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Motivation of this work

Builds new bridges between various areas in mathematics utilizing the
existing links between them.

Good excuse for us to learn classical as well as cutting edge work on these
areas especially during the lock-down.

This work is motivated by applications ranging from space-time statistical
inference to machine learning algorithms.
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A Crash Course on Stable Random Fields
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Symmetric α-stable distribution

All random variables will be real valued and they will be de�ned on a common
probability space (Ω,F , P ). In particular, they all will be measurable maps
Ω→ R.

A random variable X follows symmetric α-stable (SαS) distribution
(0 < α ≤ 2) with scale parameter σ > 0

(
denoted by X ∼ SαS(σ)

)
if

E(eiθX) =

∫
Ω

eiθX(ω)dP (ω) = e−σ
α|θ|α , θ ∈ R.

X
L
= −X.

α = 2 ⇒ X ∼ Gaussian, α = 1 ⇒ X ∼ Cauchy.

They arise as scaling limits of sums of IID symmetric random variables.

Assume: 0 < α < 2 ⇒ X is non-Gaussian.
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SαS random �elds, 0 < α < 2

Let (G, .) be a countably in�nite (possibly noncommutative) group with
identity element e.

A collection of random variables {Xg}g∈G is called an SαS random �eld if for
all k ≥ 1, for all g1, g2, . . . , gk ∈ G and for all c1, c2, . . . , ck ∈ R,

k∑
i=1

ciXgi ∼ SαS.

The scale parameter depends on c1, c2, . . . , ck ∈ R.

We will soon describe the scale parameter for each linear combination and
this will uniquely specify the joint law of {Xg}g∈G.
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Kuelbs (1973) representation

Suppose {Xg}g∈G is an SαS random �eld.

Then there exists a σ-�nite standard measure space (Λ,A, µ) and

{fg : g ∈ G} ⊂ Lα(Λ, µ):=

{
h : Λ→ R | ‖h‖α :=

(∫
Λ

|h|αdµ
)1/α

<∞

}

such that
k∑
i=1

ciXgi ∼ SαS

(∥∥∥∥ k∑
i=1

cifgi

∥∥∥∥
α

)
(1)

for all c1, c2, . . . , ck ∈ R and for all g1, g2, . . . , gk ∈ G.

The converse also holds.

{fg}g∈G := a (spectral) representation of {Xg}g∈G.
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(Left) stationary SαS random �elds

An SαS random �eld {Xg}g∈G is called (left) stationary if for all h ∈ G,

{Xhg}g∈G
L
= {Xg}g∈G,

i.e., for all k ≥ 1, for all g1, g2, . . . , gk, h ∈ G and for all Borel B ⊂ Rk,

P
[
(Xhg1 , Xhg2 , . . . , Xhgk) ∈ B

]
= P

[
(Xg1 , Xg2 , . . . , Xgk) ∈ B

]
.

In particular, Xg's are identically distributed.

The law of a (left) stationary SαS random �eld is invariant under the (left)
translation action on its indices.

This invariant G-action, when seen at the level of spectral representations,
gives rise to a quasi-invariant action.
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Quasi-invariant group actions

Suppose Gy (Λ,A, µ) measurably,

i.e., for all g ∈ G, the map φg : Λ→ Λ
de�ned by

φg : x 7→ g−1. x

is measurable.

Recall: This G-action is called invariant (or measure-preserving) if for all
g ∈ G and for all A ∈ A,

g∗µ(A) := µ ◦ φ−1
g (A) = µ(A).

De�nition: This G-action is called quasi-invariant (or nonsingular) if for all
g ∈ G and for all A ∈ A,

g∗µ(A) = 0 ⇐⇒ µ(A) = 0.

Clearly, invariant =⇒ quasi-invariant but the converse is not true.
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Rosinski (1995, 2000) representation

Suppose {Xg}g∈G is a stationary SαS random �eld.

Then {Xg}g∈G admits a representation of the form

fg = ±(fe ◦ φg)
(
dµ ◦ φg
dµ

)1/α

, g ∈ G (2)

for some quasi-invariant G-action {φg}g∈G on a σ-�nite standard measure
space (Λ,A, µ).

