following continuous multiline queue:
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a1 a2 · · · as

b1 b2 · · · · · · bs+t

c1 c2 · · · · · · · · · cn−1 N.

x y · · · · · · · · · · · · · · ·

Define nx,y(s, t, n) as the number of continuous multiline queues of type ms,t with N

in the last row that project to a word with x and y in the first and the second place
respectively as above, where (x, y) ∈ {1, 2, 3}2. Note that θs,t = n23(s, t, n). Also, let
nz(s, t, n) be the number of continuous multiline queues of type ms,t with N in the last
row that project to a word with z in the first place. Note that by rotational symmetry of
multispecies TASEP in [20, Proposition 2.1 (i)], nz also gives the number of continuous
multiline queues with N in the last row that project to a word with z in the second
place. Therefore, we have

n1,3 + n2,3 + n3,3 = n3, (3.4.1)

for fixed s, t and n. Again by rotational symmetry, we have

n3(s, t, n) = n − s − t

N

(
n + 2s + t

n, s, s + t

)
, (3.4.2)

since there are n − s − t particles that are labelled 3. We compute n3,3(s, t, n) in the
following lemma.

Lemma 3.15. n3,3(s, t) =
(

N−1
s

)
f(n−2,s+t).

Proof. Let M be a continuous multiline queue that is counted by n3,3(s, t, n), i.e.,

M =

a1 a2 · · · as

b1 b2 · · · · · · bs+t

c1 c2 · · · · · · · · · cn−1 N.

3 3 · · · · · · · · · · · · · · · .

Here, c1 and c2 are not bullied by any entry in the second row. This implies that b1 > c2

and that there is no wrapping from the second to the third row. It follows that there are
no restrictions on ai and hence their values can be chosen from the set {1, 2, . . . , N − 1}
in
(

N−1
s

)
ways. c1 and c2 take the smallest two integers available after fixing ai’s. Since

there are no wrappings from the second to the third row, the configurations formed
by the remaining variables are in bijection with the standard Young tableaux of shape
(n − 2, s + t) by Lemma 3.12. Therefore, they are f(n−2,s+t) in number.
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Remark 3.16. Following the steps in the proof of Lemma 3.15, we can give an alternate
proof of (3.4.2) which is equivalent to saying n3(s, t, n) =

(
N−1

s

)
f(n−1,s+t).

Thus, given (3.4.1), it suffices to find n1,3 for the sake of our analysis. The values of
n1,3(s, t, n) for different s and t for n = 5, 6 are shown in the following tables.

s\t 1 2 3
1 9 14 14
2 126 140 0
3 770 0 0

s\t 1 2 3 4
1 14 28 42 42
2 280 462 504 0
3 2772 3276 0 0
4 15288 0 0 0

Table 3.1: Data for n1,3(s, t, n) for n = 5, 6

By studying the values for n1,3 for different s, t and n, we formulate the following
expression for n1,3, which we prove in Section 3.5.

Theorem 3.17. For s, t ≥ 1 and n > s + t, we have

n1,3(s, t, n) =
(

N − 1
s − 1

)
f(n−1,s+t). (3.4.3)

Proof of Theorem 3.2. From straightforward calculations using (3.4.1), (3.4.2), Lemma 3.15
and Theorem 3.17, we have

n2,3(s, t) = 1
N

(
n + 2s + t

n, s, s + t

) n + t(
n+s+t

s+t

)f(n−1,s+t) − n + s + t(
n+s+t

s+t

) f(n−2,s+t)

 .

Since n2,3(s, t, n) = θs,t =
(

n+2s+t
n,s,s+t

)
T <(s, t), we have

(n + 2s + t)T <(s, t) = n + t(
n+s+t

s+t

)f(n−1,s+t) − n + s + t(
n+s+t

s+t

) f(n−2,s+t). (3.4.4)

The proof is completed by substituting (3.4.4) in (3.2.4). First let i + 1 < j. Denote
the terms of the right-hand side of (3.4.4) by C(s, t) and D(s, t) respectively. We first
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compute C(i − 1, j − i) − C(i, j − i − 1) − C(i − 1, j − i + 1) + C(i, j − i) = C(say).

C = f(n−1,j−1)(
n+j−1

j−1

) (((n + j − i) − (n + j − i − 1))

−
f(n−1,j)(

n+j
j

) (((n + j − i) − (n + j − i + 1))

= n(
n+j

2

) .

If we define D similarly as D(i−1, j − i)−D(i, j − i−1)−D(i−1, j − i+1)+D(i, j − i),
we get D = 0. Since, ci,j(n) = C + D, we have ci,j(n) = n

(n+j
2 ) .

Note that T <(s, 0) = 0 by definition. Therefore when i + 1 = j, (3.2.4) becomes

cj−1,j = (n + 2j − 3) T <(j − 2, 1) − (n + 2j − 2) T <(j − 2, 2) + (n + 2j − 1) T <(j − 1, 1).

Let C′ = C(j − 2, 1) − C(j − 2, 2) + C(j − 1, 1) and define D′ similarly. Then,

C′ = n + 1(
n+j−1

j−1

)f(n−1,j−1) − n + 2(
n+j

j

)f(n−1,j) + n + 1(
n+j

j

)f(n−1,j),

D′ = −n + j − 1(
n+j−1

j−1

) f(n−2,j−1).

Thus, cj−1,j(n) = C′ + D′ = ni

(n+i
2 ) + n

(n+j
2 ) , completing the proof.

3.5 Proof of Theorem 3.17

To compute n1,3(s, t, n), we need to count the number of continuous multiline queues
with the following configuration. Here, N = n + 2s + t while ai, bi and ci are distinct
integers from the set [N ].

a1 a2 · · · as

b1 b2 · · · · · · bs+t

c1 c2 · · · · · · · · · cn−1 N.

ω = 1 3 · · · · · · · · · · · · · · ·

Since ω2 = 3, c2 can not be bullied by any bi. Therefore, there can be at most one
wrapping from the second row to the third row. These configurations can be classified
into two types:

1. there is no wrapping from the second row,
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2. only bs+t wraps around and bullies c1.

Let us denote the number of continuous multiline queues from the two cases by α1,3(s, t, n)
and β1,3(s, t, n) respectively. We will enumerate them separately.

Proposition 3.18. A continuous multiline queue of type ms,t where there is no wrapping
from the second row projects to a word ω with ω1 = 1 and ω2 = 3 if and only if

(1) there exists 1 ≤ i ≤ s such that ai → b1 → c1, and

(2) b2 > c2.

Proof. Let M be a continuous multiline queue satisfying (1) and (2) and let ω be the
projected word of M . The reverse implication is straightforward. We proceed to prove
the forward implication. Note that ω2 = 3 implies b2 > c2, otherwise c2 is bullied by
either b1 or b2 giving ω2 < 3. Since there is no wrapping from the second row to the
third row, ω1 = 1 is only possible when there exist ai, bj such that ai → bj → c1 for some
i. That is, bj < c1. Further, bj < c1 < c2 < b2 implies j = 1.

Theorem 3.19. Let α1,3(s, t, n) be the number of continuous multiline queues of type
ms,t with the largest entry N in the last row and no wrapping from the second row such
that the projected word ω has ω1 = 1 and ω2 = 3. Then,

α1,3(s, t) =
((

N − 2
s − 1

)
−
(

N − 2
s − 3

))
f(n−1,s+t).

Proof. Let the continuous multiline queues that are counted by α1,3(s, t, n) exhibit the
following configuration:

a1 a2 · · · as

b1 b2 · · · · · · bs+t

c1 c2 · · · · · · · · · cn−1 N.

ω = 1 3 · · · · · · · · · · · · · · ·

Let us first assume that a1 < b1. Coupled with b1 < c1 from the proof of Proposi-
tion 3.18, we get a1 = 1, and a1 → b1 → c1, which gives ω1 = 1. The remaining ai’s
assume increasing integer values between 2 and N − 1 in

(
N−2
s−1

)
ways. We also have

c1 < c2 < b2. Thus, b1 , c1 and c2 are assigned the three smallest values after eliminating
integers selected by the ai’s. Because there is no wrapping in any of the rows, such con-
figurations are in bijection with standard Young tableaux of shape λ = (n − 2, s + t − 1)
(see Lemma 3.12). This gives us

(
N−2
s−1

)
f(n−2,s+t−1) continuous multiline queues that con-

tribute to α1,3(s, t, n) for the case a1 < b1.
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Now, let us assume that a1 > b1. Then, there exists an ai such that ai
W−→ b1 by

Proposition 3.18(1). The inequalities b1 < c1 and b1 < a1 imply b1 = 1. Instead,
we first find the number of continuous multiline queues where the only constraints are
b1 = 1, cn = N and c2 < b2, with no wrapping from the second row to the third row. For
these, b1 → c1 and we get ω1 ∈ {1, 2} and ω2 = 3. Observe that the ai’s can take any
value other than 1 and N . c1 and c2 are then assigned the smallest two integers after
eliminating 1 and the integers selected by the ai’s. Also, the configurations formed by
the remaining bi’s and ci’s satisfy the following inequalities

b2 < . . . < bs+t−j < . . . < bs+t

∧ · · · ∧ · · · ∧
c3 < . . . < . . . < cn−j < . . . < cn,

and hence they can be arranged in f(n−2,s+t−1) ways. The required number is given by(
N−2

s

)
f(n−2,s+t−1). From this set, in order to eliminate the continuous multiline queues

with ω1 = 2 and ω2 = 3, we need to subtract the number of continuous multiline queues
where b1 = 1, b2 > c2 with no wrapping in any row from the number

(
N−2

s

)
f(n−2,s+t−1).

In this regard, let c2 = k + 3 for some 0 ≤ k ≤ s. Then, there are k ai’s that are smaller
than c2 and there are k + 1 ways to assign values to c1, a1, · · · ak. The remaining entries
of the continuous multiline queue satisfy the following inequalities:

ak+1 < ak+2 < · · · < as

∧ ∧ · · · ∧
b2 < · · · < bt−k−1 < bt−k < · · · < bs+t

∧ . . . ∧ ∧ · · · ∧
c3 < · · · · · · · · · · · · · · · < cn.

Such configurations are in bijection with standard Young tableaux of shape λk = (n −
2, s + t − 1, s − k) which are f(n−2,s+t−1,s−k) in number. Thus, the number of continuous
multiline queues contributing to α1,3(s, t, n) where a1 > b1 is given by

(
N − 2

s

)
f(n−2,s+t−1) −

s∑
k=0

(k + 1)f(n−2,s+t−1,s−k).

Adding this to
(

N−2
s−1

)
f(n−2,s+t−1) for the case a1 < b1, we get
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α1,3(s, t, n) =
(

N − 2
s − 1

)
f(n−2,s+t−1) +

(
N − 2

s

)
f(n−2,s+t−1)

−
f(n−2,s+t−1)

n(s + t)

s∑
k=0

(k + 1)(t + k)(n − s + k)
(

N − k − 3
s − k

)
(3.5.1)

Summing (k + 1)(t + k)(n − s + k)
(

N−k−3
s−k

)
over k = 0 to s, we get

(s((n + 2)2t + 2n(n + 2) + t2 − t3 − 4) − s2((n + 2t + 1)t − 6) − s3(t + 2)

+ nt(n + t)(n + t + 1))
(

N − 1
s

)
.

Now, simplifying the right hand side of (3.5.1), we have

α1,3(s, t, n) = (n − s − t)(n + t + 2)
(n + s + t)(n + s + t + 1)

(
N − 1

n, s − 1, s + t

)

=
((

N − 2
s − 1

)
−
(

N − 2
s − 3

))
f(n−1,s+t).

