Add to Outlook calendar Add to Google calendar

PhD Thesis defence

Title: Near-optimal Non-malleable Codes and Leakage Resilient Secret Sharing Schemes
Speaker: Sruthi Sekar (IISc Mathematics)
Date: 11 March 2022
Time: 9:30 am
Venue: Microsoft Teams (online)

Non-malleable codes (NMCs) are coding schemes that help in protecting crypto-systems under tampering attacks, where the adversary tampers the device storing the secret and observes additional input-output behavior on the crypto-system. NMCs give a guarantee that such adversarial tampering of the encoding of the secret will lead to a tampered secret, which is either same as the original or completely independent of it, thus giving no additional information to the adversary. The specific tampering model that we consider in this work, called the “split-state tampering model”, allows the adversary to tamper two parts of the codeword arbitrarily, but independent of each other. Leakage resilient secret sharing schemes help a party, called a dealer, to share his secret message amongst n parties in such a way that any $t$ of these parties can combine their shares to recover the secret, but the secret remains hidden from an adversary corrupting $< t$ parties to get their complete shares and additionally getting some bounded bits of leakage from the shares of the remaining parties.

For both these primitives, whether you store the non-malleable encoding of a message on some tamper-prone system or the parties store shares of the secret on a leakage-prone system, it is important to build schemes that output codewords/shares that are of optimal length and do not introduce too much redundancy into the codewords/shares. This is, in particular, captured by the rate of the schemes, which is the ratio of the message length to the codeword length/largest share length. This thesis explores the question of building these primitives with optimal rates.

The focus of this talk will be on taking you through the journey of non-malleable codes culminating in our near-optimal NMCs with a rate of 1/3.

Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 09 Dec 2022