The converse also holds, i.e., for any quasi-invariant G-action {φg}g∈G on a
σ-�nite standard measure space (Λ,A, µ) and any fe ∈ Lα(Λ, µ), if we de�ne
{fg}g∈G by (2)

(
=⇒ {fg}g∈G ⊂ Lα(Λ, µ)

)
, then there exists a stationary SαS

random �eld {Xg}g∈G with representation {fg}g∈G, i.e., (1) holds.
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Beyond Rosinski (1995, 2000) . . .

Various probabilistic facets of a stable random �eld have been connected to
the ergodic theoretic properties of the underlying nonsingular action:

Mixing features: Rosinski and Samorodnitsky (1996), Samorodnitsky
(2005), Roy (2007, 2012), Wang, R. and Stoev (2013)[AoP], R. (2020+)

Large deviations issues: Mikosch and Samorodnitsky (2000), Fasen and
R. (2016)[SPA]

Growth of maxima: Samorodnitsky (2004), R. and Samorodnitsky
(2008)[JTP], Chakrabarty and R. (2013)[JTP], Owada and
Samorodnitsky (2015), Athreya, Mj and R. (2022+)[PTRF]

Extremal point processes: Resnick and Samorodnitsky (2004),
R. (2010)[AoP], Sarkar and R. (2018)[AoP]

Statistical aspects: Bhattacharya and R. (2018)[JAP]

Uniform Hölder continuity of paths: Panigrahi, R. and Xiao (2021)[SPA]

Broad Goal: Carry this link forward to the realms of Geometric Group
Theory (amenable groups, hyperbolic groups, etc.) and Operator Algebra (von
Neumann algebras).
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Weak Mixing for Random Fields
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The induced probability measure on RG

Recall that any (left) stationary SαS random �eld X = {Xg}g∈G induces a
measure-preserving (left) shift action (of G) on

(
RG,PX

)
, where

PX = law of X := P
({
ω ∈ Ω :

(
Xg(ω) : g ∈ G

)
∈ ·
})
.

Recall that RG := {x : x is a map from G to R} and a prototypical Borel
cylinder subset of RG looks like

C =
{
x ∈ RG : x(g1) ∈ B1, x(g1) ∈ B2, . . . , x(gk) ∈ Bk

}
for some k ∈ N, for some g1, g2, . . . , gk ∈ G and for some Borel sets
B1, B2, . . . , Bk ⊆ R.

Clearly

PX(C) = P
({
ω ∈ Ω :

(
Xg(ω) : g ∈ G

)
∈ C

})
= P

({
ω ∈ Ω : Xg1(ω) ∈ B1, Xg2(ω) ∈ B2, . . . , Xgk(ω) ∈ Bk

})
= P

(
Xg1 ∈ B1, Xg2 ∈ B2, . . . , Xgk ∈ Bk

)
.
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What does weak mixing mean?

Recall that any (left) stationary SαS random �eld X = {Xg}g∈G induces a
measure-preserving (left) shift action (of G) on

(
RG,PX:=law of X

)
.

De�nition

{Xg}g∈G is called weakly mixing if the above shift action is so.

Question: Why is it important?

Roughly speaking, it's some kind of asymptotic independence: weak
mixing of {Xt}t∈Z implies that for all Borel A,B ⊆ R,

1

n

n∑
i=1

|P(X0 ∈ A,Xi ∈ B)− P(X0 ∈ A)P(X0 ∈ B)| → 0.

When the underlying random �eld is weakly mixing, then we can apply
ergodic theorem to investigate asymptotic properties of
estimators/algorithms, large deviation issues, long run behaviour of
solutions to SDEs, etc.
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Weak mixing of G-indexed stable �elds

Recall that any (left) stationary SαS random �eld X = {Xg}g∈G induces a
measure-preserving (left) shift action (of G) on

(
RG,PX

)
, where

PX = law of X := P
({
ω ∈ Ω :

(
Xg(ω) : g ∈ G

)
∈ ·
})
.