Proposition 3.20. A continuous multiline queue of type ms,t with N in the last row,
such that there is exactly one wrapping from the second row, projects to a word ω with
ω1 = 1 and ω2 = 3 if and only if

1. there exists i < s such that ai → bs+t−1 → cn and ai+1 → bs+t
W−→ c1, and

2. b1 > c2.

Proof. Let M be a continuous multiline queue with N in the last row and exactly one
wrapping from the second row such that the projected word ω has ω1 = 1 and ω2 = 3.
If b1 < c2 in M , then c2 is bullied by at least one bi (either by b1 or by the wrapping)
giving ω2 < 3, a contradiction. Therefore, b1 > c2.

Then, there exists integers, say j, v such that aj → bv
W−→ c1 to give ω1 = 1. If

v < s + t, then there exists w > v such that bw
W−→ c2, once again giving a contradiction.

Therefore, v = s + t. Further, since aj → bs+t
W−→ c1, there exists i < j and u < s + t

such that ai → bu → cn to give ωn = 1. Otherwise, bs+t bullies cn = N and there is no
wrapping from the second row to the third row. Since, bu → cn, all of bu+1, bu+2, · · · , bs+t

wrap around to the third row. As there can be exactly one such wrapping, u + 1 = s + t.
Moreover, since ai → bs+t−1, ak wraps around to the second row for all k > i + 1, thus
proving j = i + 1. The reverse implications are straightforward to verify.
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Recall that the number of continuous multiline queues satisfying Proposition 3.20 is
counted by β1,3. The values of β1,3(s, t, n) for different s and t for n = 5, 6 are shown in
Table 3.2.

s\t 0 1 2
2 9 14 14
3 140 154 0
4 924 0 0

s\t 0 1 2 3
2 14 28 42 42
3 280 504 546 0
4 3276 3822 0 0
5 19110 0 0 0

Table 3.2: Data for β1,3(s, t, n) for n=5,6

By observing the above data, we formulate the following expression for β13.

Theorem 3.21. β1,3(s, t, n) =
(

N−1
s−2

)
f(n−1,s+t).

Remark 3.22. It is interesting to see that the techniques we have used to prove the
earlier cases do not work here as there is no easy bijection which can be used to prove
Theorem 3.21. We use alternative methods to give the proof of Theorem 3.21 in Sec-
tion 3.5.1. For now, we independently prove Theorem 3.17 using the properties of con-
tinuous multiline queues that are counted by β1,3.

We first prove that β1,3(s, t, n) satisfies a simple recurrence.

Lemma 3.23. For s, t ≥ 2 and s + t < n:

β1,3(s, t, n) = β1,3(s − 1, t + 1, n) + β1,3(s, t − 1, n) + β1,3(s, t, n − 1). (3.5.2)

Proof. Consider a continuous multiline queue M satisfying the conditions from Propo-
sition 3.20. Let c2 = k + 2 for some k ≤ s. Then, M has the following configuration:

a1 a2 · · · ak · · · as

b1 b2 · · · bk · · · · · · bs+t

c1 k + 2 · · · · · · · · · · · · · · · cn−1 N.

1 3 · · · · · · · · · · · · · · · · · · 1

Since b1 > c2, there are only
(

k+1
k

)
= k +1 ways to assign values to c1, a1, . . . , ak from the

set [k + 1]. Thus, for each u ≤ k, au → bu. Given that the rows are strictly increasing,
exactly one of the following cases is true:

1. ak+1 = k + 3:
Here ak+1 bullies bk+1, so ak+1 does not bully bs+t−1 or bs+t. Deleting ak+1 and
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subtracting 1 from all the values higher than k + 3 does not affect the bully paths
containing bs+t−1 or bs+t. In the projected word ω, one of the 1’s changes to a 2.
So, there are β1,3(s − 1, t + 1, n) such continuous multiline queues.

2. b1 = k + 3:
b1 bullies c3. Deleting b1 and subtracting 1 from all the values higher than k + 3
in the continuous multiline queue does not affect the bully paths containing bs+t−1

or bs+t. In the projected word ω, one of the 2’s changes to a 3. Thus, there are
β1,3(s, t − 1, n) such continuous multiline queues.

3. c3 = k + 3:
Finally, in this case, c3 is not bullied by any bu because b1 > c3 and there is exactly
one wrapping from the second to the third row. Here, deleting c3 and subtracting
1 from all the values higher than k + 3 does not affect any bully path and the
length of the resulting projected is reduced by one. There are β1,3(s, t, n − 1) such
continuous multiline queues.

Therefore, β1,3(s, t, n) is obtained by adding the numbers in each of the above cases.

We can verify the equation

α1,3(s, t, n) = α1,3(s − 1, t + 1, n) + α1,3(s, t − 1, n) + α1,3(s, t, n − 1),

for s, t ≥ 2 and n > s + t by plugging the value of α1,3(s, t, n) from Theorem 3.19. This
along with Lemma 3.23 gives the recurrence relation

n1,3(s, t, n) = n1,3(s − 1, t + 1, n) + n1,3(s, t − 1, n) + n1,3(s, t, n − 1),

for s, t ≥ 2 and n > s + t. Let P (s, t, n) denote the product
(

N−1
s−1

)
fn−1,s+t from Theo-

rem 3.17. We have

P (s, t, n) = P (s − 1, t + 1, n) + P (s, t − 1, n) + P (s, t, n − 1),

using Pascal’s rule and the hook length recurrence relation f(a,b) = f(a−1,b)+f(a,b−1) where
a ≥ b > 1 ( see Remark 2.9). As a result, P (s, t, n) satisfies the same recurrence relation
as n1,3(s, t, n). Moreover, n1,3(s, t, s + t) = 0 as there is no 3 in the projected word. We
also have

n1,3(1, t, n) = α1,3(1, t, n) = f(n−1,t+1),
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as β1,3(1, t, n) = 0 for all t, n. This holds because for a continuous multiline queue with
exactly one wrapping from the second row to the third row which projects to a word
beginning with (2, 3), we need s to be greater than 1, by Proposition 3.20. Thus, proving
the initial condition n1,3(s, 1, n) = P (s, 1, n) completes the proof of Theorem 3.17. To
that end, we have the following result.

Proposition 3.24. For s, n such that 1 < s + 1 < n, we have

n1,3(s, 1, n) =
(

n + 2s

s − 1

)
f(n−1,s+1). (3.5.3)

Proof. Recall that ms,t = (s, t, n − s − t). Also, nx,y(s, t, n) counts the number of contin-
uous multiline queues M of type ms,t with N in the last row, such that M projects to a
word ω where ω1 = x and ω2 = y.

M =

a1 a2 · · · as

b1 b2 · · · · · · bs+t

c1 c2 · · · · · · · · · cn−1 N.

x y · · · · · · · · · ωn−1 ωn

Let µx,y be the probability that a particle labelled x is immediately followed by a par-
ticle labelled y in a continuous TASEP of type ms,t, with x followed by y. Then by
Lemma 3.11,

µx,y = n + 2s + t(
n+2s+t
s,s+t,n

) nx,y.

Consider M ′, a continuous multiline queue of type mu = (u, n − u) such that the largest
entry N ′ = n + u is in the last row. Recall from Section 3.2.3, that δc,d(u, n) counts the
number of continuous multiline queues M ′ with N ′ in the last row, such that M ′ projects
to a word ω′ where ω′

1 = c and ω′
2 = d.

M ′ =
a1 a2 · · · au

b1 b2 · · · · · · bn−1 N ′

c d · · · · · · ω′
n−1 ω′

n

.

From (3.2.11), we know that δ2,2(u, n) = f(n−2,u). Let ϵc,d(n) denote the probability that
a particle labelled c is immediately followed by one labelled d in a continuous two-species
TASEP of type mu. Then, again by Lemma 3.11,

ϵc,d = n + u(
n+u
u,n

)δc,d.
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We can define a lumping (or a colouring) for the continuous three-species TASEP of
type ms,t to a continuous two-species TASEP as follows. Let Ωs,t and Ωs be the set of
labelled words on a ring of type ms,t and ms = (s, n − s) respectively. Let f : Ωs,t → Ωs

be a map defined as follows:

f(ω1, . . . , ωn) = (f(ω1), . . . , f(ωn)),

where

f(i) =

1, if i = 1,

2, if i = 2, 3.

x\y 1 2 3
1 µ1,1 µ1,2 µ1,3
2 µ2,1 µ2,2 µ2,3
3 µ3,1 µ3,2 µ3,3

Table 3.3: The table contains the correlations of two adjacent particles in Ωs,t. The
table is divided into four parts, and entries of the yellow, green, red and blue sections
contribute to the correlations ϵ1,1, ϵ1,2, ϵ2,1 and ϵ2,2 respectively in Ωs.

By lumping the Markov process, we have

ϵ2,2 = {µ2,2 + µ3,2 + µ2,3 + µ3,3}.

That is,
n + s(

n+s
s

)δ2,2 = n + 2s + t(
n+2s+t
n,s,s+t

) {n2,2 + n3,2 + n2,3 + n3,3}. (3.5.4)

Let t = 1. Then, n2,2 = 0 because there is only one particle with label 2 in the three-
species continuous TASEP. Note that n3,2(s, t, n) = τs,t from Section 3.3. Thus, substi-
tuting t = 1 in (3.3.4), we obtain

n + 2s + 1(
n+2s+1
n,s,s+1

) τs,t = n(s + 1)
(n + s)(n + s + 1)

(
−1 + s

n
+ (n + s)(n2 + n − s(s + 1) − 2)

(n + s − 1)(s + 1)(n + s + t)

)

= n(s + 1)
(n + s)(n + s + 1) × −n(s + 1)(n + s − 1) + s(s2 − 1) + (n3 + n2 − 2n)

n(n + s − 1)(s + 1)

= (n + s)(n − s − 1)(n − s + 1)
(n + s)(n + s − 1)(n + s + 1)
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Therefore,
n + 2s + 1(

n+2s+1
n,s,s+1

) n3,2(s, 1, n) = (n − s − 1)(n − s + 1)
(n + s − 1)(n + s + 1) . (3.5.5)

We also have

{n1,3 + n2,3 + n3,3}(s, 1, n) = n − s − 1
n + 2s + 1

(
n + 2s + 1
n, s, s + 1

)
, (3.5.6)

by substituting t = 1 in (3.4.1). Solving (3.5.6) for n1,3 using (3.5.4) and (3.5.5) gives

n1,3(s, 1, n) = s(n − s − 1)
(n + s + 1)(n + 2s + 1)

(
n + 2s + 1
n, s, s + 1

)

=
(

n + 2s

s − 1

)
f(n−1,s+1),

proving the result.

3.5.1 Proof of Theorem 3.21

We can now prove Theorem 3.21 directly using Theorem 3.17 as follows.

Proof of Theorem 3.21.

β1,3(s, t, n) = n1,3(s, t, n) − α1,3(s, t, n)

=
((

N − 1
s − 1

)
−
(

N − 2
s − 1

)
+
(

N − 2
s − 3

))
f(n−1,s+t)

=
(

N − 1
s − 2

)
f(n−1,s+t).

In addition, we describe the developments made towards a direct proof of Theo-
rem 3.21 using the first principles in this section. Recall the recurrence relation (3.5.2).
The equation holds true for s, t ≥ 2 and s + t ≤ n. It is easy to verify that the product(

N−1
s−2

)
f(n−1,s+t) satisfies the same recurrence relation as β1,3(s, t, n). Thus, it is sufficient

to show that the initial conditions are the same for both quantities. The conditions are:

β1,3(1, t, n) = 0,

β1,3(s, t, s + t) = 0,

β1,3(s, 1, n) =
(

N − 1
s − 2

)
f(n−1,s+1).
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The first two initial conditions are straightforward. We now provide a formula for β1,3

for t = 1.