De�nition

{Xg}g∈G is called weak mixing if the above shift action is so.

Question: When is {Xg}g∈G weak mixing? [Helps in proving limit theorems.]

G = Z: Samorodnitsky (2005) gave a criterion based on the ergodic
theoretic properties of the underlying quasi-invariant action.

G = Zd: Wang, R. and Stoev (2013) generalized the above result (for
d = 1) to any d ∈ N using the work of Takahashi (1971).
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Stable Random Fields Indexed by Amenable

Groups
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Weak mixing and Rosinski representation
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Countable amenable groups

A countable amenable group is a countable group that admits an increasing
Følner sequence Fn ↑ G, i.e., an increasing sequence of exhausting �nite
subsets Fn ⊂ G such that for all g ∈ G,

lim
n→∞

|gFn ∆Fn|
|Fn|

= 0.

The above limiting condition is called the Følner condition, which roughly
means that for large n, very small fraction of elements in Fn are moved by a
group element.

Examples: �nite groups, abelian groups, groups of subexponential growth,
solvable groups, lamplighter groups, etc.

Lindenstrauss (2001):

1 Any Følner sequence in an amenable group G admits a �tempered Følner
subsequence�.

2 Along any tempered Følner sequence, pointwise ergodic theorem holds for
any �nite measure preserving G-action.
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lim
n→∞

|gFn ∆Fn|
|Fn|

= 0.
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Why stable random �elds indexed by amenable groups?

The reason is two-fold:

1 Statistical:

I Such random �elds arise naturally in machine learning algorithms for
structured and dependent data; see, e.g., Austern and Orbanz (2022+).

I Weak mixing is an important tool for investigating asymptotic properties
of any method/algorithm. In the context of space-time statistical inference
for max-stable �elds, see Davis, Klüppelberg and Steinkohl (2013).

2 Mathematical:

I How about stable random �elds indexed by groups of polynomial growth?
Even the seminal work of Gromov (1981) could not help :-(

I Avraham Re'em (2022+) [arXived yesterday!]: used the machinery of
absolutely continuous invariant probability measure + a Krengel-type
criterion + Lindenstrauss (2001)

I Mj, R. and Sarkar (2022+): applied truncation + Lindenstrauss (2001) +
Tempelman (2015).
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Recall: Rosinski (1995, 2000) representation

Given a stationary SαS (0 < α < 2) random �eld {Xg}g∈G, there exist

(i) a σ-�nite standard measure space (Λ,A, µ),

(ii) a function fe : Λ→ R such that ‖fe‖α :=

(∫
|fe|αdµ

)1/α

<∞, and

(iii) a quasi-invariant G-action {φg}g∈G on (Λ,A, µ)

such that each real linear combination

k∑
i=1

ciXgi ∼ SαS

(∥∥∥∥ k∑
i=1

cifgi

∥∥∥∥
α

)
, (3)

where

fg = ±
(
dµ ◦ φg
dµ

)1/α

fe ◦ φg , g ∈ G.

Converse also holds: given (i), (ii) and (iii), there exists a stationary SαS
random �eld {Xg}g∈G satisfying (4).

{fg}g∈G = a Rosinski representation of {Xg}g∈G.
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Weak mixing and Rosinski representation
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Null quasi-invariant actions

Let {φg}g∈G be a quasi-invariant action on (Λ,A, µ).

W ∈ A is called weakly wandering if there exists a countably in�nite set L ⊆ G
(not necessarily a subgroup) such that {φg(W ) : g ∈ L} is a pairwise disjoint
collection.

Roughly speaking, elements of a weakly wandering set do not come back to
itself very often by the shift of this action.

�De�nition�

The action {φg}g∈G is called null if Λ is the �measurable union� of all of its
weakly wandering subsets.

Intuitively speaking, a null action does not come back very often.
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Heuristics

Stable random �elds generated by null actions tend to have weaker
dependence because . . .

a null action does not come back very often, and hence Xg's tend to become
�asymptotically independent� (of Xe, say) as g moves far and far away (in
some suitable metric) from the identity elemnt e.

This weaker dependence / asymptotic independence may manifest itself in the
form of weak mixing.

We have been able to prove this formally only when G is amenable. We believe
that our result may be true for a much bigger class of groups and/or actions.
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Weakly mixing random �elds indexed by amenable groups

Let G be a countably in�nite amenable group and {Fn}n≥1 is any increasing
Følner sequence.

Dye (1965) [Cor 1, pg 129] or Bergelson and Gorodnik (2004) [Thm 1.6] :
A random �eld {Xg}g∈G is weakly mixing if and only if for all k ≥ 1, for all
g1, g2, . . . , gk, h ∈ G and for all Borel A,B ⊂ Rk,

1

|Fn|
∑
h∈Fn

∣∣∣P [(Xhg1 , Xhg2 , . . . , Xhgk) ∈ A, (Xg1 , Xg2 , . . . , Xgk) ∈ B
]

−P
[
(Xg1 , Xg2 , . . . , Xgk) ∈ A

]
P
[
(Xg1 , Xg2 , . . . , Xgk) ∈ B

]∣∣∣→ 0

as n→∞.

Choose the Følner sequence to be increasing and tempered according to
Lindenstrauss (2001). These will give us analytic and ergodic theoretic
advantages, respectively.
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One of our main results

Theorem (Mj, R. and Sarkar (2022+))

Supoose G is a countably in�nite amenable group and X := {Xg}g∈G is a left
stationary symmetric α-stable (0 < α < 2) random �eld generated by a
quasi-invariant G-action {φg}g∈G in its Rosinski representation. Then X is
weakly mixing if and only if {φg}g∈G is a null action.

Avraham Re'em (2022+) [arXived yesterday!] has also proved this result.

Examples:

Many canonical actions of discrete Heisenberg groups are null.

Whenever an amenable group G has a nontrivial Furstenberg-
Poisson boundary (e.g., this is the case for lampligter groups on Zd with
d ≥ 3 thanks to the seminal work of Erschler (2011) and Lyons and
Peres (2021)), the bounadry action is null.

There are many solvable groups (e.g., suitable discrete subgroups of Lie
groups) that admit many natural null actions.

May 12, 2022 40 / 60



One of our main results

Theorem (Mj, R. and Sarkar (2022+))

Supoose G is a countably in�nite amenable group and X := {Xg}g∈G is a left
stationary symmetric α-stable (0 < α < 2) random �eld generated by a
quasi-invariant G-action {φg}g∈G in its Rosinski representation. Then X is
weakly mixing if and only if {φg}g∈G is a null action.

Avraham Re'em (2022+) [arXived yesterday!] has also proved this result.

Examples:

Many canonical actions of discrete Heisenberg groups are null.

Whenever an amenable group G has a nontrivial Furstenberg-
Poisson boundary (e.g., this is the case for lampligter groups on Zd with
d ≥ 3 thanks to the seminal work of Erschler (2011) and Lyons and
Peres (2021)), the bounadry action is null.

There are many solvable groups (e.g., suitable discrete subgroups of Lie
groups) that admit many natural null actions.

May 12, 2022 40 / 60



One of our main results

Theorem (Mj, R. and Sarkar (2022+))

Supoose G is a countably in�nite amenable group and X := {Xg}g∈G is a left
stationary symmetric α-stable (0 < α < 2) random �eld generated by a
quasi-invariant G-action {φg}g∈G in its Rosinski representation. Then X is
weakly mixing if and only if {φg}g∈G is a null action.

Avraham Re'em (2022+) [arXived yesterday!] has also proved this result.

Examples:

Many canonical actions of discrete Heisenberg groups are null.

Whenever an amenable group G has a nontrivial Furstenberg-
Poisson boundary (e.g., this is the case for lampligter groups on Zd with
d ≥ 3 thanks to the seminal work of Erschler (2011) and Lyons and
Peres (2021)), the bounadry action is null.