Lemma 3.25.
β1,3(s, 1, n) =

s∑
ℓ=2

γℓ(s, n),

where γℓ(s, n) is the number of continuous multiline queues of type ms,1 with c2 = ℓ, cn =
N and b1 > c2, such that the projected words have 1 and 3 in the first two places respec-
tively.

Proof. Consider a continuous multiline queue M of type ms,1 that is counted by β1,3(s, 1, n):

M =

a1 a2 · · · · · · as

b1 b2 · · · · · · bs bs+1

c1 c2 · · · · · · · · · · · · cn−1 N.

1 3 · · · · · · · · · · · · · · · 1

Let c2 be equal to ℓ which is greater than 1. According to Proposition 3.20, c2 < b1.
Therefore, the values {1, . . . , ℓ − 1} are assigned to c1, a1, . . . , aℓ−2. Since there exists i

such that ai → bs and ai+1 → bs+1, ℓ ranges from {2, . . . , s}. The set of all continuous
multiline queues counted by β1,3(s, 1, n) can be divided into smaller sets depending on the
value of ℓ. We denote the number of such continuous multiline queues that have c2 = ℓ

as γl(s, n). By adding over all possible values of ℓ, we obtain the required expression.

Next, we prove a formula for γℓ from the first principles. First, consider a skew shape
λ/µ, where λ and µ are partitions such that µ ⊆ λ in containment order. Recall from
Section 2.2, that the number of standard Young tableaux of a skew shape λ/µ is given
by fλ/µ and it can be computed using (2.2.4).

Theorem 3.26.

γℓ(s, n) = (ℓ − 1)
s−1∑

i=ℓ−1

i−2∑
j=ℓ−2

n−s+i−1∑
k=2

f(n−s+i−3,i−2,j−ℓ+2)/(n−s+i−k−1) ×
(
f(n+i−k−j,s−j,s−j)/(i−j+1,i−j−1) − f(n+i−k−j−1,s−j,s−j)/(i−j,i−j−1)

)
.(3.5.7)

Proof. Let c2 = ℓ. Then, γℓ(s, n) counts the number of continuous multiline queues M
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with the following configuration.

M =

a1 a2 · · · as

b1 b2 · · · bs bs+1

c1 ℓ · · · · · · · · · N,

1 3 · · · · · · · · · 1

where b1 > c2, such that c1, a1, . . . aℓ−2 ∈ [ℓ − 1]. We can choose c1 in (ℓ − 1) different
ways, and the choice determines the values of a1 to aℓ−2. These values must satisfy
au < bu for 1 ≤ u ≤ ℓ − 2, implying that au → bu for each u.

Since M is of type (s, 1, n − s − 1), there is exactly one bi which is not bullied by any
aj in the first iteration of the bully path process. Here, i can range from ℓ − 1 to s − 1.
For a fixed i, we can split the set of entries of a continuous multiline queue into two sets
based on their relation with bi. Let j and k be the largest integers such that aj < bi and
ck < bi respectively. The value of j lies between ℓ − 2 and i − 1 by the choice of i and j.
And n − k > s − i ensures that there is no more than one wrapping from the second row
to the third row which implies that k lies between 0 and n−s+ i−1. For the continuous
multiline queues with at most one wrapping from the second row to the third row, the
following inequalities hold for fixed i, j and k according to Proposition 3.20.

aℓ−1 < . . . < aj

∧ · · · ∧
b1 < . . . < . . . < bi−1

∧ · · · ∧
c3 < . . . . . . < ck

< bi <

aj+1 < . . . . . . < . . . < as

∧ · · · ∧ ∧
bi+1 < . . . bs < bs+1

∧ · · · ∧
ck+1 < · · · < · · · cn.

These arrangements are counted by the product of hooks length formulas of appro-
priate skew shapes, i.e. by,

fλ1/µ1 .fλ2/µ2 , (3.5.8)

where λ1/µ1 = (n − s + i − 3, i − 1, j − ℓ)/(n − s + i − k − 1) , λ2/µ2 = (n + i − k − j, s −
j, s − j)/(i − j + 1, i − j − 1).

To obtain the required number of continuous multiline queues with exactly one wrap-
ping from the second row to the third row, we have to remove the continuous multiline
queues with no wrapping from the second row to the third row from the above set. These
multiline queues are determined by the inequalities:
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aℓ−1 < · · · < aj

∧ · · · ∧
b1 < · · · < · · · < bi−1

∧ . . . ∧
c3 < · · · · · · < ck

< bi <

aj+1 < · · · < · · · < as

∧ · · · ∧
bi+1 < · · · < bs+1

∧ . . . ∧
ck+1 < · · · < · · · < cn.

The number of these arrangements is

fλ1/µ1 .fλ3/µ3 , (3.5.9)

where λ3/µ3 = (n + i − k − j − 1, s − j, s − j)/(i − j, i − j − 1).
Summing the difference of two products in (3.5.8) and (3.5.9) over all possible values

of i, j, k, and multiplying the sum with ℓ−1 for each choice of c1, we prove the result.

Remark 3.27. Unfortunately, we have not been able to find a closed-form expression
of the sum on the right-hand side of (3.5.7). However, by doing extensive numerical
checks, we have a conjecture formulating γℓ(s, n).

Conjecture 3.28. We have,

γℓ(s, n) = (ℓ − 1)
(

n + 2s − ℓ

s − ℓ

)
f(n−1,s+1).

Assuming Conjecture 3.28, we can immediately prove by summing over ℓ that

β1,3(s, 1, n) =
(

n + 2s

s − 2

)
f(n−1,s+1),

. This gives an alternative proof of Theorem 3.21 given Conjecture 3.28
Next, we demonstrate an approach to prove Conjecture 3.28. First, consider the set

H of continuous multiline queues of type ms,1 that have c1 = 1, c2 = 2 and cn = N

where N = n+2s+1 is the largest entry. Let ρc,d(s, n) denote the number of continuous
multiline queues in H that project to a word starting with c, d. That is, a continuous
multiline queue in H that contributes to ρc,d(s, n) has the following structure:

a1 a2 · · · · · · as

b1 b2 · · · · · · bs bs+1

1 2 · · · · · · · · · · · · N.

c d · · · · · · · · · · · · · · ·
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Similarly, let ρd(s, n) denote the number of continuous multiline queues in H that project
to a word with d at the second position. Then for s, n we have,

ρ1,3(s, n) + ρ2,3(s, n) + ρ3,3(s, n) = ρ3(s, n). (3.5.10)

Note that ρ1,3(s, n) = γ2(s, n). Moreover, ρ3,3(s, n) =
(

N−3
s

)
f(n−2,s+1) following the same

lines of arguments as in Lemma 3.15. For ρ3, consider a continuous multiline queue of
the form

a1 a2 · · · · · · as

b1 b2 · · · · · · bs bs+1

1 2 · · · · · · · · · · · · N.

· 3 · · · · · · · · · · · · · · ·

To count such configurations, note that there is no restriction on the ai’s and they can
be assigned any values from the set {3, . . . , N − 1}. There can at most be one wrapping
from the second row to the third row, thus the remaining entries satisfy the following
inequalities:

b1 < . . . < bs−1 < bs < bs+1

∧ · · · ∧ ∧
c3 < . . . < . . . < cn−1 < N.

The arrangements are in bijection with standard Young tableaux of skew shape (n −
1, s + 1)/(2). Therefore,

ρ3(s, n) =
(

N − 3
s

)
f(n−1,s+1)/(2). (3.5.11)

Hence, it is enough to compute ρ2,3(s, n) in order to find γ2(s, n) using (3.5.10),
which in turn gives β1,3(s, 1, n). The values of ρ2,3(s, n) for different s and n are shown
in Table 3.4. By observing Table 3.4, we conjecture the following formula for ρ2,3(s, n).

s\n 3 4 5 6
1 3 4 5 6
2 0 40 70 112
3 0 0 630 1260
4 0 0 0 11088

Table 3.4: ρ2,3(s, n) for different values of s and n
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Conjecture 3.29. We have

ρ2,3(s, n) =
(

N − 3
n − 1

)
f(s,s).

Assuming Conjecture 3.29, we have ρ1,3 = γ2(s, n) =
(

N−3
s−2

)
f(n−1,s+1), by (3.5.10)

and (3.5.11).
Since

(
N−3
n−1

)
= N−3

n−1

(
N−4
n−2

)
, proving Conjecture 3.29 is equivalent to proving the fol-

lowing recurrence.

Conjecture 3.30. We have

(n − 1)ρ2,3(s, n) = (n + 2s − 2)ρ2,3(s, n − 1).

We now give a formula for ρ2,3(s, n) in terms of hook length formula for skew shapes
using the first principles. The following triple sum formula gives a formula for ρ2,3(s, n).

Theorem 3.31. Let ρ2,3(s, n) denote the number of continuous multiline queues with
c1 = 1, c2 = 2 and cn = N that project to words beginning with (2, 3). We have

ρ2,3(s, n) =
s+1∑
i=1

i−1∑
j=0

i−1∑
k=0

f(s−j+k,s−i+k+1,s−i+k)/(k,k)×

{f(n+i−s−3,i−1,j)/(k) − f(n+s−i−4,i−1,j)/(k−1)}. (3.5.12)

Proof. There exists a unique i ∈ [s + 1] such that aj does not bully bi for any j. Also
bi → c1 by wrapping around from the second to the third row. We already have c1 =
1, c2 = 2 and cn = N . We can split the set of remaining entries from each of the three
rows into two sets depending on their relation with bi. Let j and d be the largest integers
such that aj < bi and cd < bi. Here, j lies between 0 and i − 1. Since there is no more
than one wrapping from the second row to the third row, we have n−d > s+1− i which
implies that d < n − s + i − 1. Further, d > n − s − 1 as bi > b1 > c2. For fixed i, j, d,
following inequalities hold:

a1 < · · · < aj

∧ · · · ∧
b1 < · · · < · · · < bi−1

∧ ∧
c3 < · · · < cd

< bi <

aj+1 < · · · < · · · < as

∧ · · · ∧
bi+1 < · · · < bs+1

∧ . . . ∧
cd+1 < · · · < · · · < N

Let k be the number of extra entries of the third row that are sticking out in the
third row of the skew shape on the right of bi, i.e., k = (n − d) − (s − i + 1). The range
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of k as inferred from the range of d is 0 ≤ k < i. These arrangements are counted by the
product of the numbers of standard Young tableaux for the appropriate skew shapes, i.e.
by,

fλ1/µ1 .fλ2/µ2 , (3.5.13)

where λ1/µ1 = (n+i−s−3, i−1, j)/k and λ2/µ2 = (s−j+k, s−i+k+1, s−i+k)/(k, k).
From these arrangements, for k > 1, we have to remove the arrangements which do

not result in bi wrapping from the second row to the third row. These are obtained by
shifting the bottom row of inequalities in the skew shape on the left of bi by 1 position
towards the right. The resulting inequalities are as follows:

a1 < · · · < aj

∧ · · · ∧
b1 < · · · < · · · < bi−1

∧ . . . ∧
c3 < · · · < · · · < cd

< bi <

aj+1 < · · · < · · · < as

∧ · · · ∧
bi+1 < · · · < bs+1

∧ . . . ∧
cd+1 < · · · < · · · < N

The number of these multiline queues is

fλ3/µ3 .fλ2/µ2 , (3.5.14)

where λ3/µ3 = (n + i − s − 4, i − 1, j)/(k − 1).
Summing the difference of two products in (3.5.13) and (3.5.14) over all possible

values of i, j, k, we get Theorem 3.31.