There are many solvable groups (e.g., suitable discrete subgroups of Lie
groups) that admit many natural null actions.

May 12, 2022 40 / 60



One of our main results

Theorem (Mj, R. and Sarkar (2022+))

Supoose G is a countably in�nite amenable group and X := {Xg}g∈G is a left
stationary symmetric α-stable (0 < α < 2) random �eld generated by a
quasi-invariant G-action {φg}g∈G in its Rosinski representation. Then X is
weakly mixing if and only if {φg}g∈G is a null action.

Avraham Re'em (2022+) [arXived yesterday!] has also proved this result.

Examples:

Many canonical actions of discrete Heisenberg groups are null.

Whenever an amenable group G has a nontrivial Furstenberg-
Poisson boundary (e.g., this is the case for lampligter groups on Zd with
d ≥ 3 thanks to the seminal work of Erschler (2011) and Lyons and
Peres (2021)), the bounadry action is null.

There are many solvable groups (e.g., suitable discrete subgroups of Lie
groups) that admit many natural null actions.

May 12, 2022 40 / 60



One of our main results

Theorem (Mj, R. and Sarkar (2022+))

Supoose G is a countably in�nite amenable group and X := {Xg}g∈G is a left
stationary symmetric α-stable (0 < α < 2) random �eld generated by a
quasi-invariant G-action {φg}g∈G in its Rosinski representation. Then X is
weakly mixing if and only if {φg}g∈G is a null action.

Avraham Re'em (2022+) [arXived yesterday!] has also proved this result.

Examples:

Many canonical actions of discrete Heisenberg groups are null.

Whenever an amenable group G has a nontrivial Furstenberg-
Poisson boundary (e.g., this is the case for lampligter groups on Zd with
d ≥ 3 thanks to the seminal work of Erschler (2011) and Lyons and
Peres (2021)), the bounadry action is null.

There are many solvable groups (e.g., suitable discrete subgroups of Lie
groups) that admit many natural null actions.

May 12, 2022 40 / 60



One of our main results

Theorem (Mj, R. and Sarkar (2022+))

Supoose G is a countably in�nite amenable group and X := {Xg}g∈G is a left
stationary symmetric α-stable (0 < α < 2) random �eld generated by a
quasi-invariant G-action {φg}g∈G in its Rosinski representation. Then X is
weakly mixing if and only if {φg}g∈G is a null action.

Avraham Re'em (2022+) [arXived yesterday!] has also proved this result.

Examples:

Many canonical actions of discrete Heisenberg groups are null.

Whenever an amenable group G has a nontrivial Furstenberg-
Poisson boundary (e.g., this is the case for lampligter groups on Zd with
d ≥ 3 thanks to the seminal work of Erschler (2011) and Lyons and
Peres (2021)), the bounadry action is null.

There are many solvable groups (e.g., suitable discrete subgroups of Lie
groups) that admit many natural null actions.

May 12, 2022 40 / 60



How do we prove this result?

Main Obstacle: Unavailability of pointwise ergodic theorem for
quasi-invariant actions.

Lindenstrauss (2001) proved pointwise ergodic theorem for �nite measure
preserving actions.

Tempelman (2015) observed that the maximal ergodic theorem
established by Lindenstrauss (2001) actually holds for any σ-�nite
measure preserving action, and used this observation to prove a pointwise
ergodic theorem (along any tempered Følner sequence) for bounded
Lamperti representations of an amenable group G into Lp-spaces for
p > 1.

We apply this result + a truncation argument to establish our result for
any amenable group G provided the underlying action is (σ-�nite)
measure preserving.

Generalization from the measure preserving to the quasi-invariant case is
carried out using Maharam (1964) skew-product.
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Recall: Rosinski (1995, 2000) representation

Given a stationary SαS (0 < α < 2) random �eld {Xg}g∈G, there exist

(i) a σ-�nite standard measure space (Λ,A, µ),

(ii) a function fe : Λ→ R such that ‖fe‖α :=

(∫
|fe|αdµ

)1/α

<∞, and

(iii) a quasi-invariant G-action {φg}g∈G on (Λ,A, µ)

such that each real linear combination

k∑
i=1

ciXgi ∼ SαS

(∥∥∥∥ k∑
i=1

cifgi

∥∥∥∥
α

)
, (4)

where

fg = ±
(
dµ ◦ φg
dµ

)1/α

fe ◦ φg , g ∈ G.

Converse also holds: given (i), (ii) and (iii), there exists a stationary SαS
random �eld {Xg}g∈G satisfying (4).

{fg}g∈G = a Rosinski representation of {Xg}g∈G.
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Outline of proof

Need to show, due to an extension of Gross (1994),

that for all δ > 0 and ε > 0,

lim
n→∞

1

Fn

∑
g∈Fn

µ
(
x ∈ Λ : |fe(x)| > δ, |fg(x)| > ε

)
= 0, (5)

where fg = ±
(
dµ ◦ φg
dµ

)1/α

fe ◦ φg, g ∈ G is a Rosinski representaion of X.

Thanks to a truncation argument, enough to show (5) when
1 µ is a �nite measure,
2 fe is bounded, and
3 the Radon-Nikodym derivatives ωg :=

dµ◦φg
dµ , g ∈ G are uniformly

bounded away from zero and bounded above.

Finally, establish (5) using Tempelman (2015) and Maharam (1964)
skew-product:

Gy
(
Λ× (0,∞), µ⊗ Leb

)
by g−1.(x, y) =

(
φg(x),

y

ωg(x)

)
.
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Linking Stable Random Fields

with von Neumann Algebras

and Hyperbolic Geometry
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Stable �elds and von Neumann Algebras
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A W ∗-rigidity question

R. (2020+): Minimal group measure space construction is an invariant for any
stationary SαS random �eld.

Question: How much does this invariant �remember� the random �eld?

In other words, if two stationary SαS random �elds (not necessarily indexed
by the same group) have isomorphic minimal group measure space
constructions, then do they have similar probabilistic properties?

This question parallels the theory of W ∗-rigidity (a term coined by Sorin Popa
- see the survey of Ioana (2018)). See also the ICM 2018 lecture of Adrian
Ioana from YouTube.

Theorem (R. (2020+) for G = Zd, Mj, R. and Sarkar (2022+))

Weak mixing is a W ∗-rigid property for stationary SαS random �elds indexed
by amenable groups.
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Connection to orbit equivalence

Corollary (R. (2020+) for G = Zd, Mj, R. and Sarkar (2022+))

If two stationary SαS random �elds indexed by (possibly two di�erent)
amenable groups are generated by orbit equivalent free quasi-invariant actions,
then one is weak mixing if and only if the other one is so.

The indexing groups being possibly di�erent ones is actually very useful in the
context of orbit equivalence.

The seminal result of Connes, Feldman and Weiss (1981) states that any
quasi-invariant action of an amenable group (more generally, any �amenable
action�) is orbit equivalent to a quasi-invariant Z-action.

Therefore, it is now possible to associate a stationary SαS process to any
stationary SαS random �eld indexed by an amenable group in a weak mixing
preserving manner. This may help in classi�cation of such �elds.
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Connetions to hyperbolic geometry

Suppose a discrete non-elementary hyperbolic group (after �xing the
basepoint to be e)

Gy
(
Λ = ∂G = Gromov boundary, µ = Patterson-Sullivan (prob) measure

)
.

Kaimanovich (2000): µ is the exit measure of many (transient) random walks
on G starting from e.

In this case, it is well-known that the action is null.

Theorem (Mj, R. and Sarkar (2022+))

The stationary SαS random �eld indexed by G and generated by the above
boundary action is mixing and hence is weakly mixing.

We have shown the same for many such natural geometric actions on various
negatively curved spaces, e.g., the double boundary action of G = Fd, d ≥ 2 :

Fd y
(
Λ = ∂Fd × ∂Fd \Diagonal, µ = a suitable (σ-�nite) measure

)
.
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Future directions

Need to view known weak mixing families of examples through our lens -
Cohen and Samorodnitsky (2006), Dombry and Guillotin-Plantard
(2009), Owada and Samorodnitsky (2015), etc.