Chapter 4

Correlations in the multispecies
PASEP on a ring

4.1 Introduction

The focus of this chapter is the multispecies partially asymmetric simple exclusion process
or PASEP. We are interested in calculating the correlations of the first two adjacent
particles in a multispecies PASEP on a finite ring. Martin [80] studied the stationary
distribution of the multispecies PASEP on a finite ring and developed a method to
sample exactly from the stationary distribution. He further gave results on the common
denominator of the stationary distribution and a few asymptotic results for large systems.
This analysis was done by using queuing systems which are constructed recursively and
can be seen as multiline diagrams or multiline queues.

This chapter proves a result of the two-point correlations in the stationary distribution
of the multispecies PASEP on a finite ring. To carry out this investigation, we use the
multiline process described in [80] and the procedure of lumping [74] to transform the
study of the stationary distribution of the multispecies PASEP into that of the stationary
distribution of the multiline process. This is very similar to the technique we have already
used in Chapter 3. We define bully paths on the multiline diagrams to project them to
a word and assign weights to each such projection. The probability of each projection is
defined in terms of the weights assigned to them.

4.2 Background and Results

To define the multispecies PASEP model, we consider a ring with a finite number of
sites; some of which are occupied by n different types of particles. The unoccupied sites

49
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or holes are then assigned the label n + 1 and are treated as particles with the highest
label. In a PASEP model, particles move preferentially in one direction, conventionally
from left to right. Let q ∈ [0, 1] be a parameter associated with this PASEP, known as
the asymmetry parameter of the system which signifies the rate at which particles flow
in the non-preferred direction in the asymmetric simple exclusion process. q = 1 is the
limiting case, and the limiting model is known as a symmetric simple exclusion process
or an SSEP. We will now give a formal description.

Let m = (m1, . . . , mn+1) be a tuple of nonnegative integers and let N = ∑
mi. A

multispecies PASEP of type m is a Markov process which is defined on a ring with N

sites. For each i ∈ [n], there are mi particles with label i that occupy the sites of the
ring. There are also mn+1 holes. Each site can accommodate at most one particle. Let
the state-space of the system be denoted by Λm and the states are given by the cyclic
words ω = (ωk : k ∈ [N ]), where ωk ∈ [n + 1] is the label of the site k. The dynamics of
the process are as follows. Each particle carries an exponential clock which rings with
rate 1, and the particle exchanges position with the particle on the right whenever the
clock rings. Let the particle on the left and the right be labelled i and j respectively.
The transitions happen with the following rates.

ij → ji with rate

1, if i > j,

q, if i < j.

In this chapter, we are interested in studying the correlations of the two particles at
first and the second sites of the ring for a PASEP of type ⟨1n⟩ = (1, . . . , 1) on a ring with
n sites. Let cq

i,j(n) denote the probability that particles with labels i and j are in the
first and the second positions (respectively) of the ring Zn in the stationary distribution.
Note that for q = 0, the process becomes a totally asymmetric simple exclusion process
or a TASEP on a finite ring for which the analysis has already been done by Ayyer
and Linusson [20]. Let c0

i,j(n) denote the probability that the first two sites of the ring
are occupied by particles labelled i and j respectively q = 0. This is formulated in the
following theorem.

Theorem 4.1. [20, Theorem 4.2] We have for i, j ∈ [n],

c0
i,j =



i−j

n(n
2)

, if i > j,

1
n2 + i(n−i)

n2(n−1) , if i = j − 1,

1
n2 , if i < j − 1.

We generalise Theorem 4.1 for arbitrary q ∈ [0, 1) and prove the following main
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theorem regarding the two-point correlations in this chapter.

Theorem 4.2. Let cq
i,j(n) be the probability that particles labelled i and j are in the

first and the second positions respectively in a PASEP of type ⟨1n⟩ = (1, . . . , 1). For
1 ≤ j < i ≤ n, we have

cq
i,j(n) = c0

i,j(n)−(i − j + 2)(j − 1)(n − i)q[i − j + 1]q
n2(n − 1)[i − j + 2]q

−j(i − j)(n − i + 1)q[i − j − 1]q
n2(n − 1)[i − j]q

+ (i − j + 1)(2j(n − i) + i + j − n − 1)q[i − j]q
n2(n − 1)[i − j + 1]q

, (4.2.1)

and for 1 ≤ i < j ≤ n, we have

cq
i,j(n) = c0

i,j(n) + i(j − i)(n − j + 1)q(j−i−1)

n2(n − 1)[j − i]q
+ (i − 1)(j − i + 2)(n − j)q(j−i+1)

n2(n − 1)[j − i + 2]q

− (j − i + 1)(2i(n − j) + i + j − n − 1)q(i−j)

n2(n − 1)[j − i + 1]q
, (4.2.2)

where [k]q = 1 + q + · · · + qk−1 is the q-analog of an integer k > 0.

Remark 4.3. Note that setting q = 0 in (4.2.1) and (4.2.2) gives cq
i,j(n) = c0

i,j(n).

We prove this result using Martin’s multiline process [80] and lumping defined in Sec-
tion 2.1.2. We begin by defining some notation. Consider the tuple m = (m1, . . . , mn+1)
such that N = m1 + · · · + mn+1. To construct a multiline queue or an MLQ of type
m, take a cylinder of n rings numbered from top to bottom; each having N sites. For
every k ∈ [n], Sk = m1 + · · · + mk sites on the kth ring are occupied by particles and
there is no other constraint. We denote an occupied site with a • and an unoccupied
site or a hole with a ◦. Refer to Figure 4.1 for an example of a multiline queue of type
(2, 1, 2, 2, 6). Let Ωm be the set of all multiline queues of type m. Since the choice of
sites to be occupied on different lines is independent, it is easy to see that the number
of multiline queues in Ωm is

(
N
S1

)(
N
S2

)
. . .
(

N
Sn

)
.

Each multiline queue can be projected to many possible words of type m using q-bully
path algorithm from [80] which is a generalisation of the bully path algorithm given in
Section 3.2.1. It is a recursive process where at each step we pick a topmost row where a
particle is available and connect an occupied site in it to an available particle in the next
row and so on till a particle in the last row is linked. This is repeated until every • in the
first n − 1 rows is linked with a • in a row next to it. We call each connection between
two particles on adjacent rows a link (denoted by →) and each such link is assigned a
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Figure 4.1: A multiline queue of type (2, 1, 2, 2, 6)

weight according to the number of particles available for bullying at that step. Corteel,
Mandelshtam and Williams [32] use the term pairing to denote these links. A linked
multiline queue or an LMLQ is defined as a multiline queue along with a maximal given
set of bully links. See Figure 4.2 for an example of a linked multiline queue.

Figure 4.2: A linked multiline queue of type (2, 1, 2, 2)

Each linked multiline queue is associated with a word and a weight. The weight of
an LMLQ is given by the product of the weights of all the links in it. We now give a
description of the q-bully path algorithm first for the case n = 2, and later for general
n. Let m = (m1, m2, m3), i.e., each site of the multispecies PASEP of type m is either a
hole or has a particle of type 1 or of type 2. Consider a multiline queue M of type m.

(1) Choose an occupied site a in the first row of M . If there is a particle at site a in the
second row as well, we construct a straight link in the ath column of M and assign
to it a weight 1. We call this link a “trivial” link.

(2) Otherwise, let there be t available particles in the second row at sites b1, . . . , bt. We
reorder these t particles in increasing order of the values (bj − a) mod N . The
particle at a can link to any of the t particles giving us many possible LMLQs. If it
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is linked to the particle at site bi, then the link a → bi has weight

qi−1

[t]q
.

The particle at site bi is now unavailable for further linking. See Figure 4.3 for
examples of a link. Repeat this process by choosing particles in the first row in an
arbitrary order and linking it to a particle in the second row. In Example 4.4 below,
we proceed from left to right.

Figure 4.3: Examples of a trivial and a non-trivial link. The weight of the trivial link on
the left is 1, and the weight of the non-trivial link on the right is q

[2]q .

(3) Label all the linked particles in the second row as type 1, the particles that are not
linked as type 2 and the unoccupied sites as type 3. This algorithm thus creates a
linked multiline queue of M . The associated word ω = (ωi : i ∈ [3]), where ωi is the
label of the site i in the second row of the multiline queue, is called the projected
word of the LMLQ.

The weight of a linked multiline queue is the product of all the link weights. The
probability of a word ω of type m in Λm is proportional to the sum of weights of all the
LMLQs that project to ω. Next, we see an example of the q-bully path algorithm with
the help of a few different linked multiline queues of the same multiline queue.

Example 4.4. Let m = (3, 2, 3). Let M be a multiline queue of type m, i.e.,

M =
◦ ◦ • ◦ • • ◦ ◦
• • ◦ ◦ • ◦ • •

.

Figure 4.4 illustrates a few different linked multiline queues of M each projecting to
a word in Λm. Note that two or more different LMLQs can project to the same word;
evident from the first two examples in Figure 4.4.
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Figure 4.4: Linked multiline queues of an MLQ of type (3,2,3). The weights of the linked
MLQs from left to right are 1·q3·q

[5][4][3] ,
q2·q2

[5][3] and q2·q
[5][3] respectively.

The q-bully path algorithm can be seen in terms of a queueing process. The indices
with • in the first row can be interpreted as “arrival times” in a system of queues, and the
indices with • in the second row are “service times”. For each arrival time, the algorithm
assigns a different “departure time” from the available service times. The sites in the
second row are thus classified into departure times, times of unused service or times of
no service. These are labelled as 1, 2 and 3 respectively in the projected word.

Now we define the algorithm for n > 2 recursively.

1. Let m = (m1, . . . , mn+1) be such that N = ∑
mi. Consider M , a multiline queue

of type m. Link all the particles in the first row to m1 particles in the second row
by following the q-bully path algorithm for n = 2 described earlier. Label the sites
in the second row 1, 2 or 3 accordingly.

2. For k > 1, let us assume that all the particles in the ith row have been linked to
an occupied site in the (i + 1)st for all i < k such that the sites in the kth row are
thus labelled 1 to k + 1 depending on the links from (k − 1)th row. Repeat Steps
(1) and (2) of the algorithm for case n = 2 for all the particles in the kth row in
the increasing order of their types. Label the linked particles of (k + 1)th row by
the index of the site on the kth row to which it is linked. The unlinked particles
in (k + 1)th row are labelled k + 1 and the holes are labelled k + 2. Similar to the
Step (2) for case n = 2, a weight is assigned to the links according to the number
of available particles.