When will a stationary SαS random �eld be mixing? Connection to
Dombry and Kabluchko (2017) (for max-stable �elds). Will mixing be a
W ∗-rigid property (like weak mixing) at least for G = Zd?

What is the role of type III factors in various probabilistic properties of
stationary SαS random �elds? How about λ ∈ [0, 1] when the factor is of
type IIIλ? Izumi, Neshveyev and Okayasu (2008): Fd y (∂Fd, µPS).

Weak mixing for more general stationary SαS random �elds . . .

I Unavailability of ergodic theorem for nonsingular actions of groups -
extension of Lindenstrauss (2001)?

I How about groups having Kazhdan's property (T)?
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Thank You Very Much for Your Patience.

Supplementary Material: De�nition of

Group Measure Space Construction +

References
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Koopman representation

G-action {φt} lifts to the space of all real-valued measurable functions on S by

σtg = g ◦ φt, t ∈ G.

This lifted action preserves the L∞-norm but not other Lp-norms.

However, for each t ∈ G, πt : L2(S, µ)→ L2(S, µ) given by

(πtg)(s) = g ◦ φt(s)
(
dµ ◦ φt
dµ

(s)

)1/2

, s ∈ S

de�nes an isometry. The unitary representation {πt}t∈G of G inside L2(S, µ)
is called the Koopman representation.
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The crossed product relation

Using the cocycle relationship

dµ ◦ φuv
dµ

=
dµ ◦ φu
dµ

σu

(
dµ ◦ φv
dµ

)
, u, v ∈ G,

one gets that for all a ∈ L∞(S, µ) (thought of as acting on L2(S, µ) by
multiplication), for all t ∈ G and for all g ∈ L2(S, µ),

(πt a πt−1g)(s) = ((σta)g)(s), s ∈ S. (6)

In other words, the Koopman representation �normalizes� L∞(S, µ) inside
B(L2(S, µ)). The group measure space construction is a space, where the
crossed product relation (6) is internalized.
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Group measure space construction

Consider the von Neumann algebra

B(l2(G)⊗ L2(S, µ)) = B(l2(G))⊗ B(L2(S, µ))

(with the closure being taken with respect to the weak/strong operator
topology). De�ne a representation of G by t 7→ ut := λt ⊗ πt, where {λt} is
the left regular representation and {πt} is the Koopman representation. We
also represent L∞(S, µ) by a 7→ 1⊗Ma, whereMa is the multiplication (by
a) operator on L2(S, µ). It can be checked that the following �internal� crossed
product relation holds:

ut(1⊗Ma)ut−1 = 1⊗Mσta .

De�ne the group measure space construction (also known as crossed product
construction) as

L∞(S, µ) oG := {ut, 1⊗Ma : t ∈ G, a ∈ L∞(S, µ)}′′.
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Connections to ergodic theory

It can be shown that the internal crossed product relation implies that any
x ∈ L∞(S, µ) oG can be uniquely written as x =

∑
t∈G atut with

{at : t ∈ G} ⊆ L∞(S, µ). Thus, we can view x as a |G| × |G| matrix with
entries coming from L∞(S, µ) that are the same along each left
group-diagonal; see, e.g, Jones (2009).

Theorem (see, e.g, Peterson (2013))

The following results hold for a nonsingular G-action {φt} and the
corresponding group measure space construction de�ned above.

1 If the action {φt}t∈G is free and ergodic, then L∞(S, µ) oG is a factor.

2 If L∞(S, µ) oG is a factor, then {φt}t∈G is ergodic.

3 If {φt}t∈G is free and ergodic, then the factor L∞(S, µ) oG is of type II1
if and only if {φt}t∈G is a positive action.

Furthermore, if the two nonsingular actions (not necessarily of the same
group) are orbit-equivalent, then the corresponding group measure space
constructions are isomorphic as von Neumann algebras
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