3. Repeat the above step for all k ≤ n. We now have a linked multiline queue. The
weight of the LMLQ is given by the product of the weights of all the links in it.
The labels of all the sites in nth row generate a word ω = (ωi : i ∈ [n + 1]). Refer
to Figure 4.5 for an example of q-bully path projection on a multiline queue with
4 rows; with the product of link weights of each row mentioned towards its right.
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Figure 4.5: An LMLQ of type (2, 1, 2, 2, 6) with weight q4

[6]q![5]q

Finally, we use the projection principle to prove the main result of this chapter. Let
mn = (1, . . . , 1) and let Ωn be the set of all multiline queues of type mn. To compute
the correlation cq

ij(n) from Theorem 4.2 for i, j ∈ [n], we look at all the LMLQ of type
mn that project to a word with i in the first place and j in the second place. The
projection principle states that the particles of a type larger than i look the same to
a particle of type i. A similar argument holds for all particles of type smaller than i.
Therefore, similar to Section 3.2, we can lump the multispecies PASEP of type mn to
the multispecies PASEP of type ms,t = (s, t, n − s − t). Given two particles with labels
i and j, the particle with the lesser of the two labels becomes a 2 and that with the
greater label becomes a 3 in the PASEP of type ms,t. Let Ωs,t(n) be the set of multiline
queues of type ms,t and let

T<(s, t) =P{ω1 = 2, ω2 = 3}, and

T>(s, t) =P{ω1 = 3, ω2 = 2},

where ω is a random word in the state space of the multispecies PASEP of type ms,t.
Let i < j. Then, by the projection principle we have

T<(s, t) =
n∑

j=s+t+1

s+t∑
i=s+1

cq
ij(n),

and using the principle of inclusion-exclusion we get

cq
i,j(n) = T<(i − 1, j − i) − T<(i, j − i − 1) − T<(i − 1, j − i + 1) + T<(i, j − i). (4.2.3)
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Similarly, for i > j we have

T>(s, t) =
n∑

i=s+t+1

s+t∑
j=s+1

cq
ij(n),

and hence we get

cq
i,j(n) = T>(j − 1, i − j) − T>(j, i − j − 1) − T>(j − 1, i − j + 1) + T>(j, i − j). (4.2.4)

4.3 Proof of Theorem 4.2

We first prove Theorem 4.2 for the case i > j. Let M be a multiline queue of type ms,t

and (r, p) be the coordinate of pth site in the rth row such that M(r,p) ∈ {◦, •} denotes
the occupancy status of the site at (r, p). We use (4.2.4) to solve for ci,j. To compute
T>(s, t), we only need to consider the multiline queues in Ωs,t(n) which have either of
the following structures:

◦ ◦ . . . . . .

◦ • . . . . . .

3 2 . . . . . .

or
• ◦ . . . . . .

◦ • . . . . . .

3 2 . . . . . .

This holds because an unoccupied site is labelled 3, hence M2,1 = ◦ to ensure ω1 = 3.
Also, M2,2 = • so that ω2 ̸= 3. Further, if M1,2 = •, then we have a trivial link at the
second site in M giving ω2 = 1. Therefore, M1,2 = ◦.

Before computing the weights contributed by the LMLQs in the above two cases,
we first consider the set Θs,t(k) of multiline queues M of type (s, t, k − s − t) such
that there is no • at the same site in both the rows in M . In other words, there are
no trivial links in the LMLQs in Θs,t(k). Let ηs,t(k) be the total weight of all the
LMLQs in Θs,t(k) that project to a word beginning with 2. By the same argument as
in the previous paragraph, this requires that we only consider the multiline queues in
Θs,t(k) that begin with (◦

•). Let Cs,t(k) be the number of such multiline queues, i.e.,

Cs,t(k) = |{M ′ ∈ Θs,t(k) : M ′ begins with (◦
•)}|. We have

Cs,t(k) =
(

k − 1
s, s + t − 1, k − 2s − t

)
,

because the first column is fixed and we only have to select s (•
◦) and s + t − 1 (◦

•)
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columns from k − 1 columns. Next, we state a theorem computing ηs,t(k).

Theorem 4.5. For s, t ≥ 1 and s + t ≤ k, we have

ηs,t(k) = t

s + t

(
k − 1

s, s + t − 1, k − 2s − t

)
. (4.3.1)

Remark 4.6. It is interesting to note that despite being a sum of link weights which
are q-fractions, ηs,t(k) adds up to a rational number. There is no dependence on q and
it is not trivial to see why!

Before looking at the proof of Theorem 4.5, let us first consider an example for Θ1,2(4).

Example 4.7. We have C1,2(4) = 3. We consider below these three multiline queues
from the set Θ1,2(4) that begin with (◦

•) and list out all the possible projected words
along with their weights. According to Theorem 4.5,

η1,2(4) = 2
3

(
3
1

)(
2
2

)
= 2.

◦ • ◦ ◦
• ◦ • • wt

2 3 1 2 1
[3]q

2 3 2 1 q
[3]q

1 3 2 2 q2

[3]q

◦ ◦ • ◦
• • ◦ • wt

2 2 3 1 1
[3]q

1 2 3 2 q
[3]q

2 1 3 2 q2

[3]q

◦ ◦ ◦ •
• • • ◦ wt

1 2 2 3 1
[3]q

2 1 2 3 q
[3]q

2 2 1 3 q2

[3]q

Note that the words in red are the ones that begin with a 2 and the sum of the
weights of LMLQs in Θ1,2(4) that project to such a word is η1,2(4) = 2(1+q+q2)

[3]q = 2.
In addition, we make the following observations about this example. Adding the

weights from all the LMLQs of a multiline queue gives 1. For instance, the sum of all the
weights in each row is 1 for all three multiline queues. Next, rotating a linked multiline
queue rotates the projected word by the same distance while preserving the weight. In
each row above, the configurations in each column are rotations of one another and have
the same weight. Based on these observations, we prove these properties for a more
general class of multiline queues.

Lemma 4.8. Let M be a multiline queue in Θs,t(k). The following holds true for M .

(1) The sum of weights of all the linked multiline queues of M is 1.

(2) Rotating M while keeping the same links rotates the projected word by the same
distance, and the weights of the corresponding linked multiline queues remain un-
changed.
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Proof. We prove (1) by induction on s. Let s = 1. There are t+1 possible links from the
only • in the first row to a particle in the second row. This accounts for t + 1 LMLQs of
M ; each corresponding to one of these possibilities and they have weights qi−1/[t + 1]q
for i ∈ {1, . . . , t + 1}. Adding these weights for all i, we get 1.

Let us assume (1) is true for s − 1. Let M have s •’s in the first row and (s + t)
•’s in the second row at sites different from those with •’s in the first row. Let the
occupied sites in the second row be labelled as b1, . . . , bs+t. We can link the particles of
the first row to the particles in the second row in any order, in particular from left to
right. Let the leftmost • (say at site a) in the first row be linked to the particle at site
bi, where 1 ≤ i ≤ s + t. The weight of this link is qi−1/[s + t]q. Constructing links for the
remaining •’s in the first row is the same as constructing links in a multiline queue Md

which is obtained from the multiline queue M by deleting the columns a and bi. Note
that Md ∈ Θs−1,t(k − 2) and the sum of weights of all the LMLQs of Md is 1. That is,
the sum of all the LMLQs of M where a → bi is 1 · (qi−1/[s + t]q). Summing over all
i ∈ [s + t], we get (1).

To prove (2), recall that the projected word describes the label of each site in the
second row. Hence, rotating both rows of the MLQ simultaneously while keeping the
links preserved only rotates the projected word without changing the weights of any
links.

Proof of Theorem 4.5. Let S be the set of all the linked multiline queues in Θs,t(k) which
begin with (◦

•) and project to a word beginning with 2. Recall that ηs,t(k) is the sum of
the weights of all LMLQs in S. Let P ∈ S has the following structure

P =
◦ . . . . . .

• . . . . . .

2 . . . . . .

.

Further, recall that Cs,t(k) is the cardinality of set M = {M ∈ Θs,t(k) : M begins with (◦
•)}.

Consider any M ∈ M. The weights from all the LMLQs of M sum up to 1 by Lemma 4.8
(2). Note that not all of these LMLQs belong to S as not all of them project to a word
with a 2 in the first position. However, each LMLQ of M has exactly t rotations that are
in S because there are t •s in the second row that are not linked. Let Γ be the collection
of all the rotations of all the linked multiline queues in M that belong to S. Note that Γ
is a multiset. By Lemma 4.8 (1 and 2), the sum of the weights of all the linked multiline
queues in Γ is tCs,t,

Further, note that for each LMLQ in S, there are (s + t) rotations which start with
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(◦
•). In other words, each configuration of S is obtained as a rotation of (s + t) different

LMLQs in M. Therefore, each linked multiline queue of S has (s+t) copies in Γ. Hence,
the sum of the weights of all the linked multiline queues in Γ is (s + t)ηs,t(k). We use
the method of counting in two ways to get the equation

(s + t)ηs,t(k) = tCs,t(k), (4.3.2)

thereby completing the proof.

To compute T >
s,t(n), recall that we only need to consider the LMLQs with either of

the following structure:

(A)
◦ ◦ . . . . . .

◦ • . . . . . .

3 2 . . . . . .

or (B)
• ◦ . . . . . .

◦ • . . . . . .

3 2 . . . . . .

Let W A
s,t(n) and W B

s,t(n) denote the sum of the weights of the linked multiline queues of
type (A) and (B) respectively in Ωs,t(n) for which the corresponding word begins with
(3,2). For X ∈ {A, B}, let UX

s,t(n) ⊂ Ωs,t(n) be the set of LMLQs of type (X) that have
no • at the same position in both the rows. Now, let τX

s,t(n) be the weight contributed
to W X

s,t(n) by the LMLQs from UX
s,t(n).

Lemma 4.9. Let s, t ≥ 0, n > s + t and X ∈ {A, B}. W X
s,t and τX

s,t are related by the
following equations.

W A
s,t(n) =

s∑
i=0

(
n − 2

i

)
τA

s−i,t(n − i), (4.3.3)

W B
s,t(n) =

s−1∑
i=0

(
n − 2

i

)
τB

s−i,t(n − i). (4.3.4)

Proof. Links in any LMLQ can be constructed in any arbitrary order. So we construct
all the trivial links first and then process the remaining particles from left to right. Since
the weight of a trivial link is 1, the weight of an LMLQ is equal to the product of the
weights of non-trivial links.

Let an arbitrary linked multiline queue contributing to W X
s,t(n) have i (•

•) columns.
Then, i ∈ {0, . . . , s} for X = A and i ∈ {0, . . . , s−1} for X = B. There are

(
n−2

i

)
choices

for these i columns. Deleting these columns results in an LMLQ of type (s − i, t, n − i)
that belongs to UX

s−i,t(n−i). Summing over all possible values of i, we get Lemma 4.9.

Note that the linked multiline queues contributing to τA
s,t(n) are in bijection to those
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of ηs,t(n − 1) because the first column (◦
◦) of a multiline queue of type (A) does not

contribute to any link or to the weight of the configuration. So, τA
s,t(k) = ηs,t(k − 1) for

all k > 1. Substituting this equation in (4.3.3):

W A
s,t(n) =

s∑
i=0

(
n − 2

i

)
ηs−i,t(n − i − 1)

= t(n − 2)!(n − 1)!
s!(n − s − 1)!(s + t)!(n − s − t − 1)! .

Therefore,
W A

s,t(n)(
n
s

)(
n

s+t

) = t(n − s)(n − s − t)
n2(n − 1) .

To find τB
s,t, we start creating links from the second particle in the first row and move

rightwards along the ring. We construct the link of • at the first site at the end and it
has t + 1 particles available in the second row to bully. Hence, the weight of the link
of this particle is qh−1/[t + 1]q for some h ∈ {2, . . . , t + 1} because for h = 1, we get
ω2 = 1. Removing the first column from any linked multiline queue in UB

s,t(n) gives a
linked multiline queue of type (s − 1, t + 1, n − 1) that projects to a word beginning with
2 and has no • at the same position in both the rows. Recall that the sum of weights of
these LMLQs is equal to ηs−1,t+1(n − 1). Therefore,

τB
s,t(n) = ηs−1,t+1(n − 1)

t+1∑
h=2

qh−1

[t + 1]q

= t + 1
s + t

(
n − 2
s − 1

)(
n − s − 1
s + t − 1

)(
1 − 1

[t + 1]q

)
.

Substituting this in (4.3.4),

W B
s,t(n) =

s−1∑
i=0

(
n − 2

i

)
τB

s−i,t(n − i)

= (t + 1)(n − 2)!(n − 1)!
(s − 1)!(n − s)!(s + t)!(n − s − t − 1)!

(
1 − 1

[t + 1]q

)
.

Therefore,
W B

s,t(n)(
n
s

)(
n

s+t

) = s(t + 1)(n − s − t)
n2(n − 1)

(
1 − 1

[t + 1]q

)
.

We have
(

n
s

)(
n

s+t

)
T >

s,t(n) = W A
s,t(n) + W B

s,t(n). If t = 0 or s + t = n, the formula is
trivially satisfied for either of these cases as it is impossible for the projected word to
start with (3, 2). Let s = 0. Then, there is no type (B) multiline queues and the second
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row of type (A) multiline queues look like ◦ • . . . . ., hence there are
(

n−2
t−1

)
multiline

queue’s and each contribute weight 1. So, T >
0,t(n) = (n−2

t−1)
(n

t)
= t(n−t)

n(n−1) . Thus, we can write

T >
s,t(n) = t(n − s)(n − s − t)

n2(n − 1) + s(t + 1)(n − s − t)
n2(n − 1)

(
1 − 1

[t + 1]q

)

= t(n − s)(n − s − t)
n2(n − 1) + s(t + 1)(n − s − t)q[t]q

n2(n − 1)[t + 1]q
, (4.3.5)

for all 0 ≤ s, t ≤ n, s + t ≤ n.

Remark 4.10. Interestingly, the weight contributed by the type (A) multiline queues
does not depend on the value of q. Further, the formula in (4.3.5) is consistent with
T >

s,t(n) in [20] for the case q = 0, i.e., the multispecies TASEP on a ring.

The proof is completed by substituting (4.3.5) in (4.2.4). We get

cq
i,j(n) = 2(i − j)

n2(n − 1) + (i − j + 1)(2j(n − i) + i + j − n − 1)q[i − j]q
n2(n − 1)[i − j + 1]q

− (i − j + 2)(j − 1)(n − i)q[i − j + 1]q
n2(n − 1)[i − j + 2]q

− j(i − j)(n − i + 1)q[i − j − 1]q
n2(n − 1)[i − j]q

, (4.3.6)

when i > j + 1. For i = j + 1, we add terms corresponding to T >j,i−j−1 from (4.3.5) to
(4.3.6), which are

j(n − j)
n2(n − 1) − j(i − j)(n − i + 1)

n2(n − 1)[i − j]q
.

This proves Theorem 4.2 for the case 1 ≤ j < i ≤ n.

This case i < j is now solved analogously. Recall T <
s,t denotes the probability P{ω1 =

2, ω2 = 3} where ω is the word projected by a random multiline queue in Ωs,t. The
multiline queues that project to a word beginning with (2, 3) are of either of the following
types.

(C)
◦ ◦ . . . . . .

• ◦ . . . . . .

2 3 . . . . . .

or (D)
◦ • . . . . . .

• ◦ . . . . . .

2 3 . . . . . .

We compute the weights of the two cases separately as follows:

(C)
◦ ◦ . . . . . .

• ◦ . . . . . .

2 3 . . . . . .

Let W C
s,t(n) denote the sum of the weights of the LMLQs of MLQs of type (C)
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in Ωs,t(n) for which the corresponding word begins with (2, 3). Note that inter-
changing the first two columns of an LMLQ of type (C) does not change its weight.
Hence, W C

s,t(n) = W A
s,t(n).

(D)
◦ • . . . . . .

• ◦ . . . . . .

2 3 . . . . . .

.

Let W D
s,t(n) denote the sum of the weights of the linked multiline queues of MLQs

of type (D). Let UD
s,t(n) be the set of those LMLQs which have no (•

•) columns. Let
τD

s,t(n) be the weight contributed to W D
s,t by the linked multiline queues in UD

s,t(n).
We have a similar relation between W D

s,t(n) and τD
s,t(n) as we had for W B

s,t(n) and
τB

s,t(n) and it can be proved using the same arguments as in Lemma 4.9. We have

W D
s,t =

s−1∑
i=0

(
n − 2

i

)
τD

s−i,t(n − i). (4.3.7)

To find τD
s,t, we start creating links from the second • in the first row and move

rightwards along the ring. We construct the link of leftmost • in the first row in the
end and it has a weight equal to qh−1/[t + 1]q for some h ∈ {1, . . . , t} because for
h = t + 1, we get ω1 = 1. Deleting the second column from any LMLQ in UD

s,t(n)
gives an LMLQ of type (s − 1, t + 1, n − 1) that begins with ◦

• , has no • at the same
position in both the rows and projects to a word that starts with 2. The sum of
weights of the linked multiline queues is again equal to ηs−1,t+1(n − 1). Therefore,

τD
s,t(n) = ηs−1,t+1(n − 1)

t∑
h=1

qh−1

[t + 1]q

= t + 1
s + t

(
n − 2
s − 1

)(
n − s − 1
s + t − 1

)(
1 − qt

[t + 1]q

)
.

Substituting this in (4.3.7), we get

W D
s,t(n) =

s−1∑
i=0

(
n − 2

i

)
τD

s−i,t(n − i)

= (t + 1)(n − 2)!(n − 1)!
(s − 1)!(n − s)!(s + t)!(n − s − t − 1)!

(
1 − qt

[t + 1]q

)
.

Therefore,
W D

s,t(n)(
n
s

)(
n

s+t

) = s(t + 1)(n − s − t)
n2(n − 1)

(
1 − qt

[t + 1]q

)
.
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Once again we have,
(

n
s

)(
n

s+t

)
T <

s,t = W C
s,t + W D

s,t, i.e.,

T <
s,t(n) = (s + tn)(n − s − t)

n2(n − 1) − s(t + 1)(n − s − t)qt

n2(n − 1)[t + 1]q
, (4.3.8)

and substituting this in (4.2.3),

cq
i,j(n) = 1

n2 − (j − i + 1)(2i(n − j) + i + j − n − 1)q(i−j)

n2(n − 1)[j − i + 1]q

+ i(j − i)(n − j + 1)q(j−i−1)

n2(n − 1)[j − i]q
+ (i − 1)(j − i + 2)(n − j)q(j−i+1)

n2(n − 1)[j − i + 2]q
, (4.3.9)

when i > j + 1. For i = j + 1, we add terms corresponding to T >
j,i−j−1 from (4.3.8) to

(4.3.9), which are
j(n − j)
n2(n − 1) − j(i − j)(n − i + 1)

n2(n − 1)[i − j]q .

This proves Theorem 4.2 for the case 1 ≤ j < i ≤ n.
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Chapter 5

Correlations in the multispecies
B-TASEP

Consider any finite Weyl group W . Thomas Lam [71] studied random reduced words in
affine Weyl group W̃ corresponding to W . This is equivalent to a random walk on the
alcoves of W̃ under the condition that the walk enters a new alcove at each step and
never crosses any hyperplane in the Coxeter arrangement twice. Lam defined a finite
state Markov chain on W whose stationary distribution, say πW , can be formulated in
terms of the limiting direction of the random walk. In particular, for the affine Weyl
group of type A, he conjectured a closed formula for the limiting direction in terms of a
certain Markov chain on the set of permutations. Ayyer and Linusson [20] proved Lam’s
conjecture for the Weyl group of type A by investigating correlations in another Markov
chain, the multispecies TASEP on a ring (see [19]). Another study that was conducted
to find the limiting direction when W in a classical Weyl group was done by Aas, Ayyer,
Linusson and Potka [2] where they focused on studying the corresponding asymmetric
exclusion process for the affine Weyl groups of type B, C and D and computed the
limiting directions of the random reduced walks for respective groups.

The key to finding these limiting directions is to compute certain correlations in
the corresponding TASEPs. To that end, the authors of the paper [2] conjectured an
interesting formula for the two-point correlations of adjacent particles on the last two
sites of the multispecies B-TASEP [2, Conjecture 3.5]. In this chapter, we study these
correlations aiming to solve the aforementioned conjecture.

65
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5.1 Background

We first look at the exclusion process known as the multispecies B-TASEP (see [1]). Let
[±n] denote the set {−n, −n + 1, . . . , −1, 1, . . . , n − 1, n}. This process is defined on a
lattice with n sites such that there is at most one particle at each site. Each particle
is labelled with numbers from the set [±n] and there is the natural order among the
particles defined by these labels. The state space for this process consists of words on
length n where exactly one of i or −i is present, for all i. A particle with a higher
label exchanges positions with a particle of a smaller label only if the former of the two
is towards the left of the latter. We also write −i as ī. The dynamics of this process
are as follows: An edge joining two sites i and i + 1 is chosen with probability 1

n
for

i ∈ {0, . . . , n − 2}, and with probability 1
2n

for i ∈ {n − 1, n}. When the chosen edge lies
in the bulk of the lattice, i.e., for 1 ≤ i ≤ n − 1, the transition exchanges the particles
at adjoining sites. For i = 0, the transition only changes the sign of the first particle. If
finally i = n, the last two particles are exchanged and their signs are reversed. The rules
are given in Table 5.1.

First Site Bulk Last two Sites
Probability Transition Probability Transition Probability Transition

1
n

ī → i 1
n

mk → km 1
2n

ji → ij
ji → ij
jī → ij̄
jī → īj
ij → ji
ij → ji
īj → j̄i
ij → ji

Table 5.1: Transition rules for the multispecies B-TASEP where k < m ∈ [±n] and
i < j ∈ [n].

Let ΠB denote the stationary distribution of this exclusion process. Let ⟨i, j⟩ denote
the probability in ΠB that the last two sites in the multispecies B-TASEP are occupied by
particles labelled i and j respectively. We know from [2, Theorem 7.11] that ⟨i, j̄⟩ = ⟨i, j⟩.
The following conjecture states the two-point correlations for the last two positions.

Conjecture 5.1. [2, Conjecture 3.5] For i, j ∈ [±n], we have

1. For 3 ≤ i ≤ n, 1 ≤ j ≤ i − 2,

⟨i, j⟩ = 1
(2n)2 .
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2. For 1 ≤ j ≤ n − 1,
⟨j + 1, j⟩ = 1

(2n)2 + n2 − j2

4n2(2n − 1) .

3. For 1 ≤ i ≤ n − 1, i + 1 ≤ j ≤ n,

⟨i, j⟩ = j − i

2n2(2n − 1) ,

and for 1 ≤ i ≤ n − 2, i + 2 ≤ j ≤ n,

⟨i, j⟩ = i + j − 1
2n2(2n − 1) .

4. For 1 ≤ j ≤ n − 1,
⟨j, j + 1⟩ = j(n2 − j2 + 2n − 2)

2n2(2n − 1)(n − 1) .

5. For 2 ≤ i ≤ n, 1 ≤ j ≤ i − 1,

⟨i, j⟩ = 3(i − j)(i + j − 1)
4n2(2n − 1)(n − 1) .

5.1.1 B-TASEP

B-TASEP is a two-species TASEP defined on a lattice with n sites with a fixed number
of vacancies. The sites are labelled with the integers from the set {1̄, 0, 1}. Let the
number of vacant sites (labelled 0) be fixed to n0. The dynamics for the process are
similar to the multispecies case and the transition rules are given in Table 5.2.

First Site Bulk Last two Sites
Probability Transition Probability Transition Probability Transition

1
n

1̄ → 1 1
n

1
2n

11 → 11

11̄ → 1̄1 11̄ → 1̄1

10 → 01 01 → 1̄0

01̄ → 1̄0 01̄ → 1̄0
10 → 01̄
10 → 01

Table 5.2: Transitions for the B-TASEP

Let Ωn and Ωn,n0 be the respective state-spaces of the multispecies B-TASEP and
the B-TASEP. We can lump the multispecies B-TASEP to the B-TASEP by defining a
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map f : Ωn → Ωn,n0 as follows:

f(ω1, . . . , ωn) = (f(ω1), . . . , f(ωn)),

where

f(i) =


1, if i ≥ n0,

1̄, if i ≤ −n0,

0, if − n0 < i < n0.

The partition function and the two-point correlations ⟨i, j⟩n0 for the last two sites in the
B-TASEP are calculated in [2, Section 7.2] and are stated as follows.

Theorem 5.2. [2, Theorem 7.10] For any n ≥ n0 ≥ 0, the partition function for the
B-TASEP is given by

Zn,n0 =
(

2n

n − n0

)
.

Theorem 5.3. [2, Theorem 7.11] Let n ≥ n0 ≥ 0, the following table contains the values
Zn,n0 .⟨i, j⟩n0 for i, j ∈ {1̄, 0, 1} in the B-TASEP.

i\j 1̄ 0 1

1̄
(

2n−2
n−n0−2

)
Cn+n0−1

n−n0−1

(
2n−2

n−n0−2

)
0 Cn+n0−2

n−n0−1 Cn+n0−3
n−n0 Cn+n0−2

n−n0−1

1 2
(

2n−3
n−n0−2

)
Cn+n0−2

n−n0−1 2
(

2n−3
n−n0−2

)
Table 5.3: Values of Zn,n0 .⟨i, j⟩n0 for i, j ∈ {1̄, 0, 1}

5.2 Results

In this section, we first define a three-species TASEP corresponding to the type B Weyl
group. Let us call this process B3-TASEP. Let t = (k, ℓ, m) be a tuple with non-negative
integers and let n = k + l + m. A B3-TASEP of type t is defined on a lattice with n sites
with a fixed number of vacancies and two kinds of particles. Let Ωt denote the state-
space of this process. The sites are labelled with the integers from the set {2̄, 1̄, 0, 1, 2}.
Let the number of vacant sites (labelled 0) be m and the number of first-kind particles
(labelled 1 or 1̄) and second-kind particles (labelled 2 or 2̄) be ℓ and k respectively. The
dynamics of the process are similar to the multispecies case.
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We can now lump the multispecies B-TASEP to the B3-TASEP by defining a map
ft : Ωn → Ωt as follows:

ft(ω1, . . . , ωn) = (ft(ω1), . . . , f(ωn)),

where

ft(i) =



2, if i ≥ ℓ + m,

1, if i ≥ ℓ,

1̄, if i ≤ −ℓ,

2̄, if i ≤ −ℓ − m,

0, if − ℓ < i < ℓ.

Let ⟨i, j⟩t the probability that particles labelled i and j are in the last two positions in a
B3-TASEP. Let us now define the corresponding row and column sums for the B3-TASEP
for i ∈ {−2, −1, 0, 1, 2}.

Coli(n) =
2∑

j=2̄
⟨j, i⟩t, Rowi(n) =

2∑
j=2

⟨i, j⟩t.

Next, we define the corresponding up and down-hooks (see Figure 5.1) for the B3-TASEP
for i ∈ {0, 1, 2}.

DHooki(n) =
2∑

j=i+1
⟨i, j⟩t + ⟨j, i⟩t, UHooki(n) =

2∑
j=i+1

⟨j, i⟩t + ⟨i, j⟩t.

2̄ 1̄ 0 1 2
2̄
1̄
0
1
2

2̄ 1̄ 0 1 2
2̄
1̄
0
1
2

Figure 5.1: The down-hook DHook1(n) in the first table and the up-hook UHook0(n) in
the second table is shaded.

We can also lump the B3-TASEP to the B-TASEP in two different ways; one of them
is identifying the two kinds of particles in the B3-TASEP to a particle in the B-TASEP
and identifying the vacant sites in both. This projects a B3-TASEP of type t = (k+ℓ+m)
to a B-TASEP on n sites with m vacancies. The other way is to identify both the first-
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kind particles and the vacancies of the B3-TASEP with type t to the vacancies in the B-
TASEP and the second-kind particles of the B3-TASEP to the particles in the B-TASEP.
The resulting process has ℓ+m vacancies. Using these lumpings and manipulating values
from Table 5.3, we can now prove the following lemmas.

Lemma 5.4. For a B3-TASEP of type t = (k, ℓ, m) with n = k + ℓ + m, we have

⟨2̄, 2̄⟩t = k(k − 1)
2n(2n − 1) , (5.2.1)

⟨0, 0⟩t = (2m − 2)(n + m)(n + m − 1)
2n(2n − 1)(2n − 2) , (5.2.2)

⟨2, 2̄⟩t = k(k − 1)(2n − k)
2n(2n − 1)(2n − 2) , (5.2.3)

⟨1, 0⟩t + ⟨2, 0⟩t = m(k + ℓ)(n + m)(2n − k)
n(2n − 1)(2n − 2) . (5.2.4)

Proof. We prove (5.2.1) using the lumping where we identify both the first-kind particles
and the vacancies of the B3-TASEP with type t to the vacancies in the B-TASEP and
the second-kind particles of the B3-TASEP to the particles in the B-TASEP of type
(k, ℓ + m). Thus, we have

⟨2̄, 2̄⟩t = ⟨1̄, 1̄⟩(ℓ+m)

=

(
2n−2
k−2

)
(

2n
k

) = k(k − 1)
2n(2n − 1) .

The remaining equations can be proved in a similar way.

Lemma 5.5. For a B3-TASEP of type t = (k, ℓ, m), we have

Col2(n) = k

2n
, Col1(n) = ℓ

2n
, Col0(n) = m

n
,

Row2̄(n) = k

2n
, Row1̄(n) = ℓ

2n
, Row0(n) = (k + ℓ)m(k + ℓ + 2m)

n(n − 1)(2n − 1) ,

UHook0(n) = m

n
, DHook0(n) = Row0(n), UHook1(n) = ℓ(2k + ℓ − 1)

2n(2n − 1) ,

Row2(n) = k(k + 2ℓ + 2m)(2k + ℓ + m − 2)
n(n − 1)(2n − 1) ,

Dhook1(n) = ℓ(k2 + (ℓ − 1)(ℓ + 2m) + k(k + 3ℓ + 4m)
n(2n − 1)(2n − 2) . (5.2.5)
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Proof. We prove (5.2.5) by lumping the B3-TASEP to the B-TASEP in both ways. We
have

DHook1(n) = ⟨1, 2⟩t + ⟨1, 1⟩t + ⟨2, 1⟩t,

= ⟨1, 1⟩(k+ℓ) − ⟨1, 1⟩k,

=
2
(

2n−3
m−2

)
(

2n
m

) −
2
(

2n−3
ℓ+m−2

)
(

2n
ℓ+m

) .

The remaining equations can be proved in a similar way.

In addition to Lemma 5.4, we have conjectured the formulae for ⟨i, j⟩t for a few more
of the values of i ∈ {2̄, 1̄, 0, 1, 2} and j ∈ {2̄, 1̄, 0} as given in Conjecture 5.6. This has
been achieved by observing the values of these correlations for many different values of
k, ℓ, m and n.

Conjecture 5.6. We have

⟨2̄, 0⟩t = km

2n2 , (5.2.6)

⟨0, 2̄⟩t = km(2n − k)
2n2(2n − 1) , (5.2.7)

⟨0, 2̄⟩t + ⟨0, 1̄⟩t + ⟨1, 1̄⟩t + ⟨2, 1̄⟩t = (2n − k)(k + ℓ)(ℓ + 2m)
4n2(2n − 1) . (5.2.8)

Assuming Conjecture 5.6, and using Lemma 5.4 and Lemma 5.5, we can find expres-
sions for many other ⟨i, j⟩t as stated in the result below.

Lemma 5.7. Consider a B3-TASEP of type t = (k, ℓ, m). Assuming Conjecture 5.6 we
have

⟨2̄, 1̄⟩t = k(m + n + 2ℓ)
4n2(2n − 1) , (5.2.9)

⟨1̄, 0⟩t = km + n(k + ℓ + 2ℓm)
2n2(2n − 1) , (5.2.10)

⟨0, 1̄⟩t = 2m(k(2n − k) + ℓn(ℓ + 2m)
2n2(2n − 1)(2n − 2) , (5.2.11)

⟨1̄, 2̄⟩t + ⟨1̄, 1̄⟩t = 2ℓn(k + ℓ − 1) − k(m + n)
4n2(2n − 1) , (5.2.12)

⟨1, 1̄⟩t + ⟨2, 1̄⟩t = (k + ℓ)(k(ℓ + 2m − n(ℓ + 4m)) + 2n(n − m − 1)(ℓ + 2m))
4n2(2n − 1)(n − 1) . (5.2.13)

The findings from this section are summarised in Table 5.4. The expressions written
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in black are derived from using earlier results. The expressions in red are the ones that
we are able to give the conjecture for. Finally, the formulae written in blue are the
consequences of the Conjecture 5.6.

i\j 2̄ 1̄ 0

2̄ k(k−1)
2n(2n−1)

k(m+n+2ℓn)
4n2(2n−1)

km
2n2

1̄ (5.2.12) (5.2.12) km+n(k+ℓ+2lm)
2n2(2n−1)

0 km(2n−k)
2n2(2n−1)

2m(k(2n−k)+ℓn(ℓ+2m))
2n2(2n−1)(2n−2)

(2m−2)(n+m)(n+m−1)
2n(2n−1)(2n−2)

1 (5.2.5)-(5.2.13) (5.2.13) (5.2.4)

2 k(k−1)(2n−k)
2n(2n−1)(2n−2) (5.2.13) (5.2.4)

Table 5.4: Values for ⟨i, j⟩t for i, j ∈ {2, 1, 0, 1, 2}

These formulas bring us one step closer to proving Conjecture 5.1 using the lumping
ft as the two-point correlations ⟨i, j⟩ in the multispecies B-TASEP can be written exactly
in terms of ⟨i, j⟩t in the B3-TASEP using the inclusion-exclusion principle.



Chapter 6

Correlations in general multispecies
TASEP

6.1 Introduction

Ayyer and Linusson studied the correlations of two or more particles in a multispecies
TASEP on a ring with finite sites. In particular, they studied the correlations of the
first two sites on the ring which has exactly one particle of each type. In this chapter,
we generalise their result to a multispecies TASEP such that each type has an arbitrary
number of particles.

Let m = (m1, . . . , mn). Let M = (M1, . . . , Mn) be a tuple such that Mi = m1 + · · · +
mi, for 1 ≤ i ≤ n and let N = Mn. The states of the multispecies TASEP of type m are
words of length N with each letter i occurring mi times. Let Êij = P{ω1 = i, ω2 = j}
denote the probability that the particles labelled i and j are in the first two places in
the steady state distribution of the TASEP with type m. We prove the following main
result.

Theorem 6.1. For 1 ≤ i ≤ j ≤ n, we have

Êi,j(n) =


mimj

N2 , i < j − 1
mimi+1

N2 + Mi(N−Mi)
N2(N−1) , i = j − 1

Mi(mi−1)(N−Mi−1)
N2(N−1) , i = j

,

and for 1 ≤ j < i ≤ n,

Êi,j(n) =
mj

{(
Mi+1

2

)
−
(

Mi−1+1
2

)}
− mi

{(
Mj+1

2

)
−
(

Mj−1+1
2

)}
N
(

N
2

) .

73
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Once again, we use the projection principle and theory of lumping to prove Theo-
rem 6.1. Consider ⟨1n⟩ = (1, . . . , 1). A multispecies TASEP of type ⟨1n⟩ on N sites can
be projected to any multispecies TASEP of type m such that N = ∑

mi. We will see
this in detail in Section 6.2.

6.2 Proof of Theorem 6.1

Let mi = 1 for i ∈ [N ]. Let us consider a multispecies TASEP of type ⟨1N⟩. Denote
by Ei,j(N) the probability that i and j are in the first and the second places of the ring
respectively in the steady state distribution of the multispecies TASEP with type ⟨1N⟩.
Then we have,

Theorem 6.2. [20, Theorem 4.2] We have for i, j ∈ [N ],

Ei,j(N) =



i−j

N(N
2 ) , if i > j,

1
N2 + i(N−i)

N2(N−1) , if i = j − 1,

1
N2 , if i < j − 1.

Theorem 6.3. Consider an n-tuple m = (m1, . . . , mn). Let M = (Mi : 1 ≤ i ≤ n)
where Mi = m1 + · · · + mi and let M0 = 0, Mn = N . Then for i, j ∈ [n],

Êi,j(n) =
Mj∑

d=Mj−1+1

Mi∑
c=Mi−1+1

Ec,d(N). (6.2.1)

Proof. This result is proved using the colouring argument. Consider a multispecies
TASEP Θ of type ⟨1n⟩ that is projected to a multispecies TASEP Ξ of type m by
identifying integers 1, . . . , m1 in Θ to 1 in Ξ, m1 + 1, . . . , m1 + m2 in Θ to 2 in Ξ and so
on till Mn−1 + 1, . . . , Mn in Θ to n in Ξ. The result follows by adding the values of Ec,d

over appropriate ranges of c, d ∈ [N ].

Proof of Theorem 6.1. We can now use (6.2.1) to prove the main result of the chapter.

(a) The case i < j − 1 is straightforward as 1/N2 is summed (Mi − Mi−1)(Mj − Mj−1) =
mimj times.
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(b) i = j − 1

Êi,i+1(n) =
Mi+1∑

d=Mi+1

Mi∑
c=Mi−1+1

Ec,d(N)

=
Mi+1∑

d=Mi+2

Mi∑
c=Mi−1+1

1
N2 +

Mi−1∑
c=Mi−1+1

1
N2 + EMiMi+1(N)

= mi(mi+1 − 1) + (mi − 1)
N2 + 1

N2 + Mi(N − Mi)
N2(N − 1)

= mimi+1

N2 + Mi(N − Mi)
N2(N − 1) .

(c) i > j

Êi,j(n) =
Mj+1∑

d=Mj+1

Mi+1∑
c=Mi+1

Ec,d(N)

= 1
N
(

N
2

) Mj+1∑
d=Mj+1

Mi+1∑
c=Mi+1

(c − d)

= 1
N
(

N
2

)


Mj+1∑
d=Mj+1

(
Mi+1

2

)
−
(

Mi

2

)
− dmi


= 1

N
(

N
2

) {mj

{(
Mi + 1

2

)
−
(

Mi−1 + 1
2

)}
− mi

{(
Mj + 1

2

)
−
(

Mj−1 + 1
2

)}}
.

(d) i = j

First, we calculate the probability that the first two sites in the ring are both occupied
by a particle of type less than or equal to i. Let us denote this quantity by Ci(n).

Ci(n) =
Mi∑
c=1

Mi∑
d=1

Ec,d(N)

=
Mi∑
c=1

c−1∑
d=1

c − d

N
(

N
2

) +
Mi−1∑
c=1

+ 1
N2

Ni − i2

N2(N − 1) +
Mi−1∑
c=1

Mi∑
d=c+2

1
N2

=

(
Mi+1

3

)
N
(

N
2

) +

(
Mi

2

)
N2(N − 1) −

(
Mi

2

)
(2Mi − 1)

6N
(

N
2

) +

(
Mi

2

)
N2

=

(
Mi

2

)
(

N
2

) .

Note that Ê1,1(n) = C1(n) and M1 = m1, thus Ê1,1(n) = (m1
2 )

(N
2 ) Now, let i ∈ {2, . . . , n}.
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We have,

Êi,i(n) =
Mi∑

c=Mi−1+1

Mi∑
d=Mi−1+1

Ec,d(N)

=
Mi∑
c=1

Mi∑
d=1

Ec,d(N) −
Mi−1∑
c=1

Mi−1∑
d=1

Ec,d(N) −
Mi−1∑
c=1

Mi∑
d=Mi−1+1

Ec,d(N) −
Mi∑

c=Mi−1+1

Mi−1∑
d=1

Ec,d(N)

= Ci(n) − Ci−1(n) −
i−1∑
k=1

{
Êi,k(n) + Êk,i(n)

}

= 1(
N
2

) {(Mi

2

)
−
(

Mi−1

2

)}
− miMi−1

N2 − Mi−1(N − Mi−1)
N2(N − 1) − miMi−1Mi

N2(N − 1)

= Mi(mi − 1)(N − Mi−1)
N2(N − 1) .

Corollary 6.4. Let mc = ⟨cn⟩. We have for i, j ∈ [n],

Êi,j(n) =



2c(i−j)
n(nc−1) , if i > j,

1
n2 + i(n−i)

n2(nc−1) , if i = j − 1,

i(c−1)(n−i+1)
n2(nc−1) , if i = j,

1
n2 , if i < j − 1.

(6.2.2)

Proof. We have mi = c for all i ∈ [n]. Therefore, Mi = ic. We get the desired result by
substituting these in the formulae in Theorem 6.1.

Remark 6.5. Note that taking c = 1 gives us Theorem 6.2.

Corollary 6.6. Let ω1, ω2 be the first two letters in the multispecies TASEP of type
mc. The probability distribution on {1, . . . , n}2 given by Êω1,ω2 converges when scaled
appropriately, as n → ∞, to the probability distribution on [−1, 1]2 whose density is
given by fx,y + 1x=yg(x), where g(x) = 1−x2

8 and

fx,y =


1
4 , if x > y,

y−x
4 , if x < y.

Proof. This result is proved using Corollary 6.4 by taking the limit n → ∞ and rescaling
the resulting square to [−1, 1]2. We take the limit in such a way that i

n
→ x+1

2 and
j
n

→ y+1
2 . We multiply the values in (6.2.2) by n2/4 and take the limit n → ∞. The
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values for two cases i = j − 1 and i = j are, on the other hand, multiplied by n/2 and
the measures are added to complete the proof.

Remark 6.7. Note that this is identical to the case c = 1 (see Corollary 4.5 of [20]).
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Inst. Henri Poincaré D, 5(1):127–152, 2018.
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Annals of Probability, 39(4):1205 – 1242, 2011.

[8] Omer Angel. The stationary measure of a 2-type totally asymmetric exclusion
process. Journal of Combinatorial Theory, Series A, 113(4):625–635, 2006.

[9] Chikashi Arita. Exact analysis of two-species totally asymmetric exclusion pro-
cess with open boundary condition. Journal of the Physical Society of Japan,
75(6):065003, 2006.

[10] Chikashi Arita. Phase transitions in the two-species totally asymmetric exclu-
sion process with open boundaries. Journal of Statistical Mechanics: Theory and
Experiment, 2006(12):P12008, 2006.

79



80 BIBLIOGRAPHY

[11] Chikashi Arita, Arvind Ayyer, Kirone Mallick, and Sylvain Prolhac. Recursive
structures in the multispecies TASEP. Journal of Physics A: Mathematical and
Theoretical, 44(33):335004, 2011.

[12] Chikashi Arita, Arvind Ayyer, Kirone Mallick, and Sylvain Prolhac. Generalized
matrix ansatz in the multispecies exclusion process—the partially asymmetric case.
Journal of Physics A: Mathematical and Theoretical, 45(19):195001, 2012.

[13] Chikashi Arita, Julien Cividini, and Cécile Appert-Rolland. Two dimensional out-
flows for cellular automata with shuffle updates. Journal of Statistical Mechanics:
Theory and Experiment, 2015(10):P10019, 2015.

[14] Chikashi Arita, Atsuo Kuniba, Kazumitsu Sakai, and Tsuyoshi Sawabe. Spectrum
of a multi-species asymmetric simple exclusion process on a ring. Journal of Physics
A: Mathematical and Theoretical, 42(34):345002, 2009.

[15] Chikashi Arita and Kirone Mallick. Matrix product solution of an inhomoge-
neous multi-species TASEP. Journal of Physics A: Mathematical and Theoretical,
46(8):085002, 2013.

[16] Chikashi Arita and Andreas Schadschneider. Exclusive Queueing Processes and
their Application to Traffic Systems. Mathematical Models and Methods in Applied
Sciences, 25, 09 2014.

[17] A. Ayyer, J. L. Lebowitz, and E. R. Speer. On some classes of open two-species
exclusion processes. Markov Process. Related Fields, 18(1):157–176, 2012.

[18] Arvind Ayyer, Joel Lebowitz, and Eugene Speer. On the Two Species Asymmetric
Exclusion Process with Semi-Permeable Boundaries. Journal of Statistical Physics,
135, 07 2008.

[19] Arvind Ayyer and Svante Linusson. An inhomogeneous multispecies TASEP on a
ring. Advances in Applied Mathematics, 57, 06 2012.

[20] Arvind Ayyer and Svante Linusson. Correlations in the multispecies TASEP and
a conjecture by Lam. Trans. Amer. Math. Soc., 369(2):1097–1125, 2017.

[21] Arvind Ayyer, Olya Mandelshtam, and James B Martin. Modified Macdonald
polynomials and the multispecies zero range process: I. arXiv e-prints, pages
arXiv–2011, 2020.



BIBLIOGRAPHY 81

[22] Arvind Ayyer, Olya Mandelshtam, and James B Martin. Modified Macdon-
ald polynomials and the multispecies zero range process: II. arXiv preprint
arXiv:2209.09859, 2022.

[23] Arvind Ayyer and Dipankar Roy. The exact phase diagram for a class of open
multispecies asymmetric exclusion processes. Scientific reports, 7(1):1–8, 2017.

[24] Itai Benjamini, Noam Berger, Christopher Hoffman, and Elchanan Mossel. Mixing
times of the biased card shuffling and the asymmetric exclusion process. Transac-
tions of the American Mathematical Society, 357(8):3013–3029, 2005.

[25] Richard A Blythe, Martin R Evans, Francesca Colaiori, and Fabian HL Essler. Ex-
act solution of a partially asymmetric exclusion model using a deformed oscillator
algebra. Journal of Physics A: Mathematical and General, 33(12):2313, 2000.

[26] Alexei Borodin, Ivan Corwin, and Tomohiro Sasamoto. From duality to deter-
minants for q-TASEP and ASEP. The Annals of Probability, 42(6):2314–2382,
2014.

[27] Luigi Cantini. Inhomogenous Multispecies TASEP on a ring with spectral param-
eters. arXiv e-prints, page arXiv:1602.07921, February 2016.

[28] Luigi Cantini. Asymmetric simple exclusion process with open boundaries and
Koornwinder polynomials. In Annales Henri Poincaré, volume 18, pages 1121–
1151. Springer, 2017.

[29] Luigi Cantini, Jan de Gier, and Michael Wheeler. Matrix product formula for
Macdonald polynomials. Journal of Physics A: Mathematical and Theoretical,
48(38):384001, 2015.

[30] Luigi Cantini, Alexandr Garbali, Jan de Gier, and Michael Wheeler. Koorn-
winder polynomials and the stationary multi-species asymmetric exclusion pro-
cess with open boundaries. Journal of Physics A: Mathematical and Theoretical,
49(44):444002, 2016.

[31] Debashish Chowdhury, Dietrich E Wolf, and Michael Schreckenberg. Particle hop-
ping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing
rules. Physica A: Statistical Mechanics and its Applications, 235(3-4):417–439,
1997.



82 BIBLIOGRAPHY

[32] Sylvie Corteel, Olya Mandelshtam, and Lauren Williams. From multiline queues to
Macdonald polynomials via the exclusion process. Amer. J. Math., 144(2):395–436,
2022.

[33] Sylvie Corteel and Lauren K Williams. Tableaux combinatorics for the asymmetric
exclusion process and Askey-Wilson polynomials. Duke Mathematical Journal,
159(3):385–415, 2011.